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Abstract—Two optimization-based approaches are proposed to
optimize the power routing and turbine setpoints of offshore
wind farm (OWF) collector systems during cable outages. The
open-loop control strategy assumes that the network can only
be reconfigured at the beginning of the outage. In contrast,
the receding horizon control strategy is deployed in real time,
leveraging cable temperature measurements and power forecasts
to derive optimal control actions dynamically. Simulation results
concerning occurred outages at an existing OWF prove the
practical applicability of the novel approaches and show that
both strategies outperform existing approaches.

Index Terms—offshore wind farm operation, collector system
outages, optimization-based control, dynamic thermal rating

I. INTRODUCTION

Ambitions to limit climate change are incentivizing the
development of renewable energy technologies. One of the
most rapidly growing energy markets is offshore wind power.
In 2021, its global installed capacity reached 65 GW. In line
with the Paris Agreement [1], a UN Global Compact has been
signed to commit to the target of 380 GW capacity by 2030
and 2000 GW by 2050 [2]. To meet these ambitious targets,
it is vital that the investment costs for Offshore Wind Farms
(OWFs) are reduced, and wind power efficiency is increased.

The electrical system of OWFs presents significant potential
in this regard. It typically consists of an AC collector system,
an example of which is shown in Figure 1, and an export sys-
tem. Within the collector system, inter-array cables transport
the power produced by the turbines to the Offshore Substation
(OSS). From the OSS, export cables transport the power to
shore. Not only does the electrical system constitute a large
portion of the capital expenditure, but its cable outages also
account for 80% of the financial losses in the offshore wind
industry. For example, the failure of one inter-array cable can
cost up to C3 million, depending on the type and location of
the failure [3]. These costs are built up of repair costs and costs
related to the curtailment of power throughout the outage.

To limit the production losses due to inter-array outages,
rerouting can be performed to transport the power produced
by the turbines connected to the inoperative cable to the OSS.
If the power is rerouted, an elongated string is formed, and
turbine setpoints need to be adjusted to prevent overloading
of the cables. These setpoints upper-bound the turbine produc-
tion.
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Fig. 1. Schematic of a meshed collector system. The circles represent the
turbines. The cable sizes are indicated in the legend. Links are not used during
standard operation but are not fundamentally different from the other cables.

In the industry and in [4], a single cable is activated to
reroute the power. The authors of [5] develop an optimization-
based approach that instead considers the full freedom of the
network to distribute the power more evenly over the network.
However, their method cannot be used to derive setpoints
since it simply assumes that during an outage, curtailment is
performed such that the power flow limits are not violated.
Like the other mentioned approaches, Static Thermal Rating
(STR) is used to constrain the power flows through the
network. This rating dictates the maximum amount of power
that can flow through the cable continuously. When applied
to OWFs, this leads to under-utilization of the network as the
fluctuations in wind power are disregarded [6].

Given that inter-array outages typically last more than a
month [7], optimizing the rerouting and setpoints can sig-
nificantly reduce the losses during outages. Moreover, an
optimization approach can support the current trend of de-
signing OWFs that are tailored to the site’s specifics [8] and
OWFs with a larger installed wind power capacity than can
be transported via the collector system [6]. Any increase in
effectiveness can benefit the entire generating capacity and
can aid in realizing the ambitious growth in OWFs targeted.

This work presents two novel control strategies that aim
to maximize power production during outages: the open-loop
control strategy (Section III) and the receding horizon control
strategy (Section IV). The developed control strategies, as well
as the approaches taken in the industry and in [4], are applied
to a case study (Section V) concerning outages that actually
occurred. It is shown that both control strategies outperform
the existing approaches in terms of power production.



II. PRELIMINARIES

A. Cable rating

Collector system cables are limited in their capacity by their
conductor temperature, which should not exceed 90 °C [9].
Typically, the cables are designed and operated according to
their STR. This entails constraining the power flows by the
maximum current that can be transported continuously without
violating the temperature limit [10]. The calculations used to
determine the STR are straightforward but do not consider the
thermal time constant of the cables. Given the variability in
wind power, this leads to under-utilization of the cables.

The full potential of the cables’ capacity can be harvested
by dynamically determining the rating based on the cable
temperature measured by sensors and predicted by a dynamic
temperature model. The authors of [11] use load-based Dy-
namic Thermal Rating (DTR) to estimate the 6-hour ahead risk
of exceeding the temperature limit of an export cable and apply
STR for one hour if a risk is identified. For optimal control
of collector systems during outages, it might be more suitable
to directly incorporate the cable temperature dynamics in the
optimization formulation. To this end, a dynamic temperature
model fit for optimization must be used, such as the third-
order state space model derived in [12]. Its input is the squared
current. The parameters are to be found by fitting the model
to temperature and loading data.

B. Turbine power production

The rated power of turbine i, P r
i , dictates the maximum

power that the turbine can produce. The power that turbine
i can generate when operating at full performance is called
the possible power, P poss

i . It can be approximated with the
turbine’s warranted power curve, which is a function of the
wind speed. More accurate estimations can be obtained by
applying the operational power curve to nacelle wind speed
measurements [13].

A setpoint can be applied to limit the power output of a
turbine. The actual power output of the turbine is then given
by the minimum of the possible power, P poss

i , and the setpoint,
P sp
i [4].

C. Power flow

Linear or AC power flow can be used to describe the
power flows through the network. Although the linear power
flow model is less accurate than the AC power flow model,
findings suggest that the severity of the approximation error
might be limited for collector systems [4], [5], [14]. In
addition, the linearity of the linear power flow method makes
it less computationally expensive to use within an optimization
framework than the nonlinear AC power flow model. In line
with this, most approaches in the literature regarding OWF
collector system design optimization use linear power flow
since it makes the problems tractable [15]. However, the
authors recommend further research to assess the accuracy of
the linear power flow formulation for OWF collector systems.

D. Existing control strategies

The method used by the industry performs rerouting via one
cable and considers STR to determine the turbine setpoints.
The capacity of the most limiting cable in the elongated string
is then divided equally over the turbines connected to it.

The authors of [4] extend this approach by considering
wind speed measurements to derive setpoints dynamically. The
strategy assumes a uniform wind speed within the farm. The
warranted power curve is used to transform the park’s mean
wind speed into possible power. All turbines in the elongated
string are provided with this value as a setpoint. Iteratively,
new setpoints are calculated based on the violation of the STR
if the elongated string is formed. Starting with the turbine that
has the largest distance to the OSS, it is determined if an even
lower setpoint would eliminate the overload. If so, this setpoint
is applied. If not, the turbine is curtailed entirely, and the next
turbine in the elongated string is considered. As such, power
is transmitted over the shortest distance, minimizing losses.

III. OPEN-LOOP CONTROL STRATEGY

If there is no automated control system in place, service
technicians have to go to the relevant turbines when weather
conditions allow it to perform manual switching. In addition,
the wind farm operator separately has to log onto each affected
turbine to provide a new setpoint. For such an OWF, applying
control actions dynamically is inconvenient and costly. To this
end, the open-loop control strategy aims to maximize power
production during an outage under the constraint that setpoint
adaptation and network reconfiguration can only be performed
at the beginning of an outage. Due to the long duration of an
outage and the uncertainties related to wind power production,
STR is applied rather than DTR.

To incorporate the wind power variability into the optimiza-
tion framework, a probabilistic approach is taken, in which the
objective is to maximize the production over a set of scenarios:

max
∑
s∈S

∑
i∈V\{0}

Pi,sPs (1)

where V = {0, ..., N} denotes the set of nodes pertaining to
the OSS and the turbines. Here, N is the number of turbines,
and node 0 corresponds to the OSS. The set S denotes the set
of possible power production scenarios, with for each scenario
s a probability Ps and a possible power production P poss

i,s . The
scenarios can be generated from historical possible power data.
The power output of turbine i at scenario s, Pi,s, is then upper-
bounded by the setpoint and the possible power production at
that scenario:

0 ≤ Pi,s ≤ P poss
s for i ∈ V\{0}, s ∈ S (2)

Pi,s ≤ P sp
i for i ∈ V\{0}, s ∈ S (3)

The resulting control actions are optimal if the set of scenarios
is representative of the possible power during the outages.

The STR must not be violated when the turbines are
producing at setpoint. Moreover, the applied setpoints must
ensure that the STR is also adhered to for any power pro-
duction conforming to these setpoints. To ensure this under



the uncertainty of the power production over the outage, the
network should be operated radially, i.e., a maximum of one
outgoing power flow per turbine must be enforced. To this
end, a set of arcs, A, is used to describe the operable cables
in the network. The cable connecting node i and node j occurs
twice within the set of arcs, as (i, j) and (j, i). The radiality
constraint can then be captured by the following equations
[16]: ∑

j|(i,j)∈A

zij ≤ 1 for i ∈ V\{0} (4)

zij ∈ {0, 1} for (i, j) ∈ A (5)
zij + zji ≤ 1 for (i, j) ∈ A (6)

where the binary variable zij models the on/off status of cable
(i, j). Here, zij = 1 if cable (i, j) can be used and zij = 0 if
the cable cannot be used. Equation (6) dictates that power can
flow over the same cable in one direction only.

Since radial operation guarantees that the power flows dur-
ing the outage will never exceed the power flows present when
producing at setpoint, the power flow constraints only need to
be formulated for the production at setpoint. Furthermore, in
the case of radial operation, the linear power flow model can
be simplified [5]:

0 ≤ pspij ≤ pSTR
ij zij for (i, j) ∈ A (7)

P sp
i −

∑
j|(i,j)∈A

pspij +
∑

i|(j,i)∈A

pspji = 0 for i ∈ V (8)

where pspij denotes the power flow from node i to node j when
all turbines are producing at setpoint and pSTR

ij is the static
thermal rating of cable (i, j).

To prevent switching actions that result in little or no
improvement in expected power production, a penalty term
can be added to the objective function:

max

∑
s∈S

∑
i∈V\{0}

Pi,sPs

− c ·
∑

(i,j)∈A

ζij (9)

s.t. − ζij ≤ zij − zstandardij ≤ ζij for (i, j) ∈ A (10)

where c is the penalty coefficient, zstandardij is the configuration
of the cable under standard operation, and ζij is an auxiliary
variable enables preservation of the linearity of the objective
function. The result is a mixed-integer linear programming
(MILP) problem, which can be solved using a brand-and-
bound algorithm [17].

IV. RECEDING HORIZON CONTROL STRATEGY

The receding horizon control strategy assumes that an
automated control system is in place that can directly apply
setpoint adaptation and network reconfiguration at any given
time during the outage. By performing online calculations,
cable temperature measurements and power forecasts can be
taken into account to tailor the control actions to the specifics
of the time step. This allows for constraining the power flows
based on the cable temperature limits rather than on the STR.

The control strategy consists of solving two optimization
problems at each hour. The first stage is a mixed-integer
quadratically constrained programming (MIQCP) problem that
finds optimal turbine productions and network topologies over
a moving horizon. In this problem, it is assumed that the
power forecast is perfect. The second stage then deals with
uncertainty in the forecast to prevent unnecessary curtailment
if the forecast is too low. The corresponding quadratically con-
strained linear programming (QCLP) problem aims at finding
optimal setpoints for the current hour. While the problems
could be merged into one, they are kept separate for clarity.

A radiality constraint as in (4) is no longer posed on
the network since taking into account forecasts will allow
calculating more precisely how the power will flow through
any loops in the network. Deviations from the estimation will
not propagate since these will be reflected in the temperature
measurements. Therefore, a different set, E , is used to describe
the cables than for the open-loop control strategy. In this set
of edges, the cable connecting node i and node j occurs only
once, limiting the number of binary variables.

A. Stage 1: network reconfiguration

At each hour t, the first stage aims to find optimal network
configurations over a prediction window Kt = {t, t+1, ..., t+
Np − 1}, where Np is the prediction window length. The
time interval is 1 hour to be able to model the temperature
dynamics. The objective function at hour t aims to maximize
the expected power production over the prediction window
while penalizing switching actions and distributing curtailment
with respect to the power forecast evenly over the network,
as stated in (11)-(14). In these equations, Pi,k is the power
production of turbine i at time step k under the assumption
of a perfect forecast, zij,k is the on/off status of cable (i, j)
at time step k, P forecast

i,k|t is the power forecast of turbine i
made at hour t concerning time step k, c1 and c2 are penalty
coefficients, and ζij,k and ψi,j,k are auxiliary variables. Since

max
∑
k∈Kt

 ∑
i∈V\{0}

Pi,k − c1 ·
∑

(i,j)∈E

ζij,k − c2 ·
∑

i∈V\{0}

∑
j∈V:j>i

ψi,j,k

 (11)

s.t. − ζij,k ≤ zij,k − zij,k−1 ≤ ζij,k for (i, j) ∈ E , k ∈ Kt (12)

0 ≤ Pi,k ≤ P forecast
i,k|t for i ∈ V\{0}, k ∈ Kt (13)

− ψi,j,k ≤ Pi,k − P forecast
i,k|t − Pj,k + P forecast

j,k|t ≤ ψi,j,k for i ∈ V\{0}, j ∈ V : j > i, k ∈ Kt (14)



stage 1 assumes that the forecast is perfect, the forecast can
be treated as the possible power, leading to (13).

The linear power flow model of [18] is used to model the
power flows in the system:

Pi,k −
∑

j|(i,j)∈E

pij,k +
∑

j|(j,i)∈E

pji,k = 0 for i ∈ V, (15)
k ∈ Kt

zij,k ∈ {0, 1} for (i, j) ∈ E , k ∈ Kt (16)
−Mijzij,k ≤ pij,k ≤Mijzij,k for (i, j) ∈ E , k ∈ Kt (17)
pij,k ≤ bij(θi,k − θj,k) +Mij(1− zij,k) for (i, j) ∈ E , (18)

k ∈ Kt

pij,k ≥ bij(θi,k − θj,k)−Mij(1− zij,k) for (i, j) ∈ E , (19)
k ∈ Kt

where pij,k is the power flow through cable (i, j) at time step
k, bij is the admittance of cable (i, j), and θi,k is the voltage
angle of node i at time step k. The latter is defined relative to a
reference voltage phasor. This is typically the node pertaining
to the OSS, of which the voltage angle is then fixed to zero.
The power (flow) and admittance are expressed in per-unit
values and the voltage angles in radians. Furthermore, Mij

can be selected as 2bijθ
max, in which θmax is the maximum

voltage angle.
A discretized version of the thermal model of [12] can be

used to estimate future cable temperatures:

Tij,t+1 = aijTij,t + bijTij,t−1 + cijTij,t−2 + (20)

dijp
2
ij,t + eij

where Tij,t is the temperature of cable (i, j) at hour t, pij,t
is the power flow through cable (i, j) at hour t, and aij , bij ,
cij , dij , and eij are cable and location-specific parameters that
can be found by fitting the model to temperature and power
data. With respect to the state-space model of [12], the term
eij has been added since this turns out to result in a better
fit for the data of the case study of Section V. To predict
future cable temperatures, the model must be initialized with
three Distributed Temperature Sensing (DTS) measurements,
TDTS
ij,t , TDTS

ij,t−1, and TDTS
ij,t−2 . For the first two prediction steps,

the future temperatures can then be constrained as follows:

Tt+1|t = aTDTS
t + bTDTS

t−1 + cTDTS
t−2 + (21)

dp2t + e ≤ Tmax

Tt+2|t = aTt+1|t + bTDTS
t + cTDTS

t−1 + dp2t+1 + e = (22)

(a2 + b)TDTS
t + (ab+ c)TDTS

t−1 + acTDTS
t−2 +

adp2t + dp2t+1 + ae+ e ≤ Tmax

where Tmax is the cable temperature limit and the index ij
is dropped for clarity. The power flow constraints can be
formulated without explicitly defining the temperatures, which
avoids the use of quadratic equality constraints:

Fij

 TDTS
ij,t

TDTS
ij,t−1

TDTS
ij,t−2

+Gij


p2ij,t
p2ij,t+1

...
p2ij,t+Np−1

+Hij ≤ Tmax
Np×1 (23)

for (i, j) ∈ E

where Fij ∈ RNp×3, Gij ∈ RNp×Np , and Hij ∈ RNp×1

are matrices parameterized by aij , bij , cij , dij , and eij .
Furthermore, Tmax

Np×1 is a vector of length Np, each element
being Tmax.

At each hour t, the optimization problem of (11)-(19) and
(23) is formulated using the measured cable temperatures
and the most recent power forecast. The optimal network
configuration pertaining to the current hour is applied to the
network.

B. Stage 2: setpoint adaptation

The second stage uses zij,t and Pi,t as input to calculate the
optimal setpoints for the current hour. Its objective function
is to maximize the setpoints while aiming to distribute the
deviations of the turbine setpoints from the power forecast
evenly over the network. By doing so, the strategy assumes
that any inaccuracy in the power forecast affects the turbines to
the same extent. The optimization framework is the following:

max
∑

i∈V\{0}

P sp
i,t − c3 ·

∑
i∈V\{0}

∑
j∈V:j>i

ϱi,j,t (24)

s.t. − ϱi,j,t ≤ P sp
i,t − P forecast

i,t|t − (25)

P sp
j,t + P forecast

j,t|t ≤ ϱi,j,t for i ∈ V\{0},
j ∈ V : j > i

aijT
DTS
ij,t + bijT

DTS
ij,t−1 + cijT

DTS
ij,t−2 + (26)

dij(p
sp
ij,t)

2 + eij ≤ Tmax for (i, j) ∈ E

P sp
i,t −

∑
j|(i,j)∈E

pspij,t +
∑

j|(j,i)∈E

pspji,t = 0 (27)
for i ∈ V

pspij,t = zij,tbij(θ
sp
i,t − θspj,t) for (i, j) ∈ E (28)

Pi,t ≤ P sp
i,t for i ∈ V\{0} (29)

0 ≤ P sp
i,t ≤ P r

i for i ∈ V\{0} (30)

In these equations, the variables with the superscript sp de-
note the previously introduced variables in case of production
at setpoint. Furthermore, c3 is a penalty coefficient, and ϱi,j,t
is an auxiliary variable.

Since for this stage, zij,t are parameters rather than opti-
mization variables, the linear power flow model introduced in
(15)-(19) can be reduced to (28) while preserving linearity.
Furthermore, the setpoints must make it possible to produce
at least the power production conforming to the power flow
limits under the assumption of a perfect forecast, Pi,t, found
in the first stage. This is dictated by (29).

The setpoints found by the second stage are applied to the
turbines. The optimization problems of both stages are refor-
mulated at the next iteration using the updated measurements.

V. CASE STUDY

The novel strategies and existing strategies, described in
Section II-D, are applied to a case study concerning seven
outages that occurred at an existing OWF with a meshed lay-
out. The farm comprises 70 to 100 turbines and contains three
distinct cable sizes. Figure 1 shows a fictitious, comparable
layout.



A. Data

Possible power, cable temperature, wind speed, and power
forecasting data are required to implement the control strate-
gies and to perform simulations. All data is supplied by
Vattenfall. Due to confidentiality restrictions, the data cannot
be made publicly available.

The possible power is taken to be the maximum of the
active power output of the turbine and a possible power
signal derived from nacelle wind speed measurements and
the operational power curve. The possible power is given per
turbine per 10 minutes. Possible power data is also needed to
generate the scenarios for the open-loop control strategy. To
this end, five years of historical possible power data are binned
into groups, for each of which the probability is calculated.

A cable temperature model fitted to cable temperature and
power flow data is used to generate synthetic cable temperature
measurements during the simulations. With respect to (20),
noise terms are added to simulate process and measurement
noise:

Tij,t+1 = aijTij,t + bijTij,t−1 + cijTij,t−2 + (31)

dijp
2
ij,t + eij + εij,t

TDTS
ij,t =Tij,t + εij,t (32)

where εij,t is drawn from a zero-mean normal distribution with
its variance identified per cable during system identification.

During outages, cables might experience higher power flows
than under standard operation. Therefore, per cable size, the
cable that experiences the highest power flow is used for
identifying a thermal model. The model corresponding to
the medium-sized cable is used for the small-sized cables
since, during outages, some of the small-sized cables might
experience much higher loads than those in the data set.

For parameter estimation, 4.5 months of hourly cable tem-
perature and power flow data are used. 80% of the data is
used for system identification, while the final 20% is used for
evaluating the quality of the model.

Matlab’s function greyest [19] is used, which applies
nonlinear least squares identification for the problem at hand.
The focus is set to simulation instead of prediction, which
means that the simulation error is minimized rather than the
1-step ahead prediction error. For the medium- and large-sized
cable, the resulting Normalized Mean Square Error (NMSE)
fit is 92.8% and 95.8%, respectively. For comparison, note that
in [12], a fit of 82.5% to export cable data was reported.

B. Implementation

The novel control strategies are implemented in Python
using the modeling framework Pyomo [20] and are solved
with Gurobi [21] on a Vattenfall compute cluster (16 vCPU,
256 GiB, AMD EPYC 7452 2.35 GHz processor).

The length Np of the prediction window and the penalty
coefficient c1 of the receding horizon control strategy have
been selected based on manual tuning. Here, Np = 3 h and
c1 = 3 were the most suited. The remainder of the penalty
coefficients are set to c = 0.01, c2 = 0.001, and c3 = 0.001.

The strategy of [4], hereafter referred to as the literature
control strategy, is derived for OWFs with loop connection
cables. For those OWFs, only one cable can be used to reroute
the power. The strategy does not consider how to perform
rerouting for meshed networks. For the case study, the cable
that results in the highest setpoints is activated, similar to the
industry strategy. Furthermore, if further reduction in setpoint
is not necessary at the measured wind speed, the highest
turbine power for which the STR is not violated is applied
as setpoint. This approach differs from [4], which applies
the power production at measured wind speed as a setpoint.
However, for the case study, in which the wind profile is not
homogeneous within the farm, that would result in unnecessary
curtailment.

In addition, it is calculated what the production would have
been if all turbines connected to the inoperative cable were
curtailed and no further control actions were taken. This is
referred to as the base strategy.

C. Results

For each control strategy and outage, the percentual gap
with possible power is listed in Table I. By way of illustration,
the power production during outages 2 and 6 is shown in
Figure 2 and Figure 3, respectively. As can be seen, the
receding horizon control strategy outperforms the other control
strategies for all outages. A more elaborate presentation of the
outcomes of the case study is given in [22].

The increase in production can mainly be attributed to the
use of DTR. Dynamic switching further enables exploiting
DTR to the fullest by (de)activating cables during the outage

TABLE I
POWER PRODUCTION RELATIVE TO THE POSSIBLE POWER FOR EACH

OUTAGE AND CONTROL STRATEGY.

Base Industry Literature Open-loop Receding horizon
1 -8.69% -5.22% -6.05% -5.12% -2.85%
2 -18.72% -13.21% -15.28% -12.30% -7.21%
3 -7.13% -3.57% -3.68% -3.55% -2.42%
4 -6.19% -4.44% -4.52% -4.15% -1.45%
5 -11.10% -8.58% -8.39% -7.33% -4.77%
6 -9.75% -7.62% -7.57% -5.74% -0.36%
7 -9.60% -5.82% -5.93% -4.97% -2.41%
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Fig. 2. Power production for outage 2.
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Fig. 3. Power production for outage 6.

based on the cable temperatures and forecasts. The computa-
tions for one time step are performed within 23 s on average,
with a maximum computation time of 35 minutes.

The open-loop control strategy is a promising alternative if
there is no automated control system. This strategy outper-
forms the industry strategy and the literature strategy in terms
of production, with fast computations, i.e., on average 0.34 s.

By using real possible power data that differentiates between
turbines, it could be shown that the method in [4] cannot
deal well with non-uniform wind speeds within the park and
inaccuracies in the warranted power curve.

The average increase in power production with respect to the
industry control strategy is 0.82% and 4.2% for the open-loop
and receding horizon control strategy, respectively. With an
average offshore wind farm size of 301 MW [23], an average
capacity factor of 0.42 [23], and an average outage duration
of 38 days [7], the estimated increase in power production per
outage is 951 MWh for the open-loop and 4.84 GWh for the
receding horizon control strategy. With a feed-in remuneration
of C194/MWh [4], this translates into a revenue increase per
outage of C0.18 million and C0.94 million, respectively.

VI. CONCLUSIONS

We have presented two novel optimization-based rerout-
ing and setpoint decision frameworks for outages in OWF
collector systems with arbitrary topologies: the open-loop
control strategy and the receding horizon control strategy. The
performance of these strategies is compared to existing control
strategies by simulations with real data from occurred outages.
It is shown that both developed strategies outperform the
existing control strategies. In particular, the receding horizon
control strategy enables a significant decrease in the loss of
production during outages.

Future work will focus on incorporating DTR in the op-
erations of collector systems. The thermal model should be
fitted per cable to account for location-specific properties
instead of using the same parameters per cable size. Ambient
conditions can be considered by applying adaptive receding
horizon control, in which the temperature model gradually
evolves with time. This would allow for considering changing
operating conditions without explicitly providing these to the
controller.
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