
Delft University of Technology
Delft Center for Systems and Control

Technical report 23-008

A novel bi-level temporally-distributed
MPC approach: An application to green

urban mobility∗

A. Jamshidnejad, D. Sun, A. Ferrara, and B. De Schutter

If you want to cite this report, please use the following reference instead:
A. Jamshidnejad, D. Sun, A. Ferrara, and B. De Schutter, “A novel bi-level temporally-
distributed MPC approach: An application to green urban mobility,” Transportation
Research Part C, vol. 156, p. 104334, Nov. 2023. doi:10.1016/j.trc.2023.104334

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/23_008.html

https://doi.org/10.1016/j.trc.2023.104334
https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/23_008.html


A Novel Bi-Level Temporally-Distributed MPC Approach:

An Application to Green Urban Mobility

Anahita Jamshidnejada,1,∗, Dingshan Sunb,1,∗, Antonella Ferrarac, Bart De Schutterb

aDepartment of Control and Operations, Delft University of Technology, Kluyverweg 1, Delft, 2629 HS, The Netherlands
bDelft Center for Systems and Control, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, The Netherlands

cIdentification and Control of Dynamic Systems Laboratory, University of Pavia, Italy

Abstract

Model predictive control (MPC) has been widely used for traffic management, such as for minimizing the total time spent or the

total emissions of vehicles. When long-term green urban mobility is considered including e.g. a constraint on the total yearly

emissions, the optimization horizon of the MPC problem is significantly larger than the control sampling time, and thus the number

of the variables that should be optimized per control time step becomes very large. For systems with dynamics that involve

nonlinear, non-convex, and non-smooth functions, including urban traffic networks, this results in optimization problems that are

computationally intractable in real time. In this paper, we propose a novel bi-level temporal distribution of such complex MPC

optimization problems, and we develop two mathematically linked short-term and long-term MPC formulations with small and

large control sampling times that will be solved together instead of the original complex optimization problem. The resulting bi-

level control architecture is used to solve the two MPC formulations online for real-time control of urban traffic networks with the

objective of long-term green mobility. In order to assess the performance of the bi-level control architecture, we perform a case

study where a rough version of the model of the urban traffic flow, S-model, is used by the long-term MPC level to estimate the

states of the urban traffic networks, and a detailed version of the model is used by the short-term MPC level. The results of the

simulations prove the effectiveness (with respect to the objective of control, as well as computational efficiency) of the proposed

bi-level MPC approach, compared to state-of-the-art control approaches.

Keywords: Temporally distributed MPC; multiple-frequency control; green urban mobility.

1. Introduction and motivations

One of the main long-term objectives of the European Cli-

mate Law (EC, 2021) is to achieve climate neutrality by 2050,

which means zero greenhouse gas emissions for all EU coun-

tries. The law, correspondingly, sets an intermediate target: to

reduce the net amount of greenhouse gas emissions for, at least,

55% by 2030, compared to the levels in 1990. According to

the European emissions gap report (UNEP, 2020), transporta-

tion accounts for one quarter of all the energy-related green-

house gas emissions, and it is foreseen that by 2050 two-third

of the world population will be urban. This can double the mo-

torized mobility and lead to a 60% increase in CO2 emissions

(Outlook, 2017; Echeverrı́a et al., 2022). Although there have

been attempts to reduce the emissions by promoting the use of

electric vehicles, public transit, and active transportation (e.g.,

walking and cycling), the traditional vehicles that exhaust emis-

sions still make up a dominant part of the transportation. The

European Environment Agency (EEA) reported in 2017 that the

∗Corresponding-author: Anahita Jamshidnejad and Dingshan Sun

Email addresses: a.jamshidnejad@tudelft.nl (Anahita

Jamshidnejad), d.sun-1@tudelft.nl (Dingshan Sun),

Antonella.Ferrara@unipv.it (Antonella Ferrara),

b.deschutter@tudelft.nl (Bart De Schutter)
1Anahita Jamshidnejad and Dingshan Sun are co-first authors.

amount of nitrogen dioxide produced annually across Europe

had significantly violated its allowed values (EEA, 2021). Ni-

trogen dioxide is a main component of air pollution that is very

harmful to the environment and to human health. This pollu-

tion is mostly associated with vehicle emissions, and according

to EEA (2021) 86% of the nitrogen dioxide exceedances have

been detected at roadside monitoring locations.

Therefore, there is an urgent need for high-performing con-

trol systems that provide green mobility by reducing the traf-

fic emissions, especially in urban networks, which are also the

focus of this paper. In order to coordinate with the climate

policies, while finding a balanced trade-off between minimizing

the traffic congestion and the level of harmful pollutants from

the vehicle exhausts, such control systems should maintain the

long-term emission levels to ensure that they do not exceed the

annual emission limit.

Model predictive control (MPC) is an interesting approach

for traffic control (see (Bellemans et al., 2006; Manolis et al.,

2018; Wu et al., 2020; Brandi et al., 2017; Siri et al., 2021)).

MPC has recently been proposed to provide green urban mo-

bility (De Schutter, 2014; Jamshidnejad et al., 2018b, 2016)).

The MPC optimization problems for green urban mobility are

multi-objective and subject to several (nonlinear) control and

state constraints. Thus, these problems are mathematically and

computationally complex, due to the large simulation horizon
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(i.e., weeks or months) and small control sampling time (i.e.,

seconds or minutes), accompanied by highly nonlinear and fluc-

tuating dynamics of urban traffic. Next, we briefly introduce

MPC and its open challenges for green urban mobility.

1.1. Model predictive control (MPC)

Model predictive control or MPC (Maciejowski, 2002;

Bemporad, 2006) is a feedback-based optimal control ap-

proach. An MPC-based controller (see Figure 1 given for a

discrete-time system with control sampling time c) consists of

two main elements, a prediction model and an optimizer, which

at every control time step run across a prediction horizon of size

np. The prediction model mathematically formulates the evolu-

tion of the dynamics of the controlled system, and cooperates

with the optimizer to determine a sequence of control inputs

that satisfy the constraints and minimize the given cost func-

tion. The feedback-based nature of MPC, i.e., using the mea-

sured states per control time step, makes the controlled system

to some extent robust to unexpected/unpredictable external dis-

turbances (Morari and Lee, 1999). Moreover, MPC has proven

to be an efficient approach for problems that should handle

both input and state constraints, while optimizing multiple cost

functions (Camacho and Bordons, 1995; Rawlings and Mayne,

2009).

MPC has been widely used for urban traffic signal con-

trol, and a comprehensive survey can be found in Ye et al.

(2019). Tettamanti et al. (2008) is one of the early studies

that utilize MPC in urban traffic management. Haddad et al.

(2013) developed a macroscopic traffic modeling approach for

mixed networks of freeways and arterials and solved the cor-

responding the optimal traffic control problem using MPC.

van de Weg et al. (2018) proposed a hierarchical MPC struc-

ture considering the different dynamics in different levels of

traffic networks, in which the higher layer provides refer-

ence outflow trajectories to the lower layer. Tettamanti et al.

(2013) used robust MPC to develop a traffic-responsive op-

timal signal split algorithm taking uncertainty into account.

Oliveira and Camponogara (2010) focused on the scalability of

MPC for traffic signal control for large-scale traffic networks,

and proposed a multi-agent MPC algorithm with graceful ex-

tension and localized reconfiguration, in which theoretical re-

sults have been investigated for the formulated linear traffic dy-

namic systems in terms of convergence and global optimum.

However, very few studies consider the green urban mobility

issue, which can introduce a long-term cumulative constraint

that is difficult to be addressed by conventional MPC methods.

1.2. Current challenges of MPC for green urban mobility

The main challenges of implementing MPC for green urban

mobility are explained below:

• The computational complexity of MPC can make MPC in-

tractable in real time (Richter et al., 2012), particularly for

green urban mobility where highly nonlinear dynamics,

large spatial and temporal scales, and long-term control

objectives and cumulative constraints are involved.
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Figure 1: Main structure of an MPC-based controller.
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• Despite providing a longer-term vision of the future

(which is in benefit of the long-term control objectives and

cumulative constraints), using a large prediction horizon

significantly increases the computational complexity. This

issue may be tackled in two ways:

– Decreasing the time scaling resolution, i.e., using a

larger control sampling time: This, however, may re-

sult in less dynamics and adaptability for the MPC

input (see Fig. 2).

– Simplifying the prediction model: This, however,

may reduce the accuracy of the predicted states, and

result in larger cumulative errors, particularly along

a large prediction horizon.

• In general, the optimization horizon of MPC should be

related to the time needed to travel through the traf-

fic network (Aboudolas et al., 2010; Tettamanti, 2013;

Kachroudi and Mammar, 2013). However, such a choice

of prediction horizon cannot explicitly address long-term

control objectives and cumulative constraints. This be-

comes particularly problematic for traffic systems that

have a large time delay for the control inputs to take ef-

fects on the system.

The control frequency also matters in MPC for traffic con-

trol. A higher control frequency will improve the control per-
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formance, at the price of more intensive computational com-

plexity, while a lower control frequency requires less compu-

tational efforts, resulting however in general in a less optimal

control performance. On the other hand, a larger control sam-

pling time results in a larger prediction window (as indicated

in Fig. 2), but may also lead to loss of control performance. In

this paper, we reach a trade-off between accuracy and computa-

tional complexity by adopting a multi-frequency control frame-

work, in which both a low-frequency MPC with large control

sampling time and a high-frequency MPC with small control

sampling time are integrated.

1.3. Contributions & structure of the paper

Therefore, in this paper, we will address the challenges of

MPC for green urban mobility, to resolve the conflict between

the long-term control objective and constraints on the one hand

and the short-term optimization horizon on the other hand. In

particular, we will propose a bi-level control architecture that

embeds MPC controllers with different frequencies of operation

and prediction horizons in the two control levels. The proposed

control system will be implemented to an urban traffic network

to achieve green mobility.

The main contributions of this paper include: 1) For the first

time, a multi-level MPC-based architecture with a larger pre-

diction horizon at the high level and a smaller prediction hori-

zon at the low level will be implemented for obtaining green

urban mobility. 2) The link and inter-dynamics of the two con-

trol levels are defined differently from any existing work: The

emissions allowed in the long term are determined via the high-

level MPC controller, and are adjusted for the shorter terms via

the low-level MPC controller. This idea can be generalized to

other fields, e.g., for energy allocation in building energy man-

agement. 3) This is the first time that MPC is adopted for long-

term control of the cumulative emissions for green urban mo-

bility. In fact, the proposed framework can limit the emissions

for a long enough time span (e.g., a year), with an affordable

online computation time compared to existing control methods.

Next we present a background discussion on the related the-

ory (i.e., multi-level MPC). The rest of this paper has the fol-

lowing structure: Section 2 describes and formulates the MPC

problem of green urban mobility. In Section 3, our proposed

novel approaches for tackling complex MPC optimization prob-

lems, including that of the green urban mobility, are explained.

Section 4 presents a case study, where our proposed MPC ap-

proach is compared with various state-of-the-art control meth-

ods for a simulated urban traffic network, and discusses the cor-

responding results. Section 5 concludes the paper and gives top-

ics for future research. Table 1 lists and defines the frequently-

used mathematical notations in the paper.

1.4. Related work

Hierarchical (multi-level) MPC schemes are often used to

address complex control problem. This topic has been stud-

ied extensively, and a comprehensive review can be found in

(Scattolini, 2009), where hierarchical MPC is classified into

four categories:

Table 1: Frequently-used mathematical notations (using a discrete-time frame-

work).

s Simulation sampling time of the traffic model (e.g., 1 min). With-

out specification, s denotes the detailed model simulation sam-

pling time, while sLT denotes the rough model simulation sam-

pling time

k Without specification, k denotes the short-term MPC control time

step, while kLT denotes the long-term MPC control time step

c Control sampling time: the number of time units during which a

control input remains unchanged. Without specification, c denotes

the short-term MPC control sampling time (e.g., 5 min), while cLT

denotes the long-term MPC control sampling time (e.g., 60 min)

co Operation sampling time: every a certain number of time units the

control sequence is optimized and updated. Without specification,

co denotes the short-term MPC operation sampling time (e.g., 5

min), while co,LT denotes the long-term MPC operation sampling

time (e.g., 60 min)

np (k) Prediction horizon at control time step k; in particular, nST (k) de-

notes the short-term MPC prediction horizon, while nLT(kLT) de-

notes the (shrinking) long-term MPC prediction horizon

ns (k) Simulation horizon at control time step k, which initially equals Ns

and shrinks gradually, where Ns is the considered total simulation

interval length (e.g., for a simulation interval of 1 day with the

simulation sampling time of 1 min, Ns = 1440)

u (k + ℓ|c) Control input at control time step k+ℓ (where ℓ = 0, 1, . . . , np (k)−

1) that is computed at control time step k, with control sampling

time c (e.g., the green time length for urban traffic control). This

notation applies for both short-term and long-term MPC

x(k + ℓ|c) State variable at control time step k+ ℓ (where ℓ = 1, 2, . . . , np (k))

that is estimated by the prediction model at control time step k,

with control sampling time c (e.g., the number of vehicles, queue

lengths, vehicle speeds on each lanes, etc.). In addition, ˇ̃x repre-

sents the states estimated by the rough model

x
meas (k|c) State variable measured at control time step k, with control sam-

pling time c; note that x(k|c) = x
meas (k|c)

ũ (k, n|c) Sequence of the control inputs determined at control time step k for

all control time steps across the horizon n, with control sampling

time c, i.e., ũ (k, n|c) = [u(k|c), . . . ,u (k + n − 1|c)]⊤

x̃ (k, n|c) Sequence of the state variables estimated by the prediction

model at control time step k for all control time steps across

the horizon n, with control sampling time c, i.e., x̃ (k, n|c) =

[x(k + 1|c), x(k + 2|c), . . . , x(k + n|c)]⊤; in addition, ˇ̃x represents

the corresponding variables for the rough model

f state(·) Detailed integrated flow-emission traffic model (e.g., an integrated

macroscopic traffic model and emission model (Lin et al., 2013));

while f̌ state(·) denotes the extracted rough integrated model

T̄k Cumulative travel time of all the vehicles at control step k. This

value can be calculated via the integrated traffic model f state(·);

while ˇ̄TkLT (·) represents the corresponding function for the rough

model f̌ state(·)

Ēk Emissions generated at control step k. This value can be calculated

via the integrated traffic model f state(·); while ˇ̄EkLT (·) represents

the corresponding function for the rough model f̌ state(·)

V̄(·) Function computing the norm of the variation in between two con-

secutive control input vectors, in order to avoid significant fluctu-

ations between the consecutive green time lengths

Note: For u, x, x
meas, ũ, and x̃ to be complete in definition, in addition to the

control sampling time, the initial control time step should generally also be

given as an argument. However, we assume that the initial control time steps

for all time frames, independent of the size of the control sampling time, are

synchronized and coincide with a fixed, known initial time step.

1. Hierarchical MPC for coordinated control: In such ar-

chitectures, a higher-level controller coordinates the con-

trol inputs generated by the lower-level local controllers,

where the controllers of both levels can be MPC-based.

2. Hierarchical MPC for dealing with systems with multi-
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ple time scales: In general, the higher-level controller

operates according to slow dynamics and a lower fre-

quency, whereas the lower-level controller operates with

faster dynamics and a higher frequency. Both control

levels can be used for the same system that is then de-

scribed via different time scales. The high-level con-

troller optimizes the control variables that have a long-

term effect on the system, and these values are then

used as references for the low-level controller to track

(see, e.g., (Brdys et al., 2008; van Henten and Bontsema,

2009; van de Weg et al., 2018)). Moreover, the two con-

trol levels can be used for different sub-systems with dif-

ferent functionalities and control frequencies (see, e.g.,

(Han et al., 2021; Dunham et al., 2019)).

3. Hierarchical MPC for control of systems with a hierarchi-

cal structure: This category corresponds to a classical cas-

cade feedback control system. For examples of controllers

that belong to this category, see (Dunham et al., 2019) and

(Di Cairano et al., 2019).

4. Hierarchical control for plantwide optimization: The high

level of control can use the detailed dynamics of the sys-

tem to compute optimal operating conditions, whereas the

low level of control employs simpler dynamics to follow

the references generated by the high-level controller. This

control architecture is usually used in the process industry.

Such a control system can also be implemented in a dual

way, i.e., the high level of control uses simplified or ab-

stracted dynamics of the system to predict the long-term

performance, and considers the objective function across

a large prediction horizon. Meanwhile, the low level of

control works with a more accurate model and calculates

the current control inputs according to a shorter prediction

horizon (Pappas et al., 2000).

The following paper will be illustrated in more details, since

it is more relevant to our work. Jin et al. (2019) consider the

hierarchical MPC approach of category 2 to schedule the en-

ergy resources of smart buildings with a microgrid. The high

level of control follows a day-ahead dynamic optimal schedul-

ing, where the schedules of the smart buildings, distributed gen-

erators, batteries, and day-ahead setpoints of electric tie-line

power are optimized for an entire day. The corresponding pre-

diction horizon covers the duration from the current time to the

end of the day, and the optimization is performed hourly. The

low level of control follows an intra-hour rolling adjustment,

where the low-level MPC works with a detailed model and a

faster control frequency, and performs with a smaller prediction

horizon. The low-level MPC tries to follow the reference (i.e.,

day-ahead schedules) generated by the high-level optimization

process. A similar strategy is used by Liu et al. (2020) for en-

ergy management of microgrids.

Most of the literature that use hierarchical MPC consider the

application in energy management for buildings, process indus-

try, or wastewater treatment. A few researchers have also im-

plemented hierarchical MPC for traffic management. The early

work (Varaiya, 1993) proposed a four-layer control architec-

ture for freeway traffic, where the tasks of these four layers are

route choice, path planning, maneuver, and regulation. Two

more recent papers (Baskar et al., 2012; Roncoli et al., 2016)

employed hierarchical MPC of category 1 for coordinated con-

trol of freeway traffic networks. Su et al. (2017, 2019) consider

a multi-level control strategy for the maintenance of railway

networks, in which a chance-constrained MPC is used at the

high level to perform a long-term optimization for the over-

all maintenance plan, and to provide maintenance suggestions

for the low-level controllers (Su et al., 2017, 2019). Han et al.

(2020) used a hierarchical control structure for the ramp meter-

ing control of a freeway network. A high-level MPC-based con-

troller determines the optimal total inflow from the on-ramps to

the freeway stretch by using an aggregated model. Then the

total inflow is distributed among the on-ramps via a low-level

MPC-based controller. Nonetheless, no study has considered

any temporally-distributed multi-level MPC for traffic manage-

ment yet. In this paper, we proposed a bi-level MPC control

framework with a hierarchical structure of category 4.

2. Green urban mobility based on an annual MPC schedule

In this section, the concept of cumulative constraints for

MPC is first introduced. Then we formulate the MPC problem

of green urban mobility, discuss the main characteristics of the

resulting optimization problem, and explain our novel approach

for tackling the complexities of this problem.

2.1. Cumulative Constraints

In general, ordinary MPC only considers instantaneous con-

straints on the states and inputs (see the second and the third

top plots in Fig. 3), which indicate, respectively, that the real-

ized value of an equality constraint should be equal to the given

value, and that the realized value of an inequality constraint

should not violate the upper bound. However, cumulative con-

straints (i.e., constraints defined on the summation of the real-

ized values of a variable for multiple control time steps) should

be considered for green urban mobility, since there are annual

emission limits required by climate policies (i.e., the cumula-

tive emissions over the entire year should not exceed an annual

limit).

For every control time step k+1, . . . , k+np across the predic-

tion horizon of MPC, the accumulated value of a specific vari-

able (i.e., the height of the corresponding dashed bar in the top

plot of Fig. 3) should not exceed a given upper bound (shown

by the black continuous curve in the top plot of Fig. 3). Note

that the height of each colored (blue) bar in Fig. 3 corresponds

to the realized value of the variable at the current control time

step. Moreover, the height of every dashed bar represents the

accumulated value of this variable (i.e., the summation of the

heights of the current and all the previous colored blue bars).

A main feature of cumulative constraints is that the maxi-

mum value of the corresponding variable for a given control

time step (i.e., the maximum allowed height of the correspond-

ing colored blue bar) depends on the value of the cumulative
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Figure 3: Illustration of the variables, cost functions, and constraints for an

MPC optimization problem: In the second to fourth plots from the top, the white

triangles, stars, and bars represent the stage constraints/costs and the colored

triangles, stars, and bars show their terminal values. In the top plot, the dashed

bars represent the realized cumulative (from control time step k until the current

control time step) constraint for every control time step, whereas the colored

(blue) part of the bars represent the realized value of the constraint for that

particular control time step.

constraint already realized, while for instantaneous constraints

the upper bound is independent of the previous values. This

characteristic of cumulative constraints can provide flexibility

in the predictive decision-making of MPC, i.e., by selecting an

alternative optimal solution that further constrains the cumula-

tive value at one control time step, MPC can loosen the upper

bound constraint for the upcoming control time steps, and vice

versa.

2.2. Problem formulation

The problem involves real-time scheduling and planning of

traffic signals at the intersections of an urban traffic network,

such that the congestion and total emissions of particular pol-

lutants across a predefined simulation horizon are reduced. For

the simulation horizon, we consider a fixed yearly time frame,

where the control procedure begins at 0:00 of the first day of

January and ends at 23:50 of the last day of December of the

same year (considering a control sampling time of 10 min) .

The size of the simulation horizon for the entire 1 year (i.e.,

365 days × 24 h × 60 min divided by the control sampling time

10 min) is given by Ns. The main constraints are on the to-

tal emissions of particular pollutants at given monitoring time

steps (e.g., at the end of the year).

At control time step k (when the measured state xmeas(k|c) is

received)2, the corresponding green mobility control problem

can be formulated across the simulation horizon ns(k) (which

initially equals Ns and shrinks gradually) by:

min
ũ(k,ns(k)|c)

(

T̄k

(

x̃
(

k, ns (k) |c
)

)

+
∑

ǫ∈E

λǫ Ēk

(

Pǫ , x̃
(

k, ns (k) |c
)

)

+

λvarV̄
(

ũ
(

k, ns (k) |c
)

)

(1)

s.t. :

C1: state prediction model:

x̃(k, ns(k)|c) = f state
(

x
meas (k|c) , ũ (k, ns (k) |c)

)

,

C2: instantaneous stage and terminal constraints:

x̃(k, ns(k)|c) ∈ Xns(k), ũ(k, ns(k)|c) ∈ Uns(k),

C3: cumulative constraint ∀ǫ ∈ E:

Ēk

(

Pǫ , x̃(k, ns(k)|c)
)

≤ Ēsafe
ǫ − Ēreal

ǫ (k|c).

Every control time step, the simulation horizon is reduced

by 1 unit compared to the previous control time step. Thus,

ns (k) = Ns− k. In (1), T̄k(·) and Ēk(·) give the cumulative travel

time (a quantitative measure of the traffic congestion) and the

cumulative emissions of a particular pollutant for all the vehi-

cles within the time interval corresponding to the horizon ns(k),

starting at control time step k. These values can be calculated

via the traffic model f state(·) with given initial states and control

inputs. Moreover, Pǫ is a matrix that includes parameter values

that are identified experimentally for every pollutant ǫ (e.g., see

(Zegeye et al., 2013)) with E the set of all pollutants, and λǫ is

a weight that indicates the relative importance of various pol-

lutants. The function V̄(·) computes the norm of the variation

in between two consecutive control input vectors and λvar is the

corresponding weight. In C1, f state(·) is a generally nonlinear

function that models the evolution of the traffic flow and emis-

sions of the traffic network. Due to limited space, the detailed

formulation of the traffic model is not presented here. The inter-

ested reader can refer to e.g. Lin et al. (2013) for more details.

In C2, X and U are the admissible sets for the state variables

and the control inputs, with the superscript ns(k) denoting the

dimension. For example, the queue length should not exceed

a given value to avoid backpropagation of traffic congestion,

and the green time length should be within a given range. In

C3, Ēsafe
ǫ shows the maximum allowed value of the cumulative

emissions for pollutant ǫ, which is illustrated by the continuous

black curve in Fig. 3. Note that in the green urban mobility

application this upper bound is fixed, i.e., it is equal to the max-

imal allowed annual emissions of a pollutant. Finally, Ēreal
ǫ (·|c)

is the value of the total emissions of ǫ already realized by a

given control time step (this value for every control time step is

the height of the dashed bar at the previous time step in Fig. 3).

2We suppose that the simulation time steps coincide with the control time

steps.
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(i.e., a minute), including a zoomed-in sketch of the finest time resolution that corresponds to the control sampling time.

2.3. Characteristics of the optimization problem

The constrained optimization problem (1) has the following

characteristics:

• The problem involves minimization of a cost function sub-

ject to various control and state constraints, looking into

the future across a finite simulation horizon with a fixed fi-

nal control time step. This implies that (1) has the structure

of a shrinking-horizon optimization problem (Skaf et al.,

2010).

• Due to the nonlinearities in the traffic behavior, T̄k(·), Ēk(·),

and f state(·) are in general nonlinear, non-smooth, and pos-

sibly non-convex. Therefore, (1) is generally nonlinear

and non-convex.

• The green urban mobility optimization problem, including

the cost function and the cumulative constraints, is defined

over a relatively long time span (e.g., 12 months), while

the control inputs (i.e., the green times of the traffic sig-

nals) of the controlled system (with dynamics that may be

prone to rapid nonlinear changes), need to be determined

at relatively high frequencies (e.g., every few seconds or

minutes). These result in small control sampling times and

a large value Ns for the simulation horizon, which implies

a large number of optimization variables that should be

determined online and in real time via (1).

• For (1) to be computationally tractable, the details may

be reduced via, e.g., simplifying the prediction models

and increasing the control and operation sampling times,

which respectively decrease the computational burden and

the number of the optimization variables. Taking these

measures may result in negative impacts on the accuracy

and performance of the control system, as it was discussed

in Section 1.2.

• The above-mentioned characteristics of (1), including

nonlinearity, non-convexity, and long-term control objec-

tives and constraints, next to the need for frequent online

and real-time decision making, involving a large number

of optimization variables, yield a complex optimization

problem.

Fig. 4 illustrates the entire simulation horizon, over which the

elements of the cost function, i.e., T̄k(·) and Ēk(·), and the cu-

mulative constraints are defined. A cut of the plot (within the

rectangular frame) has been zoomed in, which shows the signif-

icant difference between the temporal scales of the control input

and the control costs and cumulative constraints. The character-

istics of (1) mentioned earlier imply that this optimization prob-

lem may not be easy/tractable to tackle online and in real time

by conventional methods. Next, we discuss how our proposed

novel approaches can make (1) computationally tractable.

3. Proposed methodology for tackling the optimization

complexity resulting from various temporal scales

In this section, we give our proposed approaches for tackling

the complexities of (1), due to different temporal scales (i.e.,

small control sampling time and large simulation horizon). Our

proposed methods consist of a temporal distribution and refor-

mulation of the problem, using a shrinking-horizon approach,

called jumping-horizon, and a bi-level multiple-frequency con-

trol architecture for implementation and solving the new for-

mulations of the optimization problem (1).
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3.1. Bi-level temporal distribution of the problem

In the optimization problem (1), two very different temporal

scales appear, due to Ns ≫ c. For a controlled system with

a long-term cost function, an efficient control system should

guarantee that the short-term control inputs will gradually lead

the controlled system towards its desired long-term cost, while

the short-term behavior of the controlled system also fulfills the

requirements of the users of the controlled system, taking into

account the rapid fluctuations of the system dynamics. Such a

control system needs an overall vision of the controlled system

through the entire control period, as well as more detailed in-

formation and vision about its short-term dynamics. Therefore,

we propose to develop two linked MPC optimization formula-

tions for the original optimization problem (1), where the long-

term and short-term costs and constraints of (1) are distributed

among these two formulations. The resulting MPC problems

can be solved individually online, and their integrated solutions

can result in a controlled behavior for the system that is suf-

ficiently close to the behavior of a centralized controller that

solves (1), while being significantly more computationally ef-

ficient. Next, we explain the two MPC formulations in detail.

Assumption 3.1. It is assumed that a detailed mathematical

model f state(·) can be obtained that approximates the evolution

of the traffic states and the traffic emissions accurately. Mean-

while, a rough traffic model f̌ state(·) can be extracted that has

a larger simulation sampling time, thus resulting in long-term

prediction.

3.1.1. Rough long-term MPC formulation

A rough long-term MPC optimization problem is formulated

within the same shrinking simulation window as (1), but with

a (significantly) larger control sampling time cLT (in this case,

one-third of a month), resulting in different control time steps

kLT. Fig. 5 illustrates an example of the rough long-term MPC

input at long-term control time step kLT, assuming that kLT co-

incides with April 1 at 0:00. Moreover, simplified versions of

T̄k(·) and Ēk(·) (shown by ˇ̄TkLT (·) and ˇ̄EkLT (·)), and a less detailed

prediction model f̌ state(·) for the state variables are considered.

The prediction horizon of the rough long-term MPC at long-

term control time step kLT is given by nLT(kLT). The initial size

of the long-term prediction horizon is Nsc/cLT, and thus for the

long-term prediction horizon we have nLT(kLT) = Nsc/cLT−kLT.

The rough long-term MPC optimization problem at long-term

control time step kLT is given by:

min
ũ(kLT,nLT(kLT)|cLT)

(

ˇ̄TkLT

(

ˇ̃x
(

kLT, nLT(kLT)|cLT
) )

+

∑

ǫ∈E

λǫ
ˇ̄EkLT

(

Pǫ , ˇ̃x
(

kLT, nLT(kLT)|cLT
) )

+

λvarV̄
(

ũ

(

kLT, nLT(kLT)|cLT
) )

)

(2)

s.t. :

state prediction model:

ˇ̃x
(

kLT, nLT(kLT)|cLT
)

=

f̌ state

(

x
meas
(

kLT|cLT
)

, ũ
(

kLT, nLT(kLT)|cLT
)

)

,

instantaneous stage and terminal constraints:

ˇ̃x
(

kLT, nLT(kLT)|cLT
)

∈ XnLT(kLT),

ũ

(

kLT, nLT(kLT)|cLT
)

∈ UnLT(kLT),

cumulative constraint ∀ǫ ∈ E:

ˇ̄EkLT

(

Pǫ , x̃
(

kLT, nLT(kLT)|cLT
)

)

≤ Ēsafe
ǫ − Ēreal

ǫ (kLT|cLT).

Note that ˇ̃x is used to show that the corresponding states are de-

termined by the prediction model f̌ state(·), instead of by f state(·).

To formulate the rough long-term MPC optimization problem

(2), a good choice of cLT (with cLT > c) that results in a bal-

anced trade-off between the time and accuracy of computations

is important. This variable has been represented by a different

color (red) in (2) to specify that it is a design variable in the

proposed temporally-distributed approach. The solutions of the

rough long-term MPC optimization problem, which are deter-

mined based on a farther vision of the future and less details in

the dynamics of the controlled system, may affect the solutions

of the short-term MPC optimization problem (explained next in

Section 3.1.2), while they do not directly steer the controlled

system.

3.1.2. Detailed short-term MPC formulation

A second MPC optimization problem is formulated across an

adaptive prediction horizon nST (k) starting at the current con-

trol time step k, with nST (k) ≤ ns (k) and control sampling time

c. Note that since the control sampling time of the short-term

MPC formulation and (1) are the same, and also based on Re-

mark 1, the short-term control time step is simply k. Addition-

ally, detailed prediction models (e.g., the same as for (1)) are

considered. The detailed short-term MPC optimization prob-
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Figure 6: MPC input across the adaptive prediction horizon corresponding to

the detailed short-term MPC optimization formulation for c = 20 min.

lem at control time step k is given by:

min
ũ(k,nST(k)|c)

(

T̄k

(

x̃

(

k, nST (k)|c
) )

+

∑

ǫ∈E

λǫ Ēk

(

Pǫ , x̃
(

k, nST (k)|c
) )

+

λvarV̄
(

ũ

(

k, nST (k)|c
) )

+

λterm
(1)

∥

∥

∥

∥

x(1)

(

k + nST (k)|c
)

∥

∥

∥

∥

− λterm
(2)

∥

∥

∥

∥

x(2)

(

k + nST (k)|c
)

∥

∥

∥

∥

)

(3)

s.t. :

state prediction model:

x̃

(

k, nST (k)|c
)

= f state

(

x
meas (k|c) , ũ

(

k, nST (k)|c
)

)

,

instantaneous stage and terminal constraints:

x̃

(

k, nST (k)|c
)

∈ XnST(k), ũ

(

k, nST (k)|c
)

∈ UnST(k),

cumulative constraint ∀ǫ ∈ E:

Ēk

(

Pǫ , x̃
(

k, nST (k)|c
)

)

≤ Ē
safe, ST
ǫ (k) − Ēreal

ǫ (k|c).

At every control time step k, the short-term prediction hori-

zon nST (k) is determined and applied to the detailed short-term

MPC optimization problem in a shrinking manner until the next

time step k + 1. In (3), x(1) and x(2) are, respectively, the sub-

vector of the state variables of x (e.g., the number of vehicles

moving on the lanes and the number of vehicles idling in the

queues) that should be minimized at the terminal control time

step, and the sub-vector of x including the kinetic state vari-

ables (e.g., the speeds and accelerations of the vehicles) that

should be maximized at the terminal control time step. The last

two terms in the argument of the min function in (1) correspond

to the terminal cost that is added to the short-term MPC prob-

lem, in order to compensate for the effect of reducing the size

of the prediction horizon with respect to the original optimiza-

tion problem. The parameters λterm
(1)

and λterm
(2)

are weights for the

components of the terminal cost.

Fig. 6 shows an example for the detailed short-term MPC

input, where the adaptive shrinking prediction horizon starts

at 0:00, has an initial size of 72, and gradually shrinks (e.g.,

the prediction horizon illustrated in Fig. 6 has already shrunk

for 36 control time steps). Note that in this example, the de-

tailed short-term MPC optimization problem temporally covers

a part of the rough long-term MPC optimization problem that

is shown within a highlighted yellow rectangle in Fig. 5 (i.e.,

one-tenth of the long-term control sampling time).

In formulation (3) for the detailed short-term MPC optimiza-

tion problem, the choice of nST (k) and Ē
safe, ST
ǫ (k) plays an im-

portant role in the effectiveness of the determined control in-

puts. Therefore, we have shown these variables in color (red)

to specify that these are design parameters. In general, the

value of nST (k) can be selected according to the size of the traf-

fic network, such that the horizon aligns with the time needed

to travel through the traffic network (Aboudolas et al., 2010;

Tettamanti et al., 2013; Kachroudi and Mammar, 2013). In the

proposed multi-frequency bi-level MPC framework, the high-

level MPC controller can address the long-term plan with a

large control sampling time and a low control frequency. There-

fore, the low-level MPC can employ a normal size of predic-

tion horizon as suggested by the references given above. The

main aim of the proposed approach is to select Ē
safe, ST
ǫ (k) in

(3) based on the solution of (2), such that the resulting optimal

MPC solution of (3) provides a high level of accuracy due to,

both, the small control sampling time of (3) and the long-term

temporal vision of (2), while a proper choice of Ē
safe, ST
ǫ (·), may

result in more flexibility (i.e., less tight constraints) for the cu-

mulative constraints in the remainder of the simulation time.

Such novel integration of (2) and (3) will provide a balanced

trade-off between the speed and accuracy of the optimization

computations.

Remark 1. We assume that the initial control time steps for

(1), long-term, and short-term MPC optimizations overlap, and

that the control sampling times of the corresponding controllers

are such that the terminal control time steps for all these frame-

works fall on the terminal time instant of the simulation window.

3.1.3. Jumping-horizon MPC

We introduce the concept of jumping-horizon MPC, where

the operation frequency of the MPC-based controller can be dif-

ferent from the control frequency. Operation frequency of MPC

indicates how often the controller solves the optimization prob-

lem and updates the control input sequence, while control fre-

quency implies how often the control input changes. Therefore,

jumping-horizon MPC is a combination of shrinking-horizon

MPC and multi-frequency MPC.

In jumping-horizon MPC, the relationship between the oper-

ation sampling time co and the control sampling time c is given

by:

co = ν · c, with 1 ≤ ν ≤ np, (4)

where ν = 1 corresponds to regular MPC explained in Section

1.1. For every control time step that coincides with an opera-
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ũ

(

kLT, nLT(kLT)|cLT
)

ũ

(

k, nST (k) |c
)

Ē
safe, ST
ǫ (k) ,∀ǫ ∈ E

ĒkLT

(

Pǫ , x̃
(

kLT, ns(kLT)|c
)

)

Figure 8: Linking the long-term and short-term MPC formulations at long-term

control time step kLT that corresponds to short-term control time step k, using

an adapter block for distribution of the estimated cumulative emissions among

the short-term prediction window and the remainder of the simulation window.

tion time step and the next ν − 1 control time steps, the first ν

elements of ũ(k, np|c) are implemented to the controlled system.

Fig. 7 illustrates jumping-horizon MPC for the green mobil-

ity control problem (see Section 2) applied to the rough long-

term MPC formulation. In this figure, the control sampling time

is one-third of the operation sampling time, i.e., ν = 3.

3.1.4. Linking the long-term and short-term MPC formulations

In order to link the long-term and short-term MPC formu-

lations (2) and (3), we propose a bi-level control architecture

with various frequencies of operation (see Fig. 8). The long-

term MPC problem (2) is solved less frequently via a slow-rate

controller, whereas the short-term MPC problem (3) is solved

via a fast-rate controller. In order to simplify the formulations

and thus let the operation time steps overlap with the control

time steps, we suppose that the operation sampling time of the

slow-rate MPC controller is a multiple of the long-term control

sampling time, thus a multiple of the control sampling time c

(see Remark 1).

The slow-rate computations are performed via the outer loop

in Fig. 8. While the slow-rate MPC controller uses a rough

model for prediction, its solution ũ

(

kLT, nLT(kLT)|cLT
)

is used

by a detailed integrated flow-emission model (e.g., f state(·))

with sampling time c to determine x̃

(

kLT, ns(kLT)|c
)

, and then

ĒkLT

(

Pǫ , x̃
(

kLT, ns(kLT)|c
) )

for all ǫ ∈ E. Next, the values of the

cumulative emissions estimated for the remainder of the sim-

ulation window are injected into an adapter block, which dis-

tributes these values between the current short-term prediction

window (e.g., the section of the simulation window that is dis-

tinguished by a highlighted yellow rectangle in Fig. 5) and the

remainder of the simulation window. The share of the cumula-

tive emissions that is associated with the short-term prediction

window by the adapter block will be used by the MPC formula-

tion (3) as the upper bound value Ē
safe, ST
ǫ (·) for the cumulative

constraints in order to determine the control input sequences

ũ

(

k, nST (k) |c
)

. In practice, only those elements of this con-

trol input sequence that correspond to one fast-rate operation

sampling time are used to steer the system (see for instance the

control inputs illustrated in red in Fig. 6) are injected into the

controlled system to control the actuators (in this case the traffic

signals).

After one fast-rate operation sampling time, the values of the

cumulative emissions realized within this interval are sent via

the controlled system to the adapter block, which uses these

values to update the upper bounds for the cumulative emissions,

and re-distribute these values between the current short-term

window and the rest of the simulation window.

Note that the adapter block can be designed to produce in

parallel various candidate distributions for the upper bound of

the cumulative emissions. In that case, (3) will be solved for all
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these possible distributions in parallel, and from all the optimal

solutions determined, the one that corresponds to the least re-

alized cost and/or the least value for Ē
safe, ST
ǫ (·) (or to the least

value for a weighted combination of these two quantities) will

be selected.

4. Case study

In this section, we perform two case studies with different

time scales in order to evaluate the performance and validate

the temporal-scalability of the proposed bi-level temporally dis-

tributed MPC approach for green mobility in an urban traffic

network. The cost function consists of the total time spent

(TTS) and total emissions (TE) of the vehicles traveling in the

urban traffic network within a given simulation window. For

the emissions, we focus on CO2, which is the main cause of

greenhouse effect. For comparison, we consider state-of-the-art

control methods, including fixed-time control, responsive con-

trol, optimized fixed-time control, and conventional MPC. The

performance of these controllers is assessed according to the

following criteria: realized values of the total time spent by the

vehicles in the urban traffic network, total emissions of CO2, the

realized value of the cost function (i.e., a weighted summation

of the total time spent and total emissions, and for conventional

MPC a penalty corresponding to constraint violation), as well

as the CPU time for the computations of each controller.

4.1. Setup for case study 1

4.1.1. Urban traffic network

In this case study, we consider an urban traffic network

(shown in Fig. 9; a similar network has been considered by

Kong et al. (2013)) with 8 source/destination nodes labeled by

numbers 1–8 where vehicles enter and leave the traffic network,

and with 9 intersection nodes labeled by letters A–I. The ar-

rows in the figure illustrate the links on which the vehicles can

move from an upstream node to a downstream node. The num-

bers next to these arrows give the length of the corresponding

link in m. Every two adjacent intersection nodes are connected

by at least one link and at most two links with different direc-

tions. Each intersection node is controlled via a traffic signal,

except for node B, which does not have a controller. A cen-

tralized controller is used for all the traffic signals, which have

the same fixed cycle time equal to 1 min and are synchronous.

Each directed link consists of 1-3 lanes, where the number of

lanes corresponds to the number of the downstream links. As

an example, the detailed illustration of a part of the urban traffic

network that includes the links corresponding to nodes A and B

is shown in Fig. 10. Since link (A,B) has two downstream links

(B,C) and (B,E), it consists of two lanes. Vehicles that enter the

traffic network via a source node are not allowed to turn imme-

diately from the corresponding source link into a neighboring

destination link and leave the traffic network (e.g., vehicles that

enter via node 1 in Fig. 10 are not allowed to turn into link

(A,2)). Finally, the cycle of every traffic signal includes two

phases (see Fig. 11 for an intersection node with four links).

Note that the same condition holds for T-shaped crosses, such

as those at intersection nodes F, G, and I.

Figure 9: Urban traffic network used for the case study.

Figure 10: Detailed illustration of the part of the urban traffic network that

includes intersection nodes A and B.

4.1.2. Traffic flow and emission models

In this case study, the dynamics of the urban traffic flow is

modeled via the S-model (Lin et al., 2011), which is macro-

scopic and updates the state variables of every link of the urban

traffic network per simulation time step (which is considered to

be equal to the cycle time of the downstream traffic signal of the

link). The state variables for every link include the total num-

ber of vehicles and the number of vehicles in the queue(s) on

the link (see Lin et al. (2011) and Jamshidnejad et al. (2018a)

for more details). The emissions of CO2 are calculated ac-

cording to the states of the vehicles in the network, such as

the acceleration and speed. More specifically, we use VT-micro

(Zegeye et al., 2013) integrated with the S-model to obtain the

amount of emissions (see Lin et al. (2013) for details).

For the detailed short-term and rough long-term MPC con-

Figure 11: Illustration of the two phases corresponding to the cycle of every

traffic signal.
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Table 2: Parameters of the integrated flow and emission model used for the case

study

vfree[m/s] vidle[m/s] aacc[m/s2] adec[m/s2] lveh[m]

16.67 1.11 2 -2 5

trollers, two versions of the S-model are considered: the S-

model with a detailed simulation sampling time (equal to the

cycle time of the traffic signals, i.e., 1 min), and the S-model

with a rough simulation sampling time (five times the cycle

time of the traffic signals, i.e., 5 min), respectively. The rough

version of the S-model approximates the state variables of the

urban traffic network faster and with a reduced, but acceptable

accuracy compared to the detailed version of the S-model. The

parameters used for the integrated flow and emission model for

the urban traffic network are presented in Table 2, where vfree is

the free-flow speed, vidle is the idling speed, aacc is the acceler-

ation, adec is the deceleration, and lveh is the average length of

the vehicles in the traffic network.

4.1.3. Demand profiles

Six demand scenarios have been considered for a simulation

window of 6 hours, beginning at 6:00 and ending at 12:00. This

simulation window covers the morning rush hours. Although

larger simulation windows can be considered to be controlled

by the proposed approaches, we have considered this simula-

tion window in order to compare the proposed control approach

with more existing control methods with lower computational

burden, where 6 h is large enough to represent various traffic

flow and emission dynamics. The profiles for the traffic de-

mands at the source nodes for the 6 scenarios are shown in

Fig. 12. Compared to Scenario 1, Scenario 2 has a delayed

peak in the morning and no peak for the demand at noon, while

for Scenario 3 the peaks correspond to larger values of demand

both in the morning and at noon. Moreover, Scenarios 4 and 5

have lower peak values both in the morning and at noon, while

Scenario 6 has a higher morning peak than Scenario 1, but no

peak occurs for this scenario at noon. In order to make the

case study more realistic, we have included some noise to the

demand profiles for Scenarios 2–6, which will be used to eval-

uate and compare the performance of various controllers. More

specifically, in each of the Scenarios 2–6, we have added the

noise signals defined by N1(t) = 10 sin(10t), N2(t) = 40 sin(t),

N3(t) = 40 cos(2t+1), N4(t) = 45 cos(t+1), N5(t) = 50 sin(0.5t),

N6(t) = 50 sin(1.2t + 1), N7(t) = 40 sin(1.5t + 1), N8(t) =

40 cos(1.3t + 1), to the demands at sources 1–8, respectively.

The demand profiles that include the noise correspond to the

predicted demands and imply that imperfect predictions of the

real-life demand profiles may be available for the controllers.

Assumption 4.1. It is assumed that historical data of traffic de-

mands is available for the high-level long-term MPC controller,

and that the real-time traffic demands can be estimated for the

low-level short-term MPC controller.

4.1.4. Cumulative emission constraints

The maximum allowed cumulative emissions of CO2 are set

to 70000 kg for all the scenarios, except for Scenario 4, where

the maximum is 65000 kg. The reason for considering a smaller

cumulative emissions of CO2 in Scenario 4 is that there the de-

mands are significantly lower compared to the other scenarios.

4.2. Controllers

For all the controllers considered in this case study, the con-

trol input variable is the green time length for each traffic sig-

nal, with a lower bound of 10 s and an upper bound of 50 s.

The controllers that have been considered in this case study are

introduced next.

4.2.1. Fixed-time controller

With the fixed-time controller, the green time lengths are not

optimized, but are instead given as a fixed value of 30 s for all

the controlled intersections within the entire simulation window

of 6 h. This case is considered as a benchmark for all the other

control approaches that are implemented in this case study.

4.2.2. Responsive controller

The responsive controller is an online adaptive traffic con-

troller that updates the green time length of a controlled inter-

section at every control time step according to the traffic volume

of the connecting links of that intersection. The links that in-

clude more vehicles will receive a larger green time length (see

Section 2.1 of Keyvan-Ekbatani et al. (2019) for details). The

control sampling time of the responsive controller is 1 min.

4.2.3. Optimization policies for adaptive control (OPAC)

OPAC is a computational strategy for real-time demand-

responsive traffic signal control (Gartner, 1983). For the next

control sampling time step, the controller estimates the upcom-

ing traffic flows, and enumerates all the possible choices of

green time length (which should be integer values within the

allowed range of the control input variable) in order to find an

optimal value for the corresponding green time length that re-

sults in the least total delay for the particular controlled inter-

section. Note that these estimations are performed for individ-

ual controlled intersections simultaneously (i.e., in a decentral-

ized way). The dynamics of the links corresponding to the con-

trolled intersection are updated via the S-model and are used

to predict the future values of the state variables of these links.

Note that the constraints on the emissions cannot be incorpo-

rated explicitly in an OPAC controller. The control sampling

time of the OPAC controller is set to 1 min.

4.2.4. Optimized fixed-time controller

This controller is optimized off-line using a rough version of

the S-model and demand Scenario 1 shown in Fig. 12. The op-

timization problem is solved considering a cost function that is

defined as a weighted summation of the TTS and the TE within

the simulation window, with a control sampling time of 60 min.

A rough estimation of the total emissions within the simulation
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Figure 12: Demand profiles for the 6 scenarios in case study 1.

window is given as the upper bound for the cumulative con-

straint of the optimization problem. Whenever the optimizer

fails to find a feasible solution with respect to the given con-

straint, the optimization problem is solved excluding the cumu-

lative emission constraint, and a penalty corresponding to the

emission constraint violation is added to the cost function. This

controller is taken as the benchmark for comparison.

4.2.5. Conventional MPC controller

In order to implement an MPC controller in real time for

green mobility in the given urban traffic network, the predic-

tion time interval is limited to 15 min with a control sampling

time of 5 min (i.e., the prediction horizon is 3) and an opera-

tion sampling time of 5 min. The MPC optimization problem

is solved considering the detailed S-model and a cost function

defined as a weighted sum of the TTS and the TE within the pre-

diction window. The upper bound for the cumulative emissions

of CO2 within the current prediction window is estimated based

on the demand profiles, i.e., the ratio of the expected demand

within the current prediction window and the future expected

demand is used to distribute the remaining allowed cumulative

emissions. By comparing the performance and CPU time of

this MPC controller and the bi-level MPC controller, we can

realize how and to what extent adding the long-term MPC con-

troller impact the overall performance of the controlled system,

as well as the computational burden of the MPC controller.

4.2.6. Conventional MPC with a large prediction horizon

The same conventional MPC controller as the previous sub-

section, but with a larger prediction horizon is considered. The

prediction time interval of this controller is doubled (i.e., it is 30

min), and therefore the prediction horizon size is 6. The other

settings are exactly the same as the previous conventional MPC

controller. Comparing the performance of this MPC controller

with that of the bi-level and conventional MPC controller will

show us whether or not we can gain the desired performance

via a single level of control, with still an affordable computa-

tion time.

4.2.7. Single-level long-term MPC controller

The rough long-term MPC-based controller in the high level

of the proposed framework will be considered as the controller

that directly controls the traffic network. The rough long-

term MPC controller optimizes the multi-objective cost func-

tion (i.e., weighted summation of the TTS and the TE) consider-

ing a rough version of the S-model, with a simulation sampling

time of 5 min, and a control and operation sampling time of 60

min. The controller originally has a prediction horizon size of

6 (equal to the simulation horizon), which is implemented in a

shrinking-horizon way.

4.2.8. Bi-level temporally-distributed MPC controller

In the bi-level MPC framework the rough long-term MPC

controller in the higher level of control has the same setting

as the one introduced in Section 4.2.7. The parameters of the

detailed short-term MPC controller in the lower level of con-

trol are similar to those of the conventional MPC controller ex-

plained in Section 4.2.5. Note that since the prediction interval

of the detailed short-term MPC is 15 min, within one opera-

tion sampling time (i.e., 60 min) of the rough long-term MPC

controller the short-term prediction horizon size remains 3, ex-

cept for the short-term control time step corresponding to the

50th minute, for which the short-term prediction horizon size

will be 2 and for the short-term control time step corresponding

to the 55th minute, for which the short-term prediction horizon

size will be 1. The parameter values are presented in Table 3.

For the integrated flow and emission model in the adapter

block (see Fig. 8), the detailed versions of the S-model and VT-

micro are used (see Lin et al. (2013) for more details). Thus,

the rough control inputs determined via (2) and the predicted

demands for the upcoming 1 h (see Fig. 12) are used to es-

timate the expected realized total emissions for the upcoming
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Table 3: Parameters values for the case study

s sLT nST(kLT) nLT(kLT) c cLT co co,LT λCO2
λvar λterm

(1)
λterm

(2)

1 min 5 min 15 min 360 min 5 min 60 min 5 min 60 min 0.005 0 0 0

1 h. This value is initially distributed via the adapter block

evenly among the detailed short-term control time steps. Af-

ter every control time step, the upper bounds for the cumula-

tive emissions for the remaining control time steps are updated

by evenly re-distributing the value of the previous upper bound

minus the value of the cumulative emissions realized in the last

control sampling time. The updated upper bounds for the cu-

mulative emissions are used by the detailed short-term MPC

optimization problem to determine an optimal control input se-

quence that will be injected into the controlled system for the

upcoming control sampling time (5 min).

Remark 2. The proposed bi-level MPC framework can be ex-

tended to larger simulation windows, e.g., one month or one

year, where additional intermediate adapter blocks can be in-

cluded. For instance, one rough adapter block allocates the es-

timated total emissions for the entire simulation window (e.g., a

month) over the individual days in the month, and a second de-

tailed adapter block distributes these daily upper bounds over

the individual hourly intervals. This approach will make the

procedure computationally more efficient.

4.3. Setup for case study 2

In this case study, a larger simulation interval (i.e., 10 days)

is considered to further assess the ability of the proposed frame-

work to fulfill the long-term control task. This case study shares

the same settings as case study 1, including the urban traffic

network, traffic flow and emission model, and the controllers.

The only difference is the traffic demand, which extends over a

longer period (see Figure 13), and the same noise is added as

in Section 4.1.3. Accordingly, the rough traffic model is modi-

fied with a simulation sampling time of 2 hours. The high-level

MPC controller has a control and operation sampling time of 6

hours. All the controllers introduced in case study 1 are also

implemented for this case study, and their control performance

is compared. Moreover, the cumulative emission constraint on

CO2 over the 10-day simulation interval is 2 million kg.

4.4. Results and Discussions

All controllers were implemented in MATLAB version

R2019b running on a PC with an Intel Xeon Quad-Core E5-

1620 V3 CPU with a clock speed of 3.5 GHz. Due to

the nonlinear dynamics of the urban traffic network, for all

the optimization-based controllers, the function fmincon from

MATLAB has been used together with the SQP algorithm

(Boggs and Tolle, 1995). Moreover, due to the non-convex na-

ture of the optimization problems, in order to avoid selecting

local optima that may result in a performance for the controller

that is (much) worse than that of the global optimum, a num-

ber of off-line experiments have been conducted to determine

suitable numbers of optimization starting points for achieving

near-global optima. Consequently, 10 and 15 starting points

for, respectively, the rough long-term and the detailed short-

term MPC optimization problems are considered. Moreover, 15

starting points are considered for the optimization problem of

conventional MPC. Based on the off-line experiments, the pa-

rameters of fmincon were also determined such that a balance

is achieved between accuracy and computational efficiency of

the solver. So for the fmincon stopping criterion the values of

the cost function tolerance, step tolerance, and constraint tol-

erance are selected to be 10−2 for the detailed short-term MPC

and 10−1 for the rough long-term MPC. For the cost functions

of (1), (2), and (3), λCO2
= 0.005 was considered, where the or-

der of this weight corresponds to the relative orders of the total

time spent of the vehicles and the total emissions of CO2. The

rest of the weights are set to 0.

Remark 3. In case the optimization solver fails to find a fea-

sible solution for an MPC optimization problem, it switches to

another version of the problem, where the cumulative constraint

on the emissions of CO2 is excluded. A penalty is then added

to the cost function with a weight equal to 0.48. This weight

should be tuned carefully: with a very large value, the solver

determines solutions that compromise reduction of the traffic

congestion in order to decrease the total emissions of CO2,

especially for the short-term predictions, which impose short-

sighted decision making. In such cases, the controller causes

the vehicles to idle instead of traveling freely, since idling vehi-

cles emit the least CO2 per time step.

Table 4 presents the results of the simulations for scenar-

ios 2–6, including the CPU time and the realized values of

TTS, TE, cost, and the change (in %) in the objective func-

tion (i.e., the weighted sum of the TTS and the TE) compared

to the benchmark fixed-time controller for all the implemented

controllers.

Overall, all controllers perform better than the fixed-time

controller, while the MPC-based methods outperform the other

controllers in terms of the realized values of TTS and TE, ex-

cept for the single-level rough long-term MPC, which cannot

guarantee the performance outside of the bi-level control ar-

chitecture. For a few certain scenarios, the non-MPC methods

can achieve a performance comparable to the MPC-based meth-

ods with negligible CPU time, but their performance cannot be

guaranteed for all the scenarios. Furthermore, since some con-

trollers (e.g., responsive controller and OPAC) cannot explicitly

consider the constraints on the emissions, their realized TE val-

ues are much higher than those of the MPC-based methods. In

addition, the bi-level MPC controller performs better than the

conventional MPC, particularly in terms of the CPU time (i.e.,

in all cases the computational speed corresponding to the bi-

level MPC controller is more than twice smaller than that of

the conventional MPC controller). The bi-level MPC controller
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Figure 13: Demand profile for 10 days in case study 2

achieves a performance that is comparable to the large-horizon

conventional MPC in terms of TTS and TE, but with signifi-

cantly less CPU time. Moreover, during the simulations it was

noticed that in all cases the conventional MPC controller failed

to find a feasible solution under the given constraint, and hence

it had to switch to the unconstrained version of the optimization

problem and include a penalty term in the cost function. As a re-

sult, the computational complexity increased significantly and

solutions that were obtained resulted in slightly poorer perfor-

mance compared to the bi-level MPC controller. Due to the use

of a higher-level rough MPC controller and the adapter block in

the proposed bi-level architecture, however, the detailed short-

term MPC controller most often received an upper bound for

the cumulative constraint that prevented the corresponding con-

strained optimization problem to become infeasible.

As an extra remark, from Table 4 it is deduced that for sce-

nario 4 the fixed-time controller performed better than all other

controllers, except for the bi-level MPC-based controller. This

is because the green time corresponding to the fixed-time con-

trol policy (i.e., 50% of the cycle time) is very close to the op-

timal solution for this scenario. Moreover, it has been verified

that the MPC-based controllers result in a similar performance

as the fixed-time controller. In addition, the performance of the

opt. fixed-time controller cannot be guaranteed due to the qual-

ity of the historical data.

Table 5 presents the simulation results of the different con-

trollers in case study 2. It is shown that the proposed bi-level

control framework achieves the best control performance in

terms of both TTS and TE, when considering a long-term green

mobility control task (i.e., 10 days). In addition, the bi-level

MPC framework is more computationally efficient than other

MPC-based methods. This case study indicates that the pro-

posed bi-level control framework is able to address long-term

control objectives and long-term constraints that cannot be han-

dled efficiently with conventional MPC control methods.

5. Conclusions and topics for future work

We have proposed a novel bi-level temporally-distributed

MPC approach in order to tackle the challenge of high compu-

tational burden for complex constrained optimization problems

with different time scales. Consequently, we have introduced

two linked short-term and long-term MPC optimization prob-

lems. In the proposed framework, the rough long-term MPC

problem is solved by a supervisory controller that may use a dif-

ferent prediction model, control sampling time, and operation

time than the detailed short-term MPC problem. The controller

corresponding to the detailed short-term MPC problem is im-

plemented at the lowest control level and directly controls the

system. The supervisory MPC controller determines new adap-

tive upper bounds for the constraints of the detailed short-term

MPC problem, based on the rough long-term solutions. We

have implemented the proposed control approaches to an urban

traffic network in order to achieve green mobility. The results of

the case study show that the proposed bi-level MPC controller

outperforms other conventional control methods used for urban

traffic control in terms of the total time spent, total emissions of

CO2, and CPU time. More specifically, the bi-level MPC con-

troller has shown to require a computation time less than half

of the computation time of a conventional MPC controller.

It is expected that for larger spatial and temporal scales of the

network, the difference between the computation time of the bi-

level MPC controller and the conventional MPC controller be-

comes more significant. Moreover, for future work we propose

to use a more sophisticated adapter block, with several levels

that distribute the upper bound of the constraints among vari-

ous temporal scales. The proposed bi-level MPC architecture

provides the opportunity of giving different weights to various

costs in different temporal scales or for considering completely

different cost functions in different temporal scales, while in-

corporating the inter-linked dynamics. Therefore, applying the

proposed approach to various complex and non-linear dynami-

cal systems and considering variations in the weights and costs

in different temporal scales is an interesting topic for future
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Table 4: CPU time in [s], total time spent (TTS) in [h], total emissions (TE) of CO2 in [kg], cost, and TTS and TE compared to the benchmark fixed-time controller

(in %) within the entire 6-hour simulation time window for Scenarios 2–6 of case study 1. For the abbreviations of the controllers: Opt. fixed-time is the optimized

fixed-time controller; Conv. MPC is the conventional MPC controller; L-hori. MPC is the conventional MPC controller with a large prediction horizon; L-term

MPC is the single-level long-term MPC controller. The notation ‘–’ means that the item is not applicable to that controller. Note that the CPU time of the long-term

MPC controller corresponds to a larger control sampling time than the other MPC controllers.

(a) Scenario 2

Fixed-time Responsive OPAC Opt. fixed-time Conv. MPC L-hori. MPC L-term MPC Bi-level MPC

CPU time [s] – – – – 2676 17223 269.6 1372

CPU time per control step [s] – – – – 37.17 239.2 44.93 15.06

TTS [hour] 5487.2 4815.0 4674.6 5287.2 4715.4 4675.2 5252.3 4674.9

TE(CO2) [kg] 80232 76609 77571 79543 75484 75062 79198 75445

Objective function 5888.2 5198.0 5062.5 5684.9 5092.8 5050.5 5648.3 5052.1

Obj. value compared with Opt. fixed-time +3.58% -8.56% -10.95% – -10.42% -11.16% -0.64% -11.13%

(b) Scenario 3

Fixed-time Responsive OPAC Opt. fixed-time Conv. MPC L-hori. MPC L-term MPC Bi-level MPC

CPU time [s] – – – – 2917 22491 236.1 1608

CPU time per control step [s] – – – – 40.52 312.4 43.85 18.34

TTS [hour] 6790.3 4754.2 4603.9 4844.2 4685.1 4612.2 5185.2 4605.9

TE(CO2) [kg] 90333 77773 78700 78245 77179 76380 80432 76745

Objective function 7242.0 5143.0 4997.4 5235.4 5071.0 4994.1 5587.4 4989.6

Obj. value compared with Opt. fixed-time +38.33% -1.76% -4.55% – -3.14% -4.61% +6.72% -4.69%

(c) Scenario 4

Fixed-time Responsive OPAC Opt. fixed-time Conv. MPC L-hori. MPC L-term MPC Bi-level MPC

CPU time [s] – – – – 3054 8956 153.4 1580

CPU time per control step [s] – – – – 42.42 124.4 25.57 17.50

TTS [hour] 4058.7 4081.2 4058.9 4399.4 4067.7 4058.7 4058.7 4058.7

TE(CO2) [kg] 67612 67728 69990 68085 67395 67612 67612 67400

Objective function 4396.8 4419.8 4408.8 4739.8 4404.7 4396.7 4396.7 4395.7

Obj. value compared with Opt. fixed-time -7.24% -6.75% -6.98% – -7.07% -7.24% -7.24% -7.26%

(d) Scenario 5

Fixed-time Responsive OPAC Opt. fixed-time Conv. MPC L-hori. MPC L-term MPC Bi-level MPC

CPU time [s] – – – – 2990 12736 339.2 1598

CPU time per control step [s] – – – – 41.53 176.9 56.5 17.94

TTS [hour] 4426.2 4389.9 4329.4 4329.5 4352.1 4334.4 4330.4 4329.2

TE(CO2) [kg] 72783 72445 74152 72482 71919 71638 71840 71858

Objective function 4790.1 4752.1 4700.2 4691.9 4711.7 4692.6 4689.6 4688.5

Obj. value compared with Opt. fixed-time +2.09% +1.28% +0.18% – +0.42% 0.00% 0.00% 0.00%

(e) Scenario 6

Fixed-time Responsive OPAC Opt. fixed-time Conv. MPC L-hori. MPC L-term MPC Bi-level MPC

CPU time [s] – – – – 3114 18771 254 1577

CPU time per control step [s] – – – – 43.26 260.7 42.3 18.63

TTS [hour] 6686.7 4889.9 4722.6 4734.7 4760.6 4722.2 4975.2 4730.3

TE(CO2) [kg] 88708 77811 78769 77120 76610 76231.4 78390 76602

Objective function 7130.2 5279.0 5116.4 5120.3 5143.6 5103.4 5367.1 5113.3

Obj. value compared with Opt. fixed-time +39.25% +3.10% 0.00% – +0.46% -0.33% +4.82% -0.14%

work.
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