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Distributed Adaptive Resource Allocation: an
Uncertain Saddle-point Dynamics Viewpoint

Dongdong Yue, Member, IEEE/CAA, Simone Baldi, Senior Member, IEEE,
Jinde Cao, Fellow, IEEE, Qi Li, and Bart De Schutter, Fellow, IEEE

Abstract—This paper addresses distributed adaptive optimal
resource allocation problems over weight-balanced digraphs.
By leveraging state-of-the-art adaptive coupling designs for
multiagent systems, two adaptive algorithms are proposed,
namely a directed-spanning-tree-based algorithm and a node-
based algorithm. The benefits of these algorithms are that they
require neither sufficiently small or unitary step sizes, nor
global knowledge of Laplacian eigenvalues, which are widely
required in the literature. It is shown that both algorithms belong
to a class of uncertain saddle-point dynamics, which can be
tackled by repeatedly adopting the Peter-Paul inequality in the
framework of Lyapunov theory. Thanks to this new viewpoint,
global asymptotic convergence of both algorithms can be proven
in a unified way. The effectiveness of the proposed algorithms
is validated through numerical simulations and case studies in
IEEE 30- and 118-bus power systems.

Index Terms—Resource allocation, directed graphs, saddle-
point dynamics, adaptive systems

I. INTRODUCTION

The resource allocation problem, also known as the
economic dispatch problem, has recently aroused multi-
disciplinary interest. Applications of resource allocation in-
clude various engineering fields such as cloud computing, sen-
sor networks, and power systems. While early works studied
optimal resource allocation based on a central node collecting
and processing all data from every node in the network [1], this
architecture is not effective in large-scale networks. Therefore,
distributed resource allocation algorithms are highly desirable,
i.e., to solve an allocation problem by making each node
collect and process the data from only a few neighboring
nodes, according to the topology of the network.
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Different assumptions can be made on the graph describing
the large-scale network: acyclic (tree) graph [2], undirected
connected graph [3]–[12], strongly connected weight-balanced
digraph [13]–[18], or weight-unbalanced digraph [19]–[21].
In most of these works, the algorithms used to solve the dis-
tributed resource allocation problem require unitary step sizes,
or sufficiently small step sizes to implement local gradient de-
scent, see e.g. [4]–[6], [17]–[20]. Meanwhile, many algorithms
rely on homogeneous and static coupling gains, selected based
on the global knowledge of Laplacian eigenvalues, e.g., [7],
[10], [14]–[17], [21]. Such a strategy may lead to high-gain
instability when the network is large and sparse (with a Lapla-
cian eigenvalue being extremely close to the imaginary axis).
Besides, for an effective distributed methodology, eliminating
the global knowledge of the Laplacian matrix is crucial, which
goes under the name of distributed adaptive implementation.

In fact, distributed adaptive algorithms incorporate adaptive
(in place of static) coupling gains, which have the superiority
of adapting to different network configurations. The reason is
that these adaptive gains do not need to be selected based
on global knowledge of Laplacian eigenvalues. Distributed
adaptive designs with adaptive coupling gains are available in
the literature for consensus or tracking [22]–[26], containment
or formation [27]–[29], and optimization [30], [31].

Distributed resource allocation solutions with adaptive cou-
pling gains, to our best knowledge, are not available in the
literature, even for the simplest case of undirected graphs.
The main reason for this gap lies in the following difficulty:
in order to obtain an optimal resource allocation solution, the
agents are supposed to seek a consensus over the Lagrangian
multipliers based on a class of nested primal-dual dynamics
[4]. This strategy brings the challenge of individual seeking
of optimal allocation decisions and consensus seeking of
the Lagrangian multipliers at the same time, without any
knowledge of Laplacian eigenvalues. A possible approach to
address this challenge is to solve the consensus optimization
problem for the Lagrangian multipliers via distributed adaptive
optimization of [30], [31]. Such an approach of focusing on
the dual problem instead of the primal problem was indeed
adopted in [11], [19], [20], but it may bring the so-called “two-
time-scale” problem, as each agent needs to solve an auxiliary
optimization problem at each time instant towards optimal
resource allocation [4]. The “two-time-scale” issue also exists
in other approaches, see e.g. the alternating direction method
of multiplies [32].

Motivated by the above discussions, this work studies dis-
tributed adaptive solutions to the resource allocation problem.
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We provide a novel perspective into this problem by showing
that the optimal solution corresponds to the (generalized)
equilibrium of a class of uncertain saddle-point dynamics. The
basic idea to guarantee convergence to this equilibrium is to in-
troduce heterogeneous adaptive coupling gains promoting con-
sensus over the Lagrangian multipliers of optimal decisions,
and to let the agents self-determine the coupling strengths
between each other. To implement this idea, two distributed
adaptive strategies are studied, i.e., directed-spanning-tree-
based (DST-based) and node-based: in the former, only the
gains associated with edges along an DST are made adaptive;
in the latter, the gains associated with all incoming edges for
each node (so that all edges in the network) are made adaptive.
The main contributions of this paper are as follows:

1) We propose a new point of view into the resource
allocation problems, which is made possible by framing
the problem via a novel class of uncertain saddle-point
dynamics. We show that the optimal solution to the
resource allocation problem corresponds to a generalized
equilibrium point of the uncertain saddle-point dynamics,
as discussed in Definition 1 and Lemma 6.

2) Inspired by the uncertain saddle-point dynamics view-
point, we propose two novel distributed adaptive frame-
works for solving optimal resource allocation over di-
graphs and prove their convergence in a unified way
(Theorems 1-2).

3) Two novel classes of convexity conditions named
spanning-tree-based strongly convexity and jointly
strongly convexity are identified for the proposed algo-
rithms, respectively. We also show a relatively standard
class of local cost functions that automatically satisfies
the proposed convexity conditions (Corollaries 1-2).

4) The proposed algorithms require neither sufficiently small
or unitary step sizes, nor global knowledge of Laplacian
eigenvalues, which are widely required in nonadaptive
strategies proposed in the literature, see e.g. [4]–[7],
[14]–[21]. Besides, the proposed algorithms focus on
the primal resource allocation problem directly: thus, the
“two-time-scale” issue in the duality-based literature [11],
[19], [20] does not arise.

The rest of the paper is organized as follows. In Section
II, we give the preliminaries and problem statement, and we
introduce uncertain saddle-point dynamics for the problem. In
Section III and Section IV, two distributed adaptive resource
allocation algorithms are established as DST-based and node-
based, respectively. In Section V, simulations are performed to
validate the theoretical results. Some discussions are presented
in Section VI. Finally, Section VII concludes the paper and
discusses some future topics.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Matrix Algebra

A series of technical lemmas useful for stability analysis
is now introduced. The so-called Peter-Paul inequality will be
frequently used throughout this paper to bound non-definite
terms with positive definite expressions.

Notations:

R (resp. R+) set of real (resp. positive) scalars;
Rn set of n-dimensional column vectors;
Rn
+ set of n-dimensional positive (all n entries being

positive) column vectors;
Rn×m set of n×m matrices;
In n× n identity matrix;
1n column vector with all n elements being one;
0 zero scalar, zero vectors, and zero matrices;
As symmetric part of square matrix A, i.e., (A+AT )/2;
λ̄(A) (resp. λ(A)) maximum (resp. minimum) eigenvalue of real sym-

metric matrix A;
Mn

r set of n× n matrices with zero row sums;
A ≻ 0 (resp. A ⪰ 0) A is positive definite (resp. semi-definite);
IN set of natural numbers {1, 2, · · · , N};
S1 \ S2 set difference of sets S1 and S2;
col(x1, · · · , xN ) column vectorization (x1

T , · · · , xN
T )T ;

diag(·) diagonalization operator;
⊗ Kronecker product;
O|x0 velocity of autonomous dynamical system O : ẋ =

f(x) at x0, i.e., f(x0);
∇xf partial derivative of f with respect to x;
∇f gradient of f .

Lemma 1 (Peter-Paul inequality, [33]): For any a, b ∈ Rn

and ϵ ∈ R+, there holds

aT b ≤ aTa

2ϵ
+

ϵbT b

2
.

Proof: The lemma follows directly from the Young in-
equality with exponents 2 and a positive bias ϵ.

The following lemma can be inferred from [22, Lemma 2.3],
and will be used (cf. (39)) to analyze the node-based algorithm
of Section IV.

Lemma 2: Suppose that U ∈ RN×N . Let S ∈ Rn×n be an
orthogonal matrix and x = col(x1, · · · , xN ) be an aggregated
vector with xi ∈ Rn, i ∈ IN . Then,

xT (U ⊗ In)x =

n∑
k=1

yTk Uyk

where yk =
(
[Sx1]k, [Sx2]k, · · · , [SxN ]k

)T
, k ∈ In. Here

[Sxi]k is the k-th entry of the vector Sxi.

B. Algebraic Graph Theory

A weighted digraph [34] (short for directed graph)
G(V, E ,W) consists of the node set V = IN , the edge
set E = {eij |i → j, i ̸= j}, and the weighted adjacency
matrix W = (wij) ∈ RN×N where wij > 0 if eji ∈ E ,
and wij = 0 otherwise. The node i is an in-neighbor of j
(i ∈ Nin(j)) if eij ∈ E , and in return, j is an out-neighbor of
i (j ∈ Nout(i)). The Laplacian matrix L = (Lij) ∈ RN×N

of G is defined as follows: Lij = −wij , i ̸= j, and
Lii =

∑N
k=1,k ̸=i wik, i = 1, · · · , N . A path is a series of

edges connecting a pair of nodes. A digraph G is strongly
connected if there exists a directed path between any pair of
nodes. Moreover, G is weight-balanced if, for any i ∈ V , there
holds

∑
j∈Nin(i)

wij =
∑

j∈Nout(i)
wji.

A DST (short for directed spanning tree) Ḡ(V, Ē , W̄) of
G is a subgraph that involves a node called the root, which
has no in-neighbors, such that there exists one and only one
directed path from the root to any other node. Without loss of
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generality, we label the root as node 1, and use pk to represent
the unique parent (in-neighbor) of node k+1 in Ḡ, k ∈ IN−1.
Clearly, Ē = {epk,k+1|k ∈ IN−1} ⊆ E . Correspondingly, L̄
(resp. W̄) is the Laplacian (resp. weighted adjacency) matrix
of Ḡ and N̄out(i) is the set of out-neighbors of i in Ḡ.

The graph theory notation allows us to introduce two
lemmas useful for stability analysis. Lemma 3 will be used
to analyze the DST-based algorithm of Section III. Lemma 4
will be used to analyze the node-based algorithm of Section
IV.

Lemma 3 ([28], [34]): Consider a digraph G that contains
a DST Ḡ. Then, the following statements hold:

1) The Laplacian L has a simple zero eigenvalue corre-
sponding to the right eigenvector 1N , and the other
eigenvalues have positive real parts.

2) Define a matrix Ξ ∈ R(N−1)×N as

Ξkj =

 −1, if j = k + 1,
1, if j = pk,
0, otherwise.

Then, there exists a unique Q ∈ R(N−1)×(N−1) such that
ΞL = QΞ.

3) The eigenvalues of Q are exactly the nonzero eigenvalues
of L, thus QTQ ≻ 0 and Qs ≻ 0. As a consequence,
λ(Qs) = λ2(Ls), where λ2(Ls) is the smallest nonzero
eigenvalue of Ls.

4) The matrix Q is explicitly given by Q = Q̃+ Q̄ with

Qkj =
∑

c∈V̄j+1

(L̃k+1,c − L̃pk,c)︸ ︷︷ ︸
Q̃kj

+
∑

c∈V̄j+1

(L̄k+1,c − L̄pk,c)︸ ︷︷ ︸
Q̄kj

,

where L̃ = L − L̄. Here, V̄j+1 is the node set of the
subtree of Ḡ rooting at j +1. Furthermore, the matrix Q̄
is related to L̄ through

Q̄kj =

 L̄j+1,j+1, if j = k,
−L̄j+1,j+1, if j = pk − 1,
0, otherwise.

Remark 1: The existence of the matrix Q is guaranteed by
Lemma 9 of [35], and the uniqueness of Q is guaranteed by
the fact that Ξ has full row rank.

Lemma 4 ([25], [36]): Suppose G is strongly connected.
Then, the following statements hold:

1) There exists a positive left eigenvector r = (r1,
r2 · · · , rN )T ∈ RN

+ of L associated with the zero
eigenvalue. Let R = diag(r1, · · · , rN ). Then, L̂ ≜ RL+
LTR ⪰ 0 is the symmetric Laplacian matrix associated
with an undirected graph. Moreover, r = r01N for some
r0 ∈ R+ if and only if G is weight-balanced.

2) For any ς ∈ RN
+ and x ∈ RN , there holds

min
ςT x=0,x ̸=0

xT L̂x
xTx

>
λ2(L̂)
N

.

3) [Courant-Fischer] In the special case that ς is chosen as
1N , i.e., the eigenvector of L̂ associated with the zero
eigenvalue, then

min
1TNx=0,x ̸=0

xT L̂x
xTx

= λ2(L̂).

C. Problem Statement

Consider N agents interacting over a digraph G. Each
agent has an amount of local resources di ∈ Rn and is
associated to a local cost function fi(·) : Rn → R. In
distributed resource allocation, the agents are cooperatively
seeking a global allocation strategy with minimum cumulative
cost f(·) : RNn → R (referred to as the global cost function),
while meeting the sum of the total resources:

min
x≜col(x1,··· ,xN )

f(x) ≜
N∑
i=1

fi(xi), (1)

subject to
N∑
i=1

xi = d,

where d =
∑N

i=1 di.
The following assumption is standard in the distributed

resource allocation literature, see e.g. [4], [6], [11], [17].
Assumption 1: Each local cost function fi(·) is continu-

ously differentiable and strictly convex.
Lemma 5 (Solution of (1)): Under Assumption 1, problem

(1) has a unique solution x∗. Moreover, there exists a unique
y∗ ∈ Rn, i.e., the Lagrangian multiplier, such that

∇f(x∗) + 1N ⊗ y∗ = 0;

(1TN ⊗ In)(x∗ −D) = 0. (2)

where ∇f(x) = col(∇f1(x1), · · · ,∇fN (xN )) according to
the definition of f(·) and D = col(d1, · · · , dN ).

Remark 2: Equation (2) is known in the literature as the
Karush-Kuhn-Tucker (KKT) condition (see e.g., [37, Chap.
5]). Specifically, given the Lagrangian function of problem (1),
i.e., L(x, y) = f(x)+yT (1TN⊗In)(x−D), the KKT condition
(2) consists of ∇xL(x, y) = 0 (tangency) and ∇yL(x, y) = 0
(feasibility).

In this paper, the following assumption is made regarding
the communication graph.

Assumption 2: The communication digraph G is strongly
connected and weight-balanced.

Remark 3: This assumption is standard in distributed re-
source allocation as well as distributed optimization prob-
lems [14]–[18], and is considerably more general than the
assumption of G being undirected and connected [4]–[12].
Note that there have been some results on weight-unbalanced
digraphs [19]–[21], which require sufficiently small step sizes
for gradient descent and can raise the “two-time-scale” issue
[19], [20], or rely on constant coupling gain selected according
to the Laplacian eigenvalues [21]. These limitations are not
desired for an effective distributed methodology. Note that,
if G is weight-unbalanced, one can recover Assumption 2 by
first performing a finite-time weight-balancing algorithm along
a DST, cf. [31].

D. Primary Analysis

To solve problem (1), one can in principle use saddle-point
dynamics, i.e., a gradient descent of the Lagrangian function
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L(x, y) in the primal variable x and a gradient ascent in the
dual variable y0 ∈ Rn:

ẋ = −∇f(x)− 1N ⊗ y0;

ẏ0 = (1TN ⊗ In)(x−D). (3)

However, one problem of (3) is that the update of y0
cannot be performed in a distributed way. To make the saddle-
point algorithm (3) distributed, several algorithms have been
proposed, such as endowing each agent a copy of the dual
variable as yi ∈ Rn, i ∈ V , while incorporating an integral
feedback action of yi, see [4], [17].

Therefore, let us consider the system resulting from incor-
porating a distributed integral feedback action of local dual
variables on top of (3), as follows:

O : ẋ = −κ1(∇f(x) + y) (4a)
ẏ = x−D − (Υ⊗ In)y − (L ⊗ In)z (4b)
ż = (Υ⊗ In)y (4c)

where κ1 ∈ R+, and y = col(y1, · · · , yN ) ∈ RNn, z =
col(z1, · · · , zN ) ∈ RNn contain the local auxiliary variables
yi and zi for agent i. The matrix L in (4b) is the Laplacian of
G. We will refer to system (4) as uncertain since the matrix
Υ ∈MN

r is unknown a priori. More specifically, the matrix Υ
represents the coupling between yi and yj , which is the result
of an adaptation mechanism to be designed so as to guarantee
stable attractive behavior of (4).

Remark 4: State-of-the-art distributed algorithms to solve
problem (1) directly involve the Laplacian matrix L in place
of Υ (see e.g., [4], [17]). However, a unitary step size of the
gradient descent is required and, in the case of [17], the global
knowledge of Laplacian eigenvalues is also required.

Let us define the generalized equilibrium points (GEP) of
the uncertain system (4) as follows:

Definition 1 (GEP): The triple (x̃, ỹ, z̃) ∈ RNn × RNn ×
RNn is called a generalized equilibrium point of (4), if for
any Υ ∈MN

r , there holds O|(x̃,ỹ,z̃) = 0.
Lemma 6 (GEPs of (4)): Under Assumptions 1-2, the un-

certain system (4) has infinitely many GEPs. Moreover, if
(x̃, ỹ, z̃) is a GEP of (4), then (x̃, ỹ) = (x∗, 1N ⊗ y∗), i.e.,
x̃ is the optimizer of problem (1). The latter statement implies
that (x̃, ỹ) is unique.

Proof: Since (Υ⊗ In)ỹ = 0 for any Υ ∈ MN
r , we have

ỹ = 1N⊗y0 for some y0 ∈ Rn. Substituting (x̃, ỹ, z̃) into (4b)
and left-multiplying (1TN ⊗ In) to both sides lead to (1TN ⊗
In)(x̃ − D) − (1TNL ⊗ In)z̃ = 0. Under Assumption 2, we
have 1TNL = 0, implying that (1TN ⊗ In)(x̃ −D) = 0, which
together with ∇f(x̃)+1N⊗y0 = 0, results exactly in the KKT
condition (2). By Lemma 5, we know that (x̃, ỹ) = (x∗, 1N ⊗
y∗) exists and is unique. Furthermore, since rank(L) = N−1,
there exist infinitely many solutions z̃ such that (L⊗ Im)z̃ =
x−D: in fact, if (x̃, ỹ, z̃) is a GEP of (4), also (x̃, ỹ, z̃+1N ⊗
∆z) is a GEP of (4) for any ∆z ∈ Rn.

Lemma 6 states that distributed optimal resource allocation
can be realized by steering the uncertain saddle-point dynam-
ics (4) to its GEPs. In the following two sections, we will
propose two continuous realizations of Υ in (4b), that are

DST-based and node-based, respectively, and guarantee stable
attractive behavior of the GEPs of (4).

III. DISTRIBUTED ADAPTIVE RESOURCE ALLOCATION:
DST-BASED DESIGN

Recall that, with the strongly connected property, a DST
can be identified in a distributed fashion without any prior
knowledge of the Laplacian matrix [38]. Based on any DST
Ḡ of G, consider the distributed adaptive resource allocation
(DARA) algorithm for agent i ∈ V , j ̸= i (k ∈ IN−1), as
follows:

Oa :

ẋ = −κ1(∇f(x) + y) (5a)
ẏ = x−D − (La ⊗ In)y − (L ⊗ In)z (5b)
ż = (La ⊗ In)y (5c)

ȧij =


κ2

(
(yj − yi)−

∑
c∈N̄out(i)

(yi

−yc)
)T

(yj − yi) ≜ ˙̄ak+1,pk , if eji ∈ Ē
0, if eji ∈ E \ Ē

(5d)

where κ2 ∈ R+ and La is the gain-dependent Laplacian matrix
defined as follows:

La
ij = −aijwij , i ̸= j;

La
ii =

N∑
j=1,j ̸=i

aijwij , i = 1, · · · , N. (6)

The weight wij multiplied by the gain aij determines the
feedback gain of the relative error vector (yi− yj) for agent i
to update yi and zi. Note that we did not define aii in (5)-(6)
since there are no self-loops. According to (5d), the gain aij is
updated only when eji ∈ Ē . Such an update law is distributed,
i.e. it depends on agent i, agent j and all the out-neighbors of
agent i in the DST [24], [31]. One can refer to Algorithm 1
for the implementation of (5).

Theorem 1: Under Assumptions 1-2, the adaptive algorithm
(5) drives (x, y) to (x∗, 1N⊗y∗) asymptotically for any initial
condition (x(0), y(0), z(0) ∈ RNn × RNn × RNn and any
aij(0) ∈ R provided there exists a scalar m ∈ R+, such that
the following condition (referred to as spanning-tree-based m-
strongly convexity) holds ∀x, y ∈ RNn:

(x− y)T (L̄U ⊗ In)(∇f(x)−∇f(y)) ≥
m(x− y)T (L̄U ⊗ In)(x− y) (7)

where L̄U = ΞTΞ is the un-weighted Laplacian matrix of the
undirected spanning tree ḠU based on Ḡ (Ξ is defined as in
Lemma 3). Moreover, the adaptive gains āk+1,pk , k ∈ IN−1,
converge to some finite constant values.

Proof: We conduct the proof by showing that each
trajectory of (5a)-(5c) converges to a GEP of (4). Let us define
the error vectors between the trajectory of (5a)-(5c) and any
GEP (x̃, ỹ, z̃) of (4), following a change of coordinates:

µ = x− x̃, ν = y − ỹ, η = z − z̃ (8a)
µ̄ = (Ξ⊗ In)µ, ν̄ = (Ξ⊗ In)ν, η̄ = (Ξ⊗ In)η (8b)
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Algorithm 1: DARA: DST-based
Data: (1) initialization: xi(0), yi(0), zi(0), aij(0); (2)

parameters: κ1, κ2; (3) structure: a DST Ḡ(V, Ē)
Result: Optimal resource allocation solution xi → x∗

1 s← 1;
2 while s · h ≤ Ttml do // h is the

integration step and Ttml is the
terminal time

3 for i← 1 to N do
4 dxi ← −κ1(∇fi(xi) + yi);
5 dyi ← xi − di −

∑
j∈V
La
ijyj −

∑
j∈V
Lijzj ;

6 dzi ←
∑
j∈V
La
ijyj ;

7 for j ← 1 to N and j ̸= i do
8 daij ← 0;
9 if eji ∈ Ē then // ∃k ∈ IN−1 such

that i = k + 1 and j = pk

10 daij ← κ2

(
(yj − yi)−

∑
c∈N̄out(i)

(yi −

yc)
)T

(yj − yi);
11 end
12 aij ← aij + h · daij ;
13 end
14 xi ← xi + h · dxi;
15 yi ← xi + h · dyi;
16 zi ← xi + h · dzi;
17 end
18 s← s+ 1;
19 end

where Ξ is defined as in Lemma 3. In a component-wise form,
µ̄ = col(µ̄1, · · · , µ̄N−1) where µ̄k = µpk − µk+1, k ∈ IN−1.

Note that La ∈MN
r . By Definition 1, we have Oa|(x̃,ỹ,z̃) =

0. Then, in the new coordinates (8b), the dynamics of Oa is
equivalent to

˙̄µ = −κ1(Ξ⊗ In)h− κ1ν̄ (9a)
˙̄ν = µ̄− (Qa ⊗ In)ν̄ − (Q⊗ In)η̄ (9b)
˙̄η = (Qa ⊗ In)ν̄ (9c)

˙̄ak+1,pk = κ2

(
ν̄k −

∑
j∈N̄out(k+1)

ν̄j−1

)T

ν̄k, k ∈ IN−1 (9d)

where h = ∇f(µ + x̃) − ∇f(x̃) in (9a), and Q (resp. Qa),
is defined as in Lemma 3 based on the DST Ḡ and the (resp.
gain-dependent) Laplacian matrix. More specifically, Qa =
Q̃a + Q̄a contains the fixed matrix Q̃a (note that ȧij = 0 if
eji ∈ E \ Ē), and the time-varying matrix

Q̄a
kj =


āj+1,pjwj+1,pj , if j = k,

−āj+1,pjwj+1,pj , if j = pk − 1,

0, otherwise.
(10)

Here, statement 2) of Lemma 3 and the properties of the
Kronecker product have been used to get (9b)-(9c); and the
fact that (Ξ⊗ In)ỹ = 0 has been used to get (9d).

Consider the following candidate Lyapunov function:

V1 =
1 + 3λ̄(QTQ)

ϵ1λ
2(Qs)

Vµ̄ + V a
ν̄ +

3λ̄(QTQ)

λ(Qs)
Vη̄ (11)

where

Vµ̄ =
1

2
µ̄T µ̄

V a
ν̄ =

1

2
ν̄T ν̄ +

N−1∑
k=1

wk+1,pk

2κ2

(
āk+1,pk(t)− ϕk+1,pk

)2
Vη̄ =

1

2
(ν̄ + η̄)T (ν̄ + η̄) (12)

and Qs > 0 is guaranteed by 3) of Lemma 3, and ϵ1, ϕk+1,pk ∈
R+, k = 1, · · · , N − 1, will be determined later.

The time derivative of Vµ̄ can be obtained as

V̇µ̄ = −κ1µ̄
T (Ξ⊗ In)h− κ1µ̄

T ν̄. (13)

By (8b) and (7), we have

µ̄T (Ξ⊗ In)h ≥ mµ̄T µ̄. (14)

Then,

V̇µ̄ ≤ −κ1mµ̄T µ̄− κ1µ̄
T ν̄

≤ (ϵ2 − κ1m)µ̄T µ̄+
κ2
1

4ϵ2
ν̄T ν̄ (15)

where ϵ2 ∈ R+ is to be decided later, and Lemma 1 was used
to get the second inequality.

The time derivative of V a
ν̄ can be obtained as

V̇ a
ν̄ =ν̄T µ̄− ν̄T (Qa ⊗ In)ν̄ − ν̄T (Q⊗ In)η̄

+

N−1∑
k=1

wk+1,pk(āk+1,pk − ϕk+1,pk)
(
ν̄k

−
∑

j+1∈N̄out(k+1)

ν̄j

)T

ν̄k. (16)

From (10), one has
N−1∑
k=1

wk+1,pk āk+1,pk

(
ν̄k −

∑
j+1∈N̄out(k+1)

ν̄j

)T

ν̄k

=

N−1∑
k=1

(Q̄a
kkν̄k +

N−1∑
j=1,j ̸=k

Q̄a
jkν̄j)

T ν̄k

=

N−1∑
k=1

N−1∑
j=1

Q̄a
jkν̄

T
j ν̄k = ν̄T (Q̄a ⊗ In)ν̄. (17)

Following the procedure in [24], [28], [31], let us define Φ ∈
R(N−1)×(N−1) as

Φkj =


ϕj+1,pjwj+1,pj , if j = k,

−ϕj+1,pjwj+1,pj , if j = pk − 1,

0, otherwise.
(18)

Then, it follows from (16)-(18) that

V̇ a
ν̄ =ν̄T µ̄− ν̄T (Qa ⊗ In)ν̄ − ν̄T (Q⊗ In)η̄

+ ν̄T
(
(Q̄a − Φ)⊗ In

)
ν̄

=ν̄T µ̄− ν̄T
(
(Q̃a +Φ)⊗ In

)
ν̄ − ν̄T (Q⊗ In)η̄. (19)
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Note that the time-varying matrix Q̄a has been canceled, and
all the matrices left are constant. Based on Lemma 1, we have

V̇ a
ν̄ ≤ν̄T µ̄− ν̄T

(
(Q̃a +Φ)⊗ In

)
ν̄

+
ν̄T ν̄

2
+

η̄T (QTQ⊗ In)η̄
2

≤ 1

λ2(Qs)
µ̄T µ̄+

(λ2(Qs)

4
+

1

2

)
ν̄T ν̄

− ν̄T
(
(Q̃a +Φ)⊗ In

)
ν̄ +

λ̄(QTQ)

2
η̄T η̄. (20)

where we have also used the property that xTAx ≤ λ̄(A)xTx
for a matrix A ≻ 0 and for all x to get the last inequality.

The time derivative of Vη̄ can be obtained as

V̇η̄ =ν̄T µ̄− ν̄T (Q⊗ In)η̄ + η̄T µ̄− η̄T (Q⊗ In)η̄

≤ 1

2λ(Qs)
µ̄T µ̄+

λ(Qs)

2
ν̄T ν̄

+
λ̄(QTQ)

λ(Qs)
ν̄T ν̄ +

λ(Qs)

4
η̄T η̄

+
λ(Qs)

2
η̄T η̄ +

1

2λ(Qs)
µ̄T µ̄− λ(Qs)η̄T η̄

≤ 1

λ(Qs)
µ̄T µ̄+

(λ(Qs)

2
+

λ̄(QTQ)

λ(Qs)

)
ν̄T ν̄

− λ(Qs)

4
η̄T η̄ (21)

where we have repeatedly used Lemma 1 to get the inequality.
Based on (11), (15), (20), and (21) and with some manip-

ulations, the time derivative of V1 along the trajectory of (9)
is upper bounded by

V̇1 ≤−
(
1 + 3λ̄(QTQ)

)
(κ1m− ϵ1 − ϵ2)

ϵ1λ
2(Qs)

µ̄T µ̄

− ν̄T
(
(Φs − γIN−1 + (Q̃a)s)⊗ In

)
ν̄ − λ̄(QTQ)

4
η̄T η̄

(22)

where γ ∈ R+ is given by

γ =
κ2
1

(
1 + 3λ̄(QTQ)

)
4ϵ1ϵ2λ

2(Qs)
+

3λ̄2(QTQ)

λ2(Qs)

+
3λ̄(QTQ)

2
+

λ2(Qs)

4
+

1

2
. (23)

The next procedure is to find some appropriate
ϵ1, ϵ2, ϕk+1,pk ∈ R+ to stabilize the system. First, we can
always select ϵ1, ϵ2 such that ϵ1 + ϵ2 ≤ κ1m. Next, we select
ϕk+1,pk , k = 1, · · · , N−1, such that Φs−γIN−1+(Q̃a)s ≻ 0.
Since γ and (Q̃a)s are both fixed, it is sufficient to prove
that by choosing appropriate ϕk+1,pk , Φs − γ̄IN−1 ≻ 0 for
any γ̄ ∈ R+. This latter statement is indeed guaranteed
following similar mathematical induction procedures as in
[28]. Specifically, let

ϕ2,p1 >
γ̄

w2,p1
, ϕk+1,pk > γ̄ +

∑k
j=2 ϕ

2
j,pj−1

w2
j,pj−1

4wk+1,pkλ(Ωk−1)
, (24)

where Ω1 =
(
ϕ2,p1w2,p1 − γ̄

)
, and

Ωk =

(
Ωk−1 φk

φT
k ϕk+1,pkwk+1,pk − γ̄

)
(25)

with φk = 1
2 (ϕk1wk1, ϕk2wk2, · · · , ϕk,k−1wk,k−1)

T , k =
2, · · · , N − 1. Then, the positive definiteness of Φs − γ̄IN−1

(ΩN−1) is guaranteed by the Schur complement [39] and the
induction principle. Then, it follows that V̇1 ≤ 0, implying that
V1 has a finite limit and all the signals µ̄, ν̄, η̄, and āk+1,pk
are bounded. Note that since V1 is continuously differentiable,
it is guaranteed by LaSalle’s invariance principle that each
trajectory of (9) converges to the set such that V̇1 = 0, which
by (22), implies that (µ̄, ν̄, η̄) → (0, 0, 0), and the adaptive
gains āk+1,pk , k ∈ IN−1, converge to some finite constant
values. Back to the original coordinates of (5), (x, y, z) →
(x̃+ 1N ⊗∆x, ỹ+ 1N ⊗∆y, z̃ + 1N ⊗∆z) ≜ (xs, ys, zs), for
some ∆x,∆y,∆z ∈ Rn

Next, we show that ∆x = ∆y = 0. The steady-state
dynamics of ∆x and ∆y are governed by

∆̇x =
1

N
(1TN ⊗ In)ẋs, ∆̇y =

1

N
(1TN ⊗ In)ẏs. (26)

Substitute (5a)-(5b) evaluated at (xs, ys, zs) into the above, and
note that Oa|(x̃,ỹ,z̃) = 0. Then we obtain

∆̇x = −κ1

N
(1TN ⊗ In)

(
∇f(xs)−∇f(x̃)

)
− κ1∆y = 0,

∆̇y = ∆x = 0. (27)

This gives ∆x = ∆y = 0, i.e., (xs, ys) = (x̃, ỹ), which implies
that each trajectory of (5a)-(5c) converges to a GEP of (4).
By Lemma 6, we know that (x, y) → (x∗, 1N ⊗ y∗). This
completes the proof.

Consider the special case of quadratic local costs

fi(x) ≜ xTΘx+ xTφi, Θ ≻ 0, φi ∈ Rn. (28)

In this case, the spanning-tree-based m-strongly convex con-
dition (7) holds with any m ≤ λ(Θ) and for any DST.
Immediately, we have the following corollary:

Corollary 1: Under Assumptions 1-2, the resource allo-
cation problem (1) with local costs (28) can be solved
with the adaptive algorithm (5) for any initial conditions
(x(0), y(0), z(0) ∈ RNn × RNn × RNn and any aij(0) ∈ R,
i.e., (x, y) → (x∗, 1N ⊗ y∗). Moreover, the adaptive gains
āk+1,pk , k ∈ IN−1, converge to some finite constant values.

Remark 5: The proposed adaptive resource allocation
framework is essentially different from related literature [7],
[10], [14]–[17], [21], which rely on the global knowledge of
Laplacian eigenvalues to establish convergence results. The
main idea behind the proof of Theorem 1 is to repeatedly use
the Peter-Paul inequality (Lemma 1) so as to entrust stability
to the adaptive coupling gains āk+1,pk . Thus, global stability
can be derived by selecting sufficiently large ϕk+1,pk with the
help of the Schur complement and mathematical induction,
as shown in the proof. As a consequence, the knowledge of
the global Laplacian eigenvalues is successfully removed at
the design stage. Note that the exact values of the parameters
ϕk+1,pk , ∀k ∈ IN−1, are not needed in the algorithm, they
are only used for the purpose of stability analysis.
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Remark 6: In addition to removing the knowledge of the
global Laplacian eigenvalues as discussed above, it is worth
noticing that the adaptive coupling gains (5d) overcome the
need for unitary, or sufficiently small steps sizes to implement
local gradient descent [4]–[6], [17]–[20]. The convergence of
the proposed algorithm (5) is guaranteed globally for any
parameters κ1, κ2 ∈ R+. These parameters can easily be tuned
taking into account the fact that increasing κ1 allows for larger
step sizes towards decreasing the local costs (with constraint
concerns), while increasing κ2 enhances the importance of
communicating Lagrangian multipliers. Generally speaking, a
larger κ1 would require a smaller integration step for practical
implementation (i.e., smaller h in Algorithm 1), and larger
κ2 would induce higher steady-state coupling gains (cf. our
simulations in Section V). Note that the above discussions
also apply to the node-based case in Section IV.

IV. DISTRIBUTED ADAPTIVE RESOURCE ALLOCATION:
NODE-BASED DESIGN

The DST-based adaptive law (5d) in Section III relies on
the structural information of a DST. Although a DST can be
obtained in a distributed way [38], it is of interest to possibly
remove this intermediate step: to this purpose, a node-based
design is developed in this section. Consider the following
DARA algorithm for agent i ∈ V:

Oα : ẋ = −κ1(∇f(x) + y) (29a)

ẏ = x−D −
(
(A+ B)L ⊗ In

)
y − (L ⊗ In)z (29b)

ż =
(
(A+ B)L ⊗ In

)
y (29c)

α̇i = βi := κ2ξ
T
i ξi (29d)

where A = diag(α1, · · · , αN ), B = diag(β1, · · · , βN ) and
ξi =

∑
j∈Nin(i)

wij(yi − yj).
Theorem 2: Under Assumptions 1-2, the adaptive algorithm

(29) drives (x, y) to (x∗, 1N⊗y∗) asymptotically for any initial
condition (x(0), y(0), z(0) ∈ RNn × RNn × RNn and any
αi(0) ∈ R+ provided there exists a scalar m ∈ R+, such
that the following condition (referred to as jointly m-strongly
convexity) holds ∀x, y ∈ RNn:

(x− y)T (LTL ⊗ In)(∇f(x)−∇f(y)) ≥
m(x− y)T (LTL ⊗ In)(x− y). (30)

Moreover, the adaptive gains αi, i ∈ IN , converge to some
finite constant values.

Proof: Following similar lines as the proof of Theorem 1,
define the error vectors between the trajectory of (29a)-(29c)
and any GEP (x̃, ỹ, z̃) of (4) as (µ, ν, η) defined in (8a), and
apply a change of coordinates:

µ̂ = (L ⊗ In)µ, ν̂ = (L ⊗ In)ν, η̂ = (L ⊗ In)η. (31)

Note that (A + B)L ∈ MN
r . By Definition 1, we have

Oα|(x̃,ỹ,z̃) = 0. Denote ξ = col(ξ1, · · · , ξN ), we have
ξ = (L ⊗ In)y = (L ⊗ In)(y − ỹ) = ν. Then, in the new

Algorithm 2: DARA: node-based
Data: (1) initialization: xi(0), yi(0), zi(0), ai(0); (2)

parameters: κ1, κ2

Result: Optimal resource allocation solution xi → x∗

1 s← 1;
2 while s · h ≤ Ttml do // h is the

integration step and Ttml is the
terminal time

3 for i← 1 to N do
4 ξi ←

∑
j∈V
Lijyj ;

5 βi ← κ2ξ
T
i ξi;

6 dxi ← −κ1(∇fi(xi) + yi);
7 dyi ← xi−di−(αi+βi)

∑
j∈V
Lijyj−

∑
j∈V
Lijzj ;

8 dzi ← (αi + βi)
∑
j∈V
Lijyj ;

9 dαi ← βi;
10 xi ← xi + h · dxi;
11 yi ← xi + h · dyi;
12 zi ← xi + h · dzi;
13 αi ← αi + h · dαi;
14 end
15 s← s+ 1;
16 end

coordinates (31), the dynamics of Oα is equivalent to

˙̂µ = −κ1(L ⊗ In)h− κ1ν̂ (32a)
˙̂ν = µ̂−

(
L(A+ B)⊗ In

)
ν̂ − (L ⊗ In)η̂ (32b)

˙̂η =
(
L(A+ B)⊗ In

)
ν̂ (32c)

α̇i = βi := κ2ν̂
T
i ν̂i, i ∈ IN (32d)

where h = ∇f(µ+ x̃)−∇f(x̃) in (32a).
Consider the following candidate Lyapunov function:

V2 =
N
(
2λ2

2(Ls) + 5λ̄(LTL)
)

ϵ1λ2
3(Ls)

Vµ̂ + V α
ν̂ +

5Nλ̄(LTL)
λ2

2(Ls)
Vη̂

(33)

where

Vµ̂ =
1

2
µ̂T µ̂

V α
ν̂ =

1

2
ν̂T

(
(2A+ B)⊗ In

)
ν̂ +

N∑
i=1

1

2κ2

(
αi(t)− ᾱ

)2
Vη̂ =

1

2
(ν̂ + η̂)T (ν̂ + η̂) (34)

where ᾱ, ϵ1 ∈ R+ remains to be decided.
The time derivative of Vµ̄ can be obtained as

V̇µ̂ = −κ1µ̂
T (L ⊗ In)h− κ1µ̂

T ν̂. (35)

By (31) and (30), we have

µ̂T (L ⊗ In)h ≥ mµ̂T µ̂. (36)

Similar to (15), we have

V̇µ̂ ≤ (ϵ2 − κ1m)µ̂T µ̂+
κ2
1

4ϵ2
ν̂T ν̂ (37)



8

where ϵ2 ∈ R+ is to be decided later.
The time derivative of V α

ν̂ can be obtained as

V̇ α
ν̂ =

1

2κ2

N∑
i=1

(
2αiβ̇i + 2α̇iβi + 2βiβ̇i + 2(αi − ᾱ)α̇i

)
=

1

κ2

N∑
i=1

(
(αi + βi)β̇i + (αi + βi − ᾱ)α̇i

)
=ν̂T

(
(A+ B − ᾱIN )⊗ In

)
ν̂ + 2ν̂T

(
(A+ B)⊗ In

)
˙̂ν

=ν̂T
(
(A+ B − ᾱIN )⊗ In

)
ν̂ + 2ν̂T

(
(A+ B)⊗ In

)
µ̂

− 2ν̂T
(
(A+ B)L(A+ B)⊗ In

)
ν̂

− 2ν̂T
(
(A+ B)L ⊗ In

)
η̂. (38)

Let ν̃ =
(
(A+B)⊗In

)
ν̂ ≜ col(ν̃1, · · · , ν̃N ). Based on Lemma

2, we have

ν̂T
(
(A+ B)L(A+ B)⊗ In

)
ν̂

=ν̃T (Ls ⊗ In)ν̃ =

n∑
k=1

δ̃Tk Lsδ̃k (39)

where δ̃k =
(
[Sν̃1]k, [Sν̃2]k, · · · , [Sν̃N ]k

)T
. Here S ∈

Rn×n is an orthogonal matrix. Note that [Sν̃i]k = (αi +
βi)

∑
j∈Nin(i)

wij([Sνi]k − [Sνj ]k). If we denote δk =(
[Sν1]k, [Sν2]k, · · · , [SνN ]k

)T
, then δ̃k = (A+B)Lδk, ∀k ∈

In. Under Assumption 2, there holds
(
(A + B)−11N

)T
δ̃k =

1TNLδk = 0 for any k. Note that (A + B)−11N ∈ RN
+

(αi(0) ∈ R+ and α̇i ≥ 0). So, it follows from (39) and
statements 1)-2) of Lemma 4 that

ν̂T
(
(A+ B)L(A+ B)⊗ In

)
ν̂

=

n∑
k=1

δ̃Tk Lsδ̃k

≥λ2(Ls)

N

n∑
k=1

δ̃Tk δ̃k

=
λ2(Ls)

N
ν̃T ν̃

=
λ2(Ls)

N
ν̂T

(
(A+ B)2 ⊗ In

)
ν̂. (40)

Then, it follows from (38) and (40) that

V̇ α
ν̂ ≤ν̂T

(
(A+ B − ᾱIN )⊗ In

)
ν̂ + 2ν̂T

(
(A+ B)⊗ In

)
µ̂

− 2λ2(Ls)

N
ν̂T

(
(A+ B)2 ⊗ In

)
ν̂

− 2ν̂T
(
(A+ B)L ⊗ In

)
η̂

≤ν̂T
(
(A+ B − ᾱIN )⊗ In

)
ν̂ +

2N

λ2(Ls)
µ̂T µ̂

+
λ2(Ls)

2N
ν̂T

(
(A+ B)2 ⊗ In

)
ν̂ +

Nλ̄(LTL)
λ2(Ls)

η̂T η̂

− λ2(Ls)

N
ν̂T

(
(A+ B)2 ⊗ In

)
ν̂

=
2N

λ2(Ls)
µ̂T µ̂− λ2(Ls)

2N
ν̂T

(
(A+ B)2 ⊗ In

)
ν̂

+ ν̂T
(
(A+ B − ᾱIN )⊗ In

)
ν̂ +

Nλ̄(LTL)
λ2(Ls)

η̂T η̂ (41)

where we have repeatedly used Lemma 1 to get the second
inequality.

Similar to (21), the time derivative of Vη̂ can be obtained
as

V̇η̂ =ν̂T µ̂− ν̂T (L ⊗ In)η̂ + η̂T µ̂− η̂T (L ⊗ In)η̂

≤ 1

λ2(Ls)
µ̂T µ̂+

(λ2(Ls)

2
+

λ̄(LTL)
λ2(Ls)

)
ν̂T ν̂ − λ2(Ls)

4
η̂T η̂.

(42)

Here we have used the fact that η̂T (L ⊗ In)η̂ ≥ λ2(Ls)η̂T η̂,
which is guaranteed by statement 3) of Lemma 4, and (1TN ⊗
In)η̂ = 0 under Assumption 2.

Based on (33), (37), (41), and (42) and with some manipu-
lations, the time derivative of V2 along the trajectory of (32)
is upper bounded by

V̇2 ≤−
N
(
2λ2

2(Ls) + 5λ̄(LTL)
)
(κ1m− ϵ1 − ϵ2)

ϵ1λ2
3(Ls)

µ̂T µ̂

− λ2(Ls)

2N
ν̂T

(
(A+ B)2 ⊗ In

)
ν̂

+ ν̂T
((
A+ B − (ᾱ− γ′)IN

)
⊗ In

)
ν̂ − Nλ̄(LTL)

4λ2(Ls)
η̂T η̂

(43)

where γ′ ∈ R+ is given by

γ′ =
Nκ2

1

(
2λ2

2(Ls) + 5λ̄(LTL)
)

4ϵ1ϵ2λ2
3(Ls)

+
5Nλ̄(LTL)
2λ2(Ls)

+
5Nλ̄2(LTL)
λ2

3(Ls)
. (44)

Let us select ϵ1, ϵ2 such that ϵ1 + ϵ2 ≤ κ1m, and ᾱ ≥
γ′ + N

2λ2(Ls) . Then, it follows from (43) that

V̇2 ≤−
λ2(Ls)

2N
ν̂T

((
A+ B − N

λ2(Ls)
IN

)2 ⊗ In
)
ν̂

− Nλ̄(LTL)
4λ2(Ls)

η̂T η̂ ≤ 0, (45)

implying that V2 has a finite limit and all the signals µ̂, ν̂, η̂,
and αi are bounded. The rest of the proof follows similarly to
that of Theorem 1.

Note that for local costs (28), the jointly m-strongly convex
condition (30) also holds with any m ≤ λ(Θ), resulting in the
following corollary:

Corollary 2: Under Assumptions 1-2, the resource alloca-
tion problem (1) with quadratic local costs (28) can be solved
with the adaptive algorithm (29) for any initial condition
(x(0), y(0), z(0) ∈ RNn ×RNn ×RNn and any αi(0) ∈ R+,
i.e., (x, y)→ (x∗, 1N ⊗ y∗). Moreover, the adaptive gains αi,
i ∈ IN , converge to some finite constant values.

Remark 7: Although both algorithms can be recast as un-
certain saddle-point dynamics, the ideas behind the DST-based
and node-based designs for promoting the consensus over yi
are intrinsically different. In the DST-based case, the root
of the DST plays the role of a leader; while in the node-
based case, there is no leader and all the nodes play the
same role. This shows the flexibility of the uncertain saddle-
point dynamics viewpoint to accommodate for different design
perspectives.
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Remark 8: The proposed conditions, either the spanning-
tree-based or the jointly strongly convexity, are slightly more
conservative as compared with classical strongly convexity.
The reason is due to the induced Laplacian matrices. Never-
theless, Corollaries 1-2 have shown a relatively standard class
of local cost functions that automatically satisfies the proposed
strongly convexity conditions.

V. SIMULATIONS

In this section, we give two examples to show the effective-
ness of the proposed methods. For each example, we consider
two cases to model networks of different scales (cf. Fig. 1).
The first example considers cost functions with randomly
generated coefficients, while the second example is inspired by
the benchmark power networks IEEE 30-bus and IEEE 118-
bus for which the systems diagrams and data sets are available
online at [40] and [41], respectively.

In addition to validate the effectiveness of the proposed
algorithms, some other goals of the experiments include: to
support Remark 6 in that the convergence of the proposed
algorithms is guaranteed globally for any parameters κ1, κ2 ∈
R+ (cf. Fig. 4); to highlight the necessity of introducing the
adaptive coupling strategies (cf. Fig. 7); to give a comparison
with the method proposed in the literature [14] (cf. Fig. 10).
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Fig. 1. Two balanced digraphs. The selected DSTs for the DST-based protocol
(5) are highlighted with thicker red lines.

Example 1: Consider a total resource d to be allocated
over a network of N agents that communicate via a weight-
balanced digraph G. The local cost function for each agent
is given by fi(xi) = aix

2
i + bixi + ci, where ai = 0.1,

ci = 0, and bi are randomly selected in the interval [1, 100].
In the following, two cases will be simulated. In each case,
the local resources are equally distributed as di = d

N ; the
initial (xi, yi, zi) of the agents are chosen from a Gaussian
distribution with standard deviation 5. For the DST-based
design (5), the initial aij(0) are chosen from a uniform
distribution in (−1, 1); for the node-based design (29), the
initial αi(0) are chosen from a uniform distribution in (0, 1).

Case 1: d = 1.5× 103, N = 6, G = G1 (Fig. 1(a));
Select κ1 = κ2 = 1 for both the DST-based and node-

based designs. The states of the agents and the corresponding
adaptive gains under (5) and (29) are provided in Figs. 2 and 3,
respectively, where the dashed lines represent the local optimal
allocation decisions. For comparison, Fig. 4 shows the results
under (5) with a pair of different parameters κ1 = 10 and
κ2 = 0.1.

Case 2: d = 1.5× 104, N = 54, G = G2 (Fig. 1(b));
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Fig. 2. Case 1: States xi(t) of the agents and adaptive gains āk+1,pk (t)
with DST-based protocol (5) and parameters κ1 = κ2 = 1. The states xi(t)
converge to the corresponding optimal allocation decisions, and the adaptive
gains āk+1,pk (t) converge to finite constants.
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Fig. 3. Case 1: States xi(t) of the agents and adaptive gains αi(t) with
node-based protocol (29) and parameters κ1 = κ2 = 1. The states xi(t)
converge to the corresponding optimal allocation decisions, and the adaptive
gains αi(t) converge to finite constants.
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Fig. 4. Case 1: States xi(t) of the agents and adaptive gains āk+1,pk (t)
with DST-based protocol (5) and parameters κ1 = 10, κ2 = 0.1. A larger
κ1 leads to better transient performance of xi(t) and a smaller κ2 leads to
smaller steady values of āk+1,pk (t), as compared to Fig. 2.

Select κ1 = κ2 = 0.1 for both the DST-based and node-
based designs. The states of the agents and the corresponding
adaptive gains under (5) and (29) are provided in Figs. 5 and
6, respectively. For comparison, let κ2 = 0, which is the static
strategy used in many related works, e.g., [4]–[6]. It can be
seen from Fig. 7 that the resulting nonadaptive strategy fails
to solve the resource allocation problem. The reason is that
the results in the aforementioned works cannot be adapted to
the case with directed communication graphs.

Example 2: In this example, we examine the proposed
algorithms applied to the relaxed (i.e., without box con-
straints) economic dispatch (rED) problem. We consider two
benchmark power networks, IEEE 30-bus and IEEE 118-bus,
where N power generators must cooperatively minimize the
cumulative cost, while meeting a total load demand d. In
both benchmarks, the cost functions of the generators are of
quadratic form: fi(xi) = aix

2
i + bixi + ci.

Two observations follow when comparing our algorithms
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Fig. 5. Case 2: States xi(t) of the agents and adaptive gains āk+1,pk (t)
with DST-based protocol (5) and parameters κ1 = κ2 = 0.1.

Fig. 6. Case 2: States xi(t) of the agents and adaptive gains αi(t) with
node-based protocol (29) and parameters κ1 = κ2 = 0.1.
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Fig. 7. Case 2: States xi(t) of the agents with nonadaptive protocol (κ1 =
0.1, κ2 = 0 in (29)). The states xi(t) diverge.

with the Laplacian-gradient dynamics proposed in [13] for the
rED problem: first, in our algorithms the knowledge of the cost
functions (or the corresponding gradients) of neighbors is not
needed for each generator, which makes our algorithms more
privacy-friendly; second, our algorithms are initialization-free
(i.e., the initial decisions do not need to satisfy the total load
demand). In fact, the initialization-free problem in [13] has
also been overcome in [14] by a “dynamic average consensus +
Laplacian-gradient” (DAC+LG) algorithm defined as follows:

ẋ = −(L ⊗ In)∇f(x) + κ1y

ẏ = −κ2(x−D)− αy − β(L ⊗ In)y − z

ż = αβ(L ⊗ In)y (46)

where κ1, κ2, α, β ∈ R+ are tuned based on the Lapla-
cian eigenvalues. Nevertheless, the exchange of the gradients
through the network is still needed. Besides, without the ad-
justable parameter for gradient descent, DAC+LG may suffer

from a slower convergence rate (cf. our case study below).
Case 1 (IEEE 30-bus): d = 103, N = 6, G = G1 (Fig. 1(a));
The power system contains 6 generators. The parame-

ters of the local costs are described in vector form by
ai = (0.00375, 0.0175, 0.0625, 0.00834, 0.025, 0.025)T , bi =
(2, 1.75, 1, 3.25, 3, 3)T , and ci = 0 [42]. The power allocation
states and the corresponding adaptive gains under (5) and (29)
are provided in Figs. 8 and 9, respectively, where the dashed
lines represent the local optimal power allocation decisions.
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Fig. 8. Case 1 (IEEE 30-bus): Power allocation states xi(t) and adaptive
gains āk+1,pk (t) with DST-based protocol (5) and parameters κ1 = 20,
κ2 = 1.
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Fig. 9. Case 1 (IEEE 30-bus): Power allocation states xi(t) and adaptive
gains αi(t) with node-based protocol (29) and parameters κ1 = 20, κ2 = 1.
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Fig. 10. Case 1 (IEEE 30-bus): Power allocation states xi(t) with DAC+LG
(46) and parameters κ1 = κ2 = 1, α = 10, β = 60. The parameters are
tuned based on the Laplacian eigenvalues [14, Theorem 5.3].

Case 2 (IEEE 118-bus): d = 105, N = 54, G = G2
(Fig. 1(b));

The power system contains 54 generators. The parameters
of the local costs belong to the ranges ai ∈ (0.0024, 0.0697),
bi ∈ (8.3391, 37.6961), and ci ∈ (6.78, 74.33) [41]. The
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power allocation states and the corresponding adaptive gains
under (5) and (29) are provided in Figs. 11 and 12, respec-
tively, where the dashed lines represent the local optimal power
allocation decisions.
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Fig. 11. Case 2 (IEEE 118-bus): Power allocation states xi(t) and adaptive
gains āk+1,pk (t) with DST-based protocol (5) and parameters κ1 = κ2 =
0.3.

Fig. 12. Case 2 (IEEE 118-bus): Power allocation states xi(t) and adaptive
gains αi(t) with node-based protocol (29) and parameters κ1 = κ2 = 0.3.

When comparing Case 2 to Case 1, one can find that
the steady-state gains for N = 54 have smaller orders of
magnitude as those for N = 6. Therefore, we conclude the
section by commenting on the lower bound ᾱ ≥ γ′ + N

2λ2(Ls)
introduced before (45). Although this bound increases for
increasing N , it is only used for stability analysis of algorithm
(29), and might be conservative in practice, as discussed in
the literature [25], and as evident from our simulations. As
a matter of fact, our simulations show that the actual values
attained by the adaptive gains are not influenced by the scale
N of the network, but mainly depend on the network structure
and the parameter κ2.

VI. DISCUSSIONS

[On further comparisons between DST- and node-based
algorithms] The DST-based method can in general lead to
faster convergence (see Fig. 2-3 in Section V, and the simu-
lation results in [31] for a distributed optimization problem).
This is consistent with intuition since enhancing connections
along a DST structure should be more efficient than enhancing
connections of all links. Note that a DST structure is known in
the literature to be beneficial for cooperative consensus [24],
[36].

[On the superiority between DST- and node-based algo-
rithms] Different constraints in real-world applications would
decide the superiority between these two algorithms. If faster
convergence speed is desired, the DST-based method would be
preferable, where the DST structure could be identified via a

breadth/depth first algorithm [43, Section 1.4.4] or distributed
algorithms [38]. If a fully distributed strategy that does not
rely on any a priori information is desired, the node-based
algorithm would be preferable, since the DST-based method
requires a priori knowledge of a DST structure.

[On the open problems of the DARA algorithms] Note
that the Lyapunov functions in (11) and (33) are quadratic.
Since results exist where a non-quadratic Lyapunov function
may improve performance in adaptive schemes, see e.g. [44],
[45], an open future direction is to improve the proposed adap-
tive resource allocation solutions via non-quadratic Lyapunov
functions. Besides, the DARA algorithms in this paper have
been formulated for resource allocation problems without local
bound constraints. Such local bound constraints may appear in
engineering applications such as economic dispatch in the field
of power networks. Embedding local bound constraints in the
proposed saddle-point dynamics viewpoint is thus a challenge
for future work.

VII. CONCLUSIONS

Distributed optimal in-network resource allocation over
weight-balanced digraphs was studied. Two novel distributed
adaptive saddle-point algorithms named DST-based and node-
based algorithms have been proposed. The asymptotic con-
vergence of each algorithm has been theoretically proved and
numerically tested. The proposed adaptive resource allocation
frameworks successfully remove the knowledge of the under-
lying Laplacian eigenvalues, which has been widely used in
related literature. Future work includes relaxing the proposed
conditions (7) and (30), and studying resource allocation
problems with local bound constraints.
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[24] W. Yu, J. Lü, X. Yu, and G. Chen, “Distributed adaptive control for
synchronization in directed complex networks,” SIAM J. Control Optim.,
vol. 53, no. 5, pp. 2980–3005, 2015.

[25] J. Mei, W. Ren, and J. Chen, “Distributed consensus of second-order
multi-agent systems with heterogeneous unknown inertias and control
gains under a directed graph,” IEEE Trans. Autom. Control, vol. 61,
no. 8, pp. 2019–2034, 2016.

[26] Z. Li, L. Gao, W. Chen, and Y. Xu, “Distributed adaptive cooperative
tracking of uncertain nonlinear fractional-order multi-agent systems,”
IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 292–300, 2019.

[27] G. Wen, G. Hu, Z. Zuo, Y. Zhao, and J. Cao, “Robust containment of
uncertain linear multi-agent systems under adaptive protocols,” Int. J.
Robust Nonlinear Control, vol. 27, no. 12, pp. 2053–2069, 2017.

[28] D. Yue, S. Baldi, J. Cao, Q. Li, and B. De Schutter, “A directed spanning
tree adaptive control solution to time-varying formations,” IEEE Trans.
Control Netw. Syst., vol. 8, no. 2, pp. 690–701, 2021.

[29] D. Yue, J. Cao, Q. Li, and M. Abdel-Aty, “Distributed neuro-adaptive
formation control for uncertain multi-agent systems: node- and edge-
based designs,” IEEE Trans. Netw. Sci. Eng., vol. 7, no. 4, pp. 2656–
2666, 2020.

[30] Z. Li, Z. Ding, J. Sun, and Z. Li, “Distributed adaptive convex optimiza-
tion on directed graphs via continuous-time algorithms,” IEEE Trans.
Autom. Control, vol. 63, no. 5, pp. 1434–1441, 2017.

[31] D. Yue, S. Baldi, J. Cao, and B. De Schutter, “Distributed adaptive opti-
mization with weight-balancing,” IEEE Trans. Autom. Control, vol. 67,
no. 4, pp. 2068–2075, 2022.

[32] Q. Yang, G. Chen, and T. Wang, “ADMM-based distributed algorithm
for economic dispatch in power systems with both packet drops and
communication delays,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp.
842–852, 2020.
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