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ABSTRACT Industrial and academic interest converge on scheduling flow shops with sequence- and time-
dependent maintenance. We posit that anticipatory, integrated scheduling of operational and maintenance tasks
leads to superior performance to purely ‘wait-then-fix’ handling of the maintenance tasks. Motivated by an
industrial problemwith (sequence dependent) setup times, maximum separation constraints, and a combination
of sequence- and time- dependent maintenance tasks, this paper introduces an integer programming solution,
a constraint programming solution and a heuristic solution based on list scheduling. The motivating use
case provides a unique combination of concerns that is to the best of our knowledge, not yet studied in the
literature. We build on existing work where we can by extending models for sequence-dependent maintenance
scheduling to accommodate sequence- and time-dependent maintenance scheduling and also propose other
new models. We show the relative performances of our methods through empirical evaluations and also show
significant improvements – up to 25% reduction in makespan – when compared to a reactive scheduling
approach that does not consider maintenance in its planning. Based on our evaluations on exact methods,
constraint programming models scale better than mixed integer programming models for this problem.

INDEX TERMS Flexible manufacturing systems, maintenance scheduling, makespanminimisation, re-entrant
flow shops.

I. INTRODUCTION
We consider a sequence- and time-dependent maintenance
scheduling problem. Our problem is motivated by an industrial
use case of a large-scale printer (LSP) and is modelled as
a flow shop. The operations in this problem have ordering
constraints that enforce precedence and also maximum sep-
aration constraints that limit the delay between some of the
operations. We also face setup time considerations. There are
maintenance tasks which depend on the schedule: different
sequences of operations have different deterioration effects on
the machines. Additionally, the contribution of an operation to
the total deterioration effect in a sequence is dependent on the
timing of operations. Thus, our maintenance planning problem
is both sequence- and time-dependent. The key question is
how to handle both operational and maintenance tasks.

This is a challenging question because deteriorated ma-
chines produce low-quality jobs; there are thresholds beyond
which deterioration of machines must be fixed by carrying
out a maintenance activity. The overall objective is to find a
feasible schedule that minimises the makespan.

Integrated production and maintenance planning is a chal-
lenge in many industries such as in wind farms [1], [2], in

the capital goods industry [3] and the pulp and paper industry
[4]. In many cases, machine deterioration is dependent on
use, i.e., the maintenance required depends on how production
operations have been scheduled. Sometimes, this dependence
can be ignored and solutions can focus on preventive or policy
based maintenance [5]–[7]. Recent work in this direction has
used reinforcement learning to come up with these policies
[8]. In other cases, the maintenance and production planning
problem can be so integrated that the effect of use patterns on
maintenance cannot be ignored. Previous work along these
lines has considered different ways in which maintenance
planning is integrated with production planning such as time-
dependent maintenance [9] and position-dependent mainte-
nance [10], [11]. The literature also considers different models
of maintenance activities with one of the most popular models
being that maintenance activities affect the processing time of
operations [12] . While similar problems have been tackled
in the literature, our work deals with a unique combination
of maximum separation constraints and a deterioration effect
not on the processing times of jobs but on the quality of work
produced.

We present three solutions to this problem namely, (i) a
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mixed integer programming solution, (ii) a constraint pro-
gramming solution, and (iii) a list-scheduling based heuristic
solution that extends the capabilities of existing schedulers
to handle the kind of maintenance activities presented in this
problem.
Through empirical evaluations, we show that in compari-

son to the reactive approach of scheduling only production
operations and then performing maintenance activities when
deterioration thresholds are crossed during a production run,
our proactive approach achieves significant improvements in
the makespan.
Parts of this paper were presented in a non-archival work-

shop [13]. In the workshop paper [13], we introduced the list-
scheduling based heuristic (Section VI). The current paper
presents the work in archival form, introduces two other
solution methods, and also expands the scope of the evaluation
to include more list-schedulers from the literature.
This paper is organised as follows: Section II discusses

related work, Section III provides the background and problem
definition, Sections IV, V and VI present mixed integer
programming, constraint programming and heuristic solutions
respectively. We perform empirical evaluations in Section VII
and Section VIII concludes the paper.

II. RELATED WORK
The literature has investigated the dynamic relationship be-
tween machine deterioration and production scheduling from
multiple angles ranging from ways to accurately determine
the deterioration of a machine [14], [15] to actually generating
schedules. We group the research themes in this field based on
two categories, namely; (i) the way deterioration is modelled
and (ii) the way maintenance activities are modelled.
Based on the deterioration model, existing research can

be split into three main categories or approaches [16]. The
time-dependent approach relates deterioration to the time at
which a job is scheduled, i.e., scheduling a job later in the
schedule incurs some additional deterioration which typically
leads to longer processing times compared to scheduling it
earlier. Closely related to this is a position-dependent approach,
where deterioration effect of an operation is dependent on the
number of preceding completed operations. Finally, there is
the sequence-dependent approach in which the deterioration
depends on the ordering or sequence of the preceding opera-
tions on the machine. As a result of the industrial challenge
addressed in this paper, we focus on the sequence-dependent
case with an additional challenge that the deterioration effect
of an operation on a machine is not known a priori and is itself
time-dependent.

The survey of Gawiejnowicz et al. [9] into the state of time-
dependent scheduling problems has shown that the problem
has been studied for single machine, parallel machine and
dedicated machine use cases with a wide range of solution
methods. However, situations where time-dependence of
maintenance activities is coupled with sequence-dependence
are unaddressed.
Yang et al. [17] consider the position-dependent main-

tenance scheduling problem on a set of parallel machines
assuming that machines can only be maintained once within
the planning horizon and with a constant maintenance duration.
[10], [18] and [11] all consider position-dependent mainte-
nance on a single machine with varying considerations such
as the impact of time-dependent improvements in machine
conditions, constraining job processing times to lie within an
interval, and a combination of time and position-dependent
deterioration respectively. [12] and [19] also consider the posi-
tion dependent case but both add due-window considerations
for just-in-time scheduling considerations.

The sequence-dependent approach is a more recent addition
to the literature and can be considered as a generalisation of
the time- and position-dependent approaches. Notably, [20]
and [21] study sequence-dependent deterioration on a set of
parallel machines without and with maintenance activities
respectively. [22] considers iterated greedy heuristics for
a similar problem and [23] considers the case where the
parallel machines are not identical and processing time is
based on a combination of deterioration and the speed of the
assigned machine. Recently, [16] explored multiple integer
programming models for solving the sequence-dependent
maintenance problem on parallel machines and provided a
heuristic approach for larger instances. The combination of
sequence-dependent maintenance with other approaches and
its effect in more complex manufacturing systems has not yet
been studied.

Based on the model of maintenance activities, there are also
different approaches in the literature. Some works such as
[20] do not consider the presence of maintenance activities
at all and aim to schedule in a way that deterioration is
minimised. Other works such as [16] consider maintenance
activities that reset the status of a machine to full health or
0% deterioration while a third category [12] considers rate-
modifying maintenance activities that restore machine health
by modifying the rate such that machines are able to perform
work faster after maintenance. The authors of [24] and [25],
classify maintenance activities into those that completely
reset the state of the machines and those that restore the
machines to some better deterioration state only. Additionally,
the maintenance activities can be of fixed duration or can also
have varying types based on how deteriorated a machine is.
A core assumption in many scenarios is that deterioration

makes machines slower, thus increasing processing times of
operations. Our work differs fundamentally in this regard
in that using deteriorated machines does not have an effect
on processing times, but instead affects the quality of the
jobs produced. Our problem defines deterioration thresholds
beyond which maintenance activities must be carried out to
meet the quality requirements of future jobs. We also consider
the case of maintenance activities that reset the state of the
machine but also consider that there exist different classes
of maintenance activities each with their own deterioration
thresholds and incurring different costs.
An additional complication in our problem is the presence

of maximum separation constraints, which impose additional
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feasibility requirements on the problem. Exact solutions are
able to easily model these additional requirements but heuris-
tics run the risk of generating infeasible solutions in some
cases. We therefore consider it necessary to design a solution
for schedules that become infeasible due to the incorporation
of maintenance activities. This concept of re-organising or
repairing a changed schedule has been studied with various
heuristics such as left and right shift [26], [27]. [28] combines
multiple of these heuristics and a genetic schedule repair
algorithm to build a solution that caters to multiple classes of
schedule disturbances in a prefabrication plant.
In the context of flow shops, an example of schedule

repair algorithms can be found in [29] which considers re-
scheduling in a two-machine flow shop where schedules
are disrupted by machine breakdowns. Additionally, [30]
considers re-scheduling due to inserting new jobs in already
planned schedules and [31] considers re-scheduling due to a
wider range of disruptions in flow shop schedules at runtime.
These cases all consider unexpected interruptions and do not
have the combination of precedence and maximum separation
constraints which provide an additional challenge for our
problem.
In summary, there is a gap in the literature for sequence-

dependent maintenance scheduling where deterioration effects
of operations are not known a priori but are themselves time-
dependent. The particular industrial challenge we consider has
additional requirements of maximum separation that add to the
complexity of the problem. Further, the schedule repair that is
needed for heuristic schedulers that may produce infeasible
schedules when we introduce maintenance activities, also
requires new techniques.

III. PROBLEM DEFINITION
We consider a maintenance-aware re-entrant flow shop with
setup times and relative due dates inspired by an industrial use
case of a large-scale printer (LSP). The LSP prints different
types of duplex sheets that need to be processed twice by the
same print head at a speed of 100 or more pages per minute. In
this setting, jobs to be scheduled refer to sheets to be printed.
In three-field or Graham notation [32], the base problem

withoutmaintenance is defined asF |si, sij, limited−wait|Cmax

indicating that it is a flow shop with both sequence-dependent
and independent setup times, with maximum separation con-
straints between operations of the same job also known as
limited-wait constraints, and with an objective to minimise
makespan Cmax . There is no preemption allowed and all jobs
are released at time 0.
We represent the n-job m-machine maintenance-aware

problem as the tuple (M , J ,O,P, S,D, δ,X ,OM ) where M =
{µ1, . . . , µm} is the set of machines and J = ⟨J1, . . . , Jn⟩
is the sequence of jobs. The set O represents the set of
operations for every job ji ∈ J where each operation oij
has a processing time Pij. Each job has the same number
of r operations as is in a standard flow shop. Moreover,
S : O × O → R≥0 refers to setup times, which represent
the required delay between the completion of an operation

FIGURE 1: Sample re-entrant flow shop where the operations
are represented by circles. Column-wise, we have operations of
the same job and row-wise, we have operations on the same
machine with one of these being the re-entrant machine that
appears on rows 2 and 3. Operations with the same colour or
boundary lines are mapped to the same machine. Setup times and
maximum separation constraints are shown by solid and dashed
edges respectively.

and the start of another operation. Setup times can exist
between operations of the same job to model travelling time
of a job for instance, or between operations on the same
machine to model any machine preparation step that is needed
between operations. Operations of the same job also have
maximum separation constraints between them represented
as D : O× O→ R>0, i.e., the maximum delay between the
start times of two consecutive operations of the same job. Such
constraints model the fact that operations of a job can often not
be delayed indefinitely due to physical constraints in the plant
like the buffer size. In a situation where such constraints do
not apply, separation constraints can simply be set to infinity
and setup times to zero.

The solution to the problem is a schedule Ω, i.e., a sequence
of both maintenance activities and production operations
where each production operation is assigned a start time such
that ωij represents the start time of operation oij.
In addition to being a flow shop with the above properties,

we have a situation with re-entrancy such that the sequence
of machines for each job is ⟨µ1, . . . , µk , µk , . . . , µm⟩, i.e.,
there is one re-entrant machine that all jobs go through twice.
Operations on the re-entrant machines are referred to as first
and second pass operations. Re-entrancy occurs in many
production processes, e.g. semi-conductor production, where
wafers revisit machines at different stages of the production
process and in painting processes where a job may revisit a
machine for multiple coats of paint. Simple re-entrant setups
have been shown to be NP-hard [33], [34]. Our motivating use
case of production printing has a twice re-entrant setup arising
from duplex printing.

We further have the constraints that (i) jobs are not allowed
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to overtake each other, (ii) the required completion order of
jobs is the same as the index of the jobs, and (iii) all setup
times and due date constraints are hard constraints that must be
obeyed. This situation means that the only scheduling freedom
is in the sequence of operations on the re-entrant machine, i.e.,
first and second passes of the same jobs do not necessarily
have to follow each other on this machine. This means we can
also think of this as a single machine scheduling problem with
precedence and maximum separation constraints.

In the same vein as only needing to schedule the re-entrant
machine, we limit ourmaintenance planning tomaintaining the
re-entrant machine. While other machines also require mainte-
nance, only the re-entrant machine requires maintenance in the
same time scale as the operations being carried out, creating
a very tightly coupled problem compared to maintenance
of other machines. Additionally, the re-entrant machine is
often a key machine of concern for cost reasons – re-entrant
machines are too expensive to simply duplicate and remove the
re-entrancy – or for quality reasons – some products need to
be handled in a delicate state (chemical products for example)
and moving the product from one machine to the other would
change its state.

a: Deterioration model.
In our motivating industrial problem, there is a deterioration
model δ : Ω → R≥0, that maps a scheduled sequence of
operations on a machine to a deterioration state, i.e., given a
sequence of operations on a machine with their corresponding
start times, i.e., a schedule, δ : Ω× → R≥0 informs us of
the machine state at the end of the sequence. Here, δ is both
sequence- and time-dependent in the sense that deterioration
is measured by idle time of a machine part, i.e., the longer
a machine part has been left idle, the more deteriorated it is.
These idle times follow directly not only from the sequence
themselves, but also from the assigned start times of operations
in these sequences. We do not explicitly model machine parts
and instead depend on the fact that different types of jobs use
different machine parts and so it can be inferred whichmachine
parts have been idle based on how long it has been since a
certain job type has been scheduled. We assume that there
is a set of job types T = {τ1, . . . , τn} that can be presented
to the machine and that there is a lexicographic ordering of
job types such that every set of machine parts used by a job
type τx is contained in the set of machine parts used by a
job type τy>x . It then follows that at the start of an operation
of type τx , idle time is reset to 0 for all operations of type
τy≤x . Note that while there could be other kinds of problems
where different jobs use completely different machine parts
and such a lexicographic ordering of types is not possible, it is
still a realistic assumption for many scenarios, e.g., scenarios
where jobs come in different sizes and bigger sizes simply use
more machine parts for production or scenarios where jobs
can be customised with different add-on properties processed
by additional machine parts.
Finally, we also take as input a maintenance policy X . In

our problem, the policy has a set of maintenance activity

classes C . For every class c ∈ C , there is a correspond-
ing maintenance duration Pc similar to processing times
of production operations. The maintenance policy further
maps intervals of deterioration values [θc,Θc) to classes of
maintenance activities such that whenever the deterioration
falls in [θc,Θc), a maintenance activity of at least class c is
required before further production. Thus, [θc,Θc) defines the
interval of deterioration thresholds for a maintenance activity.
We assume that these intervals are non-overlapping and that
maintenance activities triggered by higher thresholds, i.e.,
harsher deterioration, are more intense and require longer
durations. The deterioration thresholds serve to capture the
limits at which the quality of a job would be too low if
production carries on without a maintenance activity. In this
context, a low-quality job refers to a poor print typically with
colours bleeding into each other, blurry prints or unintended
lines running across a page.
An example problem is shown in Figure 1. The problem

is represented as a constraint graph where the due dates and
setup times are treated as a system of difference constraints.
Operations are represented as circles and each column of
operations belong to one job, while each row of operations
are mapped to the same machine. Solid arrows represent the
minimum separation between operations and are made of
the sum of processing and setup times while dashed arrows
represent the maximum separation between operations and can
be thought of as relative due dates. Minimum separation edges
are represented with positive values and maximum separation
edges are represented with negative values as they connote at
least and at most constraints on the difference between the
start times of the operations they connect.

IV. INTEGER PROGRAMMING APPROACH
Mixed Integer Programming (MIP) is one of the most pop-
ular exact solving paradigms and has been applied to other
maintenance planning problems in the literature [16], [35]
with some success. Due to the existence of a wide variety of
commercial solvers, mixed integer formulations of a problem
are valuable as solutions can be provided by these solvers.
Furthermore, MIP models can give additional insight to the
structure of a problem. Thus, we also consider such a solution
for our problem.

In this section we present an exact MIP model for this prob-
lem. The model uses the concept of event based formulation as
introduced by [16] and extends this concept to accommodate
the kind of maintenance policies in this problem. The key
idea here is the notion of blocks where a block is defined
as a sequence of operations uninterrupted by a maintenance
activity, i.e., a block is a sequence of operations separated from
other operations in the sequence by at least one maintenance
activity. For our model, we extend this idea to also include
the effect of job types. A block is then defined as a sequence
of operations uninterrupted by either a maintenance activity
or an operation with a higher type than any other operation
within the block.

We define binary variables to mark whether an operation
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starts a block or not. These variables are further indexed by
job type and maintenance activity class, i.e., an operation can
be the start of a block delineated by a class of maintenance
activities and/or the start of a block delineated by a job type.
Blocks of different types are allowed to overlap with additional
constraints added to ensure that maintenance is not triggered
more than necessary.
The model retains all variables defined in the problem

definition in Section III. Indices of variables corresponding
to operations are either of the form xij when both the job
and operation identifier are important or of the form xa when
it is only necessary to differentiate one operation from the
other. For ease of modelling, we also define binary variables
Γam, ∀oa ∈ O, µm ∈ M to represent machine assignment.
Then, Γam is set to 1 if operation oa is assigned to machine
µm. Γam is not a decision variable and is part of the problem
description.
Additionally, since we only plan maintenance on the re-

entrant machinesµk , many constraints only apply to operations
on this machine and are denoted as R such that R = {oa ∈
O|Γak > 0}. Furthermore, a dummy operation odummy of
processing time 0 is defined and constrained to be the first
operation on eachmachine.We also extend the use of a job type
τ to serve as a function that returns the type of an operation
when written as τ(o).

The following additional variables are developed for the
MIP model: ωij refers to the start time of operation oij ∈ O,
Bab is a binary variable relating to the precedence constraints
between operations oa and ob. Note that Bab refers only to
direct precedence and not the general notion of oa being
scheduled sometime before ob. We discretise job types such
that τa refers to the type of oa and assume that there is a
lexicographic ordering of job types such that processing a job
type with a higher value is sufficient to reset the machine for
lower job types according to the maintenance policy described
in Section III.

Block starts are marked by binary variables Z ca and ζ
τ
a where

Z ca determines if operation oa starts a block of operations
delineated by a maintenance activity of class c and ζτa de-
termines if operation oa starts a block of operations delineated
by a job type τ . Idle time values are held by the variables
K c
a and L

τ
a , which correspond to the minimum time elapsed

since a maintenance activity of class c preceding oa and the
minimum time elapsed since an operation of type τ preceding
oa respectively. Furthermore, deterioration values at the start of
an operation oa are held by the variable δa and are determined
by the deterioration values K and L.

Some of the constraints are linearised using big-M variables
namely, Mτ and Mω. We define some bounds for these
variables in Section IV-B below.

A. THE INTEGER PROGRAMMING MODEL
In this section, we define the integer programmingmodel made
up of an objective function, decision variables and constraints.

Objective
min(Cmax) (1)

Decision variables

Bab Operation oa directly precedes ob Bab ∈ {0, 1}
ωa Start time of operation oa θa ∈ R
Lτa Minimum time elapsed since operation of a

type τ preceding oa
La ∈ R

Ka Minimum time elapsed since any mainte-
nance activity preceding oa

Ka ∈ R

δa Deterioration of machine at start of oa δa ∈ R
Z ca oa starts a block delineated by a maintenance

activity of class c
Z ca ∈ {0, 1}

ζτa oa starts a block delineated by a job of type τ Z ca ∈ {0, 1}

Constraints

ω(i+1)j ≥ ωij ∀oij ∈ O (2a)
ωi(j+1) ≥ ωij + Pij + S(oij, oi(j+1)) ∀oij ∈ O (2b)

ωi(j+1) ≤ ωij + D(oij, oi(j+1)) ∀oij ∈ O (2c)∑
oa∈O

Bad = 0 (2d)∑
oa∈O∪{odummy}

Bab = 1 ∀ob ∈ O (2e)

∑
ob∈O

Bab ≤ 1 ∀oa ∈ O (2f)

Bab ≤
∑
µm∈µ

ΓamΓbm ∀oa, ob ∈ O (2g)

ωb ≥ Bab(ωa + Pa + S(oa, ob)) ∀oa, ob ∈ O (2h)
ωb ≥ Bab(ωa + Pa + Z c

b (Pc)) ∀oa, ob ∈ O

c ∈ C
(2i)

Lτ
b ≥ Bab(ωb − ωa − Pa) ∀oa, ob ∈ R,

τ ∈ T
(2j)

Lτ
b ≥ Bab(L

τ
a + ωb − ωa)−Mωζτb ∀oa, ob ∈ R,

τ ∈ T
(2k)

Ka ≥ 0 ∀oa ∈ R (2l)

Kb ≥ Bab(Ka + ωb − ωa)−Mω
∑
c

Z c
b ∀oa, ob ∈ R (2m)

δa ≥ min(Ka, L
τ(oa)
a ) ∀oa ∈ R (2n)

Mω(1− Z c
a ) + (δa − θc) ≥ 0 ∀oa ∈ R,

c ∈ C
(2o)

MωZ c
a − (δa − θc) > 0 ∀oa ∈ R,

c ∈ C
(2p)

Mτζτb − Bab(τ(oa)− τ) ≥ 0 ∀oa, ob ∈ R,

τ ∈ T
(2q)

Mτ (1− ζτb ) + Bab(τ(oa)− τ) ≥ 0 ∀oa, ob ∈ R,

τ ∈ T
(2r)

Cmax = ω|J|r + P|J|r (2s)

The objective of the model is to minimise makespan denoted
by Equation (1). The constraints in Equations (2b) to (2h) apply
to all operations while the constraints in Equations (2j) to (2r)
only apply to operations scheduled on the re-entrant machine.
All non-binary variables are constrained to be non-negative,
i.e., start times, idle times and deterioration values all have a
lower bound of 0.

Equation (2a) enforces the fixed-order relationship between
operations at the same level of the flow shop. Equations (2b)
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and (2c) enforce setup times and maximum separation con-
straints between operations of the same job respectively, while
Equation (2d) enforces that the dummy operation has no
predecessors. Equation (2e) ensures that every operation has
exactly one predecessor and Equation (2f) enforces that every
operation has at most one successor. Equation (2g) enforces
that operations only follow each other if they are mapped to
the same machine and Equation (2h) enforces that there is
no overlap between operations leaving room for setup times.
These make up the constraints that specify the problemwithout
maintenance.
The maintenance constraints follow below. Equation (2i)

enforces that there is no overlap between operations while
leaving enough room for any maintenance activities that
may have been triggered. Equations (2j) and (2k) specify
constraints on the minimum time elapsed since an operation
of a certain type has come through the machine. Similarly,
Equations (2l) and (2m) specify the minimum time elapsed
since a maintenance activity of a certain class has been
scheduled. The constraints represented by Equations (2j)
to (2m) are defined in a cumulative way based on predecessor
operations. Equations (2k) and (2m) are activated depending
on the presence of a job type or a maintenance activity
respectively. This toggle is implemented by big-M values that
are activated based on the binary variables Z and ζ.

The actual deterioration value is computed by Equation (2n)
which is set to the minimum of both K and L. Equation (2n)
computes deterioration based on the idle time so far and is
set to the minimum of K and L so that maintenance is only
triggered when necessary. Equations (2o) and (2p) specify that
maintenance activities are triggered whenever deterioration
thresholds are crossed thereby starting a new block while
Equations (2q) and (2r) similarly start a new block based on
the relationship between types of operations, i..e, a new block
is triggered whenever an operations predecessor has a higher
type. Note that this model allows multiple maintenance classes
to be triggered simultaneously if the threshold violations cross
multiple thresholds. However, Equation (2h) means that the
gap left for maintenance corresponds to the largest processing
time of all triggered maintenance activities, thus not paying
unnecessary maintenance costs.
Finally, Equation (2s) calculates the makespan which in a

fixed order problem, is the finishing time of the last operation
of the last job.

B. BOUNDS FOR BIG-M VALUES
1) Mω

Throughout the model,Mω is used as a big-M constraint in
two instances. The first is in Equations (2k) and (2m) to sum
up the minimum times since the last maintenance or the last
occurrence of a type of job and in Equations (2o) and (2p) to
toggle maintenance if deterioration thresholds are crossed. In
each of these cases, the upper bound is the maximum possible
deterioration value that can occur. Because our deterioration
deals with idle times, we are then looking for a value that is
larger than or equal to the maximum time the machine can be

left idle.
An idea for this bound is to use an upper bound on the

makespan as there always exists a solution with a better
makespan than one in which the machine is left idle for the
upper bound on the makespan.

This upper bound assumes the worst case which is that every
operations incurs the maximum possible setup time and the
maintenance activity with the longest duration occurs before
every operation. Thus, the bound is

Mω =
∑
oa∈O

(
Pa +max

c∈C
(Pc) + max

ob∈O
(S(oa, ob))

)
. (3)

2) Mτ

The tightest bound forMτ is the largest job type available in
the problem. This holds because:

– Mτ is an upper bound on the types of jobs,
– we assume that job types are all given integer values

corresponding to their quality requirements ,
– we assume there is a lexicographical ordering of these

types that corresponds with the order of the integers
representing each job type.

C. LINEARISING THE MODEL
Some equations are still quadratic namely Equations (2h), (2i),
(2k) and (2m). They however all involve the product of a binary
variable and a non-negative continuous variable and can also
be linearised via the big-M method. The correspondingM is
alsoMω. A detailed explanation of how this linearisation is
achieved can be found in [36].
Additionally, Equation (2n) requires us to compute the

minimum which is also a non-linear equation. We define one
more auxiliary binary variable γa that is set to 1 if Ka is less
than Lτ(oa)

a and linearise the minimum constraint by replacing
it with the following set of equations:

δa ≤ Ka ∀oa ∈ R, (4a)

δa ≤ Lτ(oa)
a ∀oa ∈ R, (4b)

δa ≥ Ka −Mω(1− γa) ∀oa ∈ R, (4c)

δa ≥ Lτ(oa)
a −Mω(γa) ∀oa ∈ R, (4d)

Ka − Lτ(oa)
a ≤ Mω(1− γa) ∀oa ∈ R, (4e)

Lτ(oa)
a − Ka ≤ Mω(γa) ∀oa ∈ R. (4f)

Equations (4a) and (4b) set the deterioration value δa to be
upper bounded by the minimum of Ka and L

τ(oa)
a . However,

this is not enough as δa is still free to take any values less than
this and can lead to violations of maintenance constraints. We
further use Equations (4c) and (4d) which set δa to be lower
bounded by the minimum of Ka and L

τ(oa)
a . This lower bound

is also achieved via big-M constraints which activate either
equation based on γa. The combination of the lower and upper
bounds ensure that δa is exactly set to the minimum of the two
values Ka and L

τ(oa)
a . Finally, Equations (4e) and (4f) set γa to

0 if Ka is less than L
τ(oa)
a and 1 otherwise.
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V. CONSTRAINT PROGRAMMING APPROACH

Constraint programming (CP) has recently been shown to
perform well for scheduling problems [37]. This motivates
us to also explore a constraint programming solution. In this
section, we present a CP model.

Our CP model uses the idea of interval variables and
sequence variables. These are known constraint programming
concepts [37] with the following definitions. Interval variables
refer to operations to be scheduled and are declared with a
length equal to the processing time of the operation. The goal
of the solver is to assign a start time to each of these variables.
An additional characteristic of interval variables are that they
have the option to either be compulsory, i.e., they must exist in
any schedule produced by the solver, or be optional. Sequence
variables on the other hand, represent orderings of interval
variables. The solver receives these as a set of interval variables
with its goal being to decide on a sequencing of these interval
variables.

Apart from constraints and variables, constraint program-
ming also provides some auxiliary functions such as startOf
and typeOf which help us access variable properties – in this
case, their assigned start times and types respectively.

We define two classes of interval variables, (i) operations
which are always present and each retain the representation
of oa and (ii) maintenance activities which are optional and
referred to as mc

a where m
c
a is a maintenance activity of class c

that precedes an operation oa. The variables K , L and R retain
their definitions from the MIP model in Section IV.

Given that we have |A| maintenance classes and |R| op-
erations in total on the re-entrant machine, we define |A||R|
maintenance activities since the worst case is that there is one
maintenance activity of a class before every regular operation.
We add constraints such that the maintenance activities are
included in the sequence only when deterioration thresholds
are violated.

Sequence variables are defined per machine and referenced
as Sequencem for corresponding machine µm where Sequencem
contains all operations mapped to µm including the optional
maintenance activities. For the re-entrant machine, we define
an additional sequence variable SequencePlainm as a sequence
of only production operations – excluding maintenance activi-
ties – and constrain this sequence to follow the same ordering
as Sequencem. The purpose of this duplicate sequence is to
ensure that sequence-dependent setup times are respected.
The details of how we achieve this follow in the constraint
definitions below.

Objective

min(Cmax) (5)

Decision variables

Sequencem Sequence of production and maintenance
operations on machine µm

SequencePlainm Sequence of production operations on
machine µm

Lτa Minimum time elapsed since operation
of a type τ preceding oa

La ∈ R

Ka Minimum time elapsed since any main-
tenance activity preceding oa

Ka ∈ R

Constraints

C1 :before(Sequence1, oi1, o(i+1)1)∀oi1 ∈ O (C1)
C2 :sameSubsequence(Sequence1, Sequencem)

∀µm ∈ µ
(C2)

C3 :sameSubsequence(Sequencem, SequencePlainm)
for re-entrant machine µk

(C3)

C4 :startOf(oi(j+1)) ≥ startOf(oij) + Pij + S(oij, oi(j+1))

∀oij ∈ O
(C4)

C5 :startOf(oi(j+1)) ≤ startOf(oij) + D(oij, oi(j+1))

∀oij ∈ O
(C5)

C6 :noOverlapDirect(Sequencem,P, S)
∀µm ∈ µ

(C6)

C7 :noOverlapDirect(SequencePlaink ,P, S)
for re-entrant machine µk

(C7)

C8 :if(min(Ka, L
τ(oa)
a ) ≥ θc ∧ min(Ka, L

τ(oa)
a ) < Θc) ⇒

presenceOf(mc
a) = 1

∀oa ∈ R, c ∈ C

(C8)

C9 :if(presenceOf(mc
a) = 1) ⇒ Ka = 0

∀oa ∈ R, c ∈ C
(C9)

C10 :if(presenceOf(mc
a) = 0) ⇒

Ka = KindexOfPrev(Oa) + startOf(Oa)− startOfPrev(Oa)

∀oa ∈ R, c ∈ C
(C10)

C11 :if(typeOfPrev(oa) ≥ typeOf(oa)) ⇒
Lτ
a = startOf(oa)− endOfPrev(Oa)

∀oa ∈ R, τ ∈ T
(C11)

C12 :if(typeOfPrev(oa) < typeOf(oa)) ⇒
Lτ
a = Lτ

indexOfPrev(oa) + startOf(oa)− startOfPrev(oa)
∀oa ∈ R, τ ∈ T

(C12)
C13 :Cmax = endOf(o|j|r) (C13)

In this model, Constraint C1 enforces an ordering between
the first operations of each job. The before constraint enforces
precedence relationships between two operations in a sequence.
We enforce the order of the first operations of each job which
we know will be on the first machine (as we have a flow
shop). Constraint C2 builds on C1 to then enforce that this
ordering is respected across all other sequences using the
sameSubsequence constraint. Note that we only enforce a
subsequence because the re-entrant machine has operations on
multiple levels of the flow shop. The sameSubsequence
is set up such that only operations at the same level are
constrained with the fixed ordering, which is in line with
the requirements of our problem. Constraint C3 uses the
sameSubsequence in a similar way to constrain the duplicate
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sequences – with and without maintenance activities included
– to have the same ordering.

Next, Constraints C4 and C5 enforce the sequence-
independent setup times and maximum separation constraints
respectively. Both of these apply to operations of the same job
as is seen with the index of operations in the constraints.

Sequence-dependent setup time and no overlap constraints
are handled by Constraints C6 and C7, which ensure that both
the separations required by processing times and sequence-
dependent setup times are obeyed. Since maintenance activi-
ties are also included in our sequences, we ensure correctness
of Constraints C6 by extending the processing and setup times
accordingly with setup times set to 0 for operations before or
after maintenance activities. The noOverlapDirect constraint
works such that the separation denoted by sequence-dependent
setup times applies only between direct successors, i.e., say
an operation oa is followed by ob with a maintenance activity
mc
b in-between, the setup time between oa and ob will not

be enforced. Thus, setting the maintenance setup time to
0 can lead to constraint violations as the problem is now
under constrained. It is worthy of note that there exists a
noOverlapIndirect constraint, which applies sequence de-
pendent setup time constraints to all successors; however, this
over-constrains the problem1. We use the noOverlapDirect
constraint and circumvent under-constraining the problem by
using the supporting Constraint C7 on a duplicate sequence
without maintenance.

Constraint C8 enforces the presence of a maintenance
activity whenever the minimum deterioration is within the
limits of threshold violations. We do not explicitly calculate
a deterioration variable δ in this model but this is essentially
the left hand side of Constraint C8. We depend on the fact that
our problem defines non-overlapping maintenance threshold
intervals to ensure that at most one maintenance activity is
triggered before an operation.
Constraints C9 and C10 deal with the computation of

the minimum time elapsed since a maintenance activity has
occurred. Since we are guaranteed to trigger at most one main-
tenance activity per operation, we do not maintain different
minimum elapsed times per maintenance class as was done in
the MIP model. Similarly, Constraints C11 and C12 compute
the minimum time elapsed since a job of a certain type has
been through the machine.

Finally, C13 calculates the makespan, which we again know
to be the finishing time of the last operation of the last job.
Worthy of note is that Constraints C10 and C12 are cu-

mulative constraints that could be expressed using the cu-
mulFunction constraint, which keeps track of each interval
variables contribution to a function [37]. However, many
implementations of this function within available solvers
require that the contribution of each interval variable be known
a priori whereas, in our case, the contribution of each interval

1Given a sequence of operations oa → ob → oc, sequence-dependent setup
times will be considered from oa → ob , ob → oc and oa → oc whereas
the only sequence-dependent setup times that should be considered are from
oa → ob and ob → oc.

variable is itself based on decision variables [37] due to
maintenance also being time-dependent2.

VI. HEURISTIC SOLUTION APPROACH
While exact approaches such as those presented in Sections IV
and V have lots of advantages, they often do not scale well. In
this section, we present an alternate heuristic solution approach
to handle larger problem instances. The work presented in this
section has appeared earlier in a workshop paper [13].

Our heuristic approach is based on extending list schedulers
to integrate maintenance activities in the schedule. Heuristic
list schedulers have been developed for the industrial problem
we consider [38]–[40] and are also suitable for online schedul-
ing. Thus, we look into extending them to handle integrated
production and maintenance scheduling. The typical flow of a
list scheduler is to order operations according to some metric
and insert them in a schedule one after the other until all
operations are scheduled [40].

A. MAINTENANCE-AWARE LIST SCHEDULING
To make a list scheduling approach maintenance-aware, we
propose to evaluate the effect of any operation placement on
maintenance triggering before making a decision. This leads to
a schedule with the necessary maintenance activities triggered
by the operation sequence already included. This is shown in
Algorithm 1. In Line 1, the scheduler takes as input the flow
shop to be scheduled, the chosen ordering of the operations
order , and the ranking of decisions rank . Lines 2–6 initialise
the variables used in the algorithm, i.e., an empty schedule Ω
that is filled with operations by the algorithm, empty sets
of schedules Ω′ and Ω′′ used to keep track of scheduling
options, and an operation op to track the last operation that
was inserted in the schedule. Specifically, op is initialised to
a dummy operation for the first run where no insertions have
occurred yet. In Line 7, the scheduler loops through each
operation oc in the chosen order and Line 8 finds positions
to place the operation in the schedule being built with each
possible option resulting in a different schedule stored in the
set Ω′. For every one of these schedules, we trigger predicted
maintenance in Line 10, which updates the schedules with
predicted maintenance activities included. We keep track of
the last regular operation placed in the schedule op to reduce the
amount of work it takes to trigger maintenance as the schedule
is already evaluated up to that operation op. Eventually, we pick
the best option in Line 12 where the ‘best’ is as determined
by the supplied ranking rank .
The steps shown in Algorithm 1 are generic and can be

customised to any list scheduler of choice. However, evaluating
maintenance is performed according to the steps described
in Algorithm 2. For a given schedule, we first go through the
operations in the schedule from the last inserted operation op
to the current operation being inserted oc in Line 2. For each
operation, we evaluate the deterioration state in Line 3. If a
maintenance activity is triggered at any point in the schedule,

2Start times of operations are decision variables.
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Algorithm 1 Maintenance Aware List Scheduling (MALS)
1: functionMALS(flow shop f , operation ordering order ,

ranking rank) ▷ returns schedule Ω
2: Ω←<> ▷ empty schedule
3: Ω′ ← ∅ ▷ empty set of schedules
4: Ω′′ ← ∅ ▷ empty set of schedules
5: op ← dummy ▷ operation initialised to dummy

operation
6: for oc in order do
7: Ω′ ← generateOptions(oc, f ,Ω)
8: for ω ∈ Ω′ do
9: ω ← triggerMaintenance(oc, op, f , ω)
10: Ω′′ ← Ω′′ ∪ {ω}
11: Ω← selectHighestRanked(Ω′′, rank)
12: op ← oc
13: Ω′′ ← ∅

return Ω

Algorithm 2 Trigger Maintenance
1: function triggerMaintenance(current operation oc, previ-

ous operation op, flow shop f , schedule Ω) ▷ returns
schedule Ω

2: for oi ∈ ⟨op, ..., oc⟩ do
3: ∆← δ(⟨o1, ..., oi⟩, µk) ▷ predict deterioration

state
4: if X(∆)is defined then ▷ deterioration triggers

maint.
5: ac ← X(∆) ▷ insert maint. activity
6: Ω← insertMaintenanceOperation(ac,Ω)
7: Ω← updateStartTimes(f ,Ω)
8: feasible← checkFeasibility(f ,Ω)
9: if ¬ feasible then

10: Ω← repairSchedule(f ,Ω)
return Ω

the action is then inserted and the schedule is re-evaluated
in Lines 5–9. We approach this by creating an operation ac

to represent the maintenance activity and adjusting the edges
in the graph such that the constraints of the original problem
remain intact after the insertion of the new operation. This
is illustrated in Figure 2 where we show the edges added
after inserting a maintenance activity. Since we have hard
timing constraints between operations, inserting amaintenance
activity can lead to a previously feasible schedule becoming
infeasible. In such a case, a schedule repair action is triggered
to return the schedule to a feasible state in Line 11. Algorithm
2 assumes that a schedule is always repairable and below in
Section VI-B2, we show what the necessary conditions are for
this to be true.

B. SCHEDULE REPAIR
Flow shop schedules generally need to obey a certain ordering
of operations to be valid. However, re-entrant flow shops with
due dates have an additional validity criterion, which is the
due date between operations. In a case where operations that

FIGURE 2: Edge update after inserting a maintenance activity.
The original constraints between operations o22 and o32 are now
between operation o22 and the maintenance activity with new
edges added to connect the maintenance activity to operation o32
This ensures the original constraints of the problem are present
and the maintenance activity is scheduled before operation o32.

are not completely part of the set of input operations – such
as maintenance activities – have to be scheduled, due date
violations become even more likely. Since these operations
are only known when schedules are evaluated, we always have
the possibility that a schedule becomes infeasible as a result
of these insertions. Furthermore, it is still combinatorial to
decide on the repaired version of the schedule that minimises
the makespan after an event that causes infeasibility occurs.
We therefore need to develop a schedule repair strategy for
this problem.

1) Our Strategy
Schedule repair entails reorganising a schedule to obtain a state
where the schedule is valid again [41]. Since we start from
a valid schedule that is rendered infeasible by inserting new
operations, the infeasibility is due to a due date violation, i.e.,
an operation has been delayed too long after its preceding op-
eration. Therefore, the fix is to systematically bring operations
closer to their predecessors. However, it is not immediately
obvious which operations need to be brought forward and how
far this needs to go. As such we define a recursive strategy
where we take small steps forward and reevaluate the fix
until the schedule is feasible again. Additionally, moving
operations around can violate the maintenance policy so after
re-organisation, it is necessary to re-evaluate the schedule. This
solution falls under the class of proactive-reactive dynamic
scheduling [42].

As shown in Algorithm 3, every time we reorganise the op-
erations in the schedule, we first identify three key operations,
namely, the penultimate first pass operation from the point
where the schedule was broken, the last second pass operation
from the point where the schedule was broken, and finally
the last second pass operation that has been included in the
schedule. This is shown in Lines 4-6 where we identify these
key operations and their positions in the schedule. We then
move all scheduled second pass operations belonging to jobs
ranging from the last second pass to the ultimate first pass
in the schedule – this occurs in the remove and insert calls
on Lines 13–17. This way, the schedule has been reorganised
such that second pass operations from the point of failure are
at least a step closer to their first pass operations. We repeat
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Algorithm 3 Schedule Repair Strategy
1: function repairSchedule(flow shop f , position n, schedule

Ω) ▷ returns schedule Ω
2: feasible← false
3: end ← false
4: while !feasible ∧ !end do
5: (fp

′
, ofp,k)← penultimateFirstPass(n,Ω)

6: (ffp
′
, offp,k)← ultimateFirstPass(n,Ω)

7: (sp
′
, osp,k+1)← lastSecondPass(n,Ω)

8: if offp = o1,k then ▷ first operation on machine
9: end ← true
10: i← sp

′
+ 1

11: while i ≤ ffp
′
do

12: Ω← removeSecondPassOp(oi,k+1,Ω)
13: Ω← insertSecondPassOp(fp

′
, oi,k+1,Ω)

14: fp
′ ← fp

′
+ 1

15: i← i+ 1

16: n← fp
′

17: Ω← updateStartTimes(f ,Ω)
18: feasible← checkFeasibility(f ,Ω)

19: Ω← triggerMaintenance(osp, o1,k , f ,Ω)
20: return Ω

this process until the schedule becomes feasible3, moving the
point of failure a step backward each iteration – this is as seen
on Line 18 where the point of failure is updated ahead of the
next iteration. After the schedule is deemed feasible, a last step
is taken to trigger maintenance again in Line 20 as re-ordering
operations could have invalidated or triggered maintenance
activities. This re-ordering works because due dates exist only
between consecutive operations of the same job.
Figure 3 shows an example of the schedule repair process.

In Step 1, the schedule is infeasible after the insertion of
a maintenance activity highlighted in green. The ultimate
first pass is identified as o42, the penultimate first pass as
o32 and the last second pass as o13. The operations after the
maintenance activity are then brought forward as can be seen
in the new placement of o23 in Step 2. This continues in Steps
3 and 4 until the schedule is evaluated to be feasible.

It is valuable to point out that the overall algorithm proposed
is flexible enough to adopt other repair strategies depending
on the use case. An alternate example could be the strategy of
reducing the rate of production to prevent or delaymaintenance
activities. A host of possible rescheduling and repair strategies
are surveyed in [41].

2) Safe Maintenance Policies
A maintenance policy X maps a deterioration state of the
machine to an appropriate maintenance activity. The policy
in use determines when and where maintenance activities are
necessary. As discussed above, inserting amaintenance activity
in a schedule may make the schedule infeasible. We define

3It is always possible to find a feasible solution as long as the maintenance
policy in use is safe. This is as shown in Theorem 1 below.

FIGURE 3: Schedule repair strategy showing progressive steps in
the algorithm. In the first step, the schedule is infeasible because
of the maintenance activity (highlighted in green). From this point
on, the future steps re-organise the schedule until we achieve
a feasible schedule in Step 4. In Step 5, a last step is taken
to trigger maintenance again as re-ordering operations could
have invalidated existing or triggered new maintenance activities.
Operations encircled in dotted lines are the ultimate first pass
from the point of failure, the ones circled in a thin line are the
penultimate first pass, and the ones circled in a thick line are the
last higher pass operation.

FIGURE 4: Slack between operations o22 and o23

a safe maintenance policy as a policy that ensures that there
exists at least one maintenance-aware solution to the flow shop
provided there is a feasible schedule for the flow shop alone
without considering maintenance activities. Since a schedule
becoming infeasible after a maintenance insertion is a result
of a violated due date, there should be enough room between
consecutive first and second passes of the same job to fit a
particular maintenance activity unless the policy is such that
the maintenance activity cannot be triggered between first and
second passes of the same job. Concretely, this means that
the processing time of any maintenance activity ac that can
be triggered between passes of the same job oik and oi(k+1)

should fit in the available time between them, i.e.,

Pc ≤ D(oik , oi(k+1))− Pik − S(oik , oi(k+1)) ∀ oik , oi(k+1).
(7)

Theorem 1. Given an infeasible schedule, the schedule repair
strategy defined in Algorithm 3 is always able to return it to
a state of feasibility in at most |J | iterations, where |J | is the
number of jobs in the schedule, provided that a solution exists
for the problem and the maintenance policy in use is safe.

Proof: For an insertion of a maintenance activity ac

between operations oik and oi(k+1) to become infeasible due to
a due date violation, it means that oi(k+1) has been delayed too
long, i.e., ωi(k+1) − ωik > D(oik , oi(k+1)). To avert this, the
maintenance activity must be able to fit in the slack between
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both operations. Bearing in mind that other operations could
be placed between oik and oi(k+1), the slack Ψ(oik , oi(k+1))
left between oik and oi(k+1) is

Ψ(oik , oi(k+1)) = D(oik , oi(k+1))− Pik−
max((S(oik , oa) + Pa + ...+ S(oa, ob) + Pb),

S(oik , oi(k+1))),

(8)

where operations oa, ..., ob represent operations possibly
placed between oik and oi(k+1). Figure 4 shows an example
where the slack between operations o22 and o23 is

Ψ(o22, o23) = D(o22, o23)− P22−
max(S(o22, o13)− P13 − S(o13, o23), S(o22, o23)).

(9)

The repair algorithm progressively brings operations closer
to their direct predecessors by at least one step per iteration. In
the last possible iteration of the schedule repair, each operation
oi(k+1) follows its direct predecessor oik . It follows that this
occurs in at most |J | iterations of the schedule repair as the
re-entrant machine can only have |J | higher pass operations
to be re-ordered. At this point, Equation (8) becomes

Ψ(oik , oi(k+1)) = D(oik , oi(k+1))− Pik − S(oik , oi(k+1)).
(10)

For this to be infeasible, it means that ac cannot fit
in Ψ(oik , oi(k+1)), i.e., Pc > D(oik , oi(k+1)) − Pik −
S(oik , oi(k+1)), which violates the rules of a safe maintenance
policy shown in Equation (7). ■

VII. EXPERIMENTAL RESULTS
This section evaluates the empirical performance of the three
solution approaches we propose. We apply the heuristic
approach as an add-on to three existing list schedulers in the
literature to evaluate the applicability of this approach to list-
scheduling. We compare our heuristics against the two exact
approaches (integer and constraint programming) to evaluate
their accuracy and scalability.

A. EXPERIMENTAL SETUP
All experiments are performed on a 16-core 1.9GHz AMD
machine running Ubuntu 20.04 with 32GB RAM. Algorithms
are implemented in C++ and the MIP and CP models are
solved by CPLEX version 22.1 and CP Optimizer version
22.1, respectively. The exact approaches are all given a 30
minute timeout.
We generate benchmarks according to the types of jobs

typically presented in our industrial use case as described in
Table 1. We generate benchmarks with patterned arrivals of job
types such that jobs of a type appear in repeated blocks, e.g.,
a set of 50 jobs can be made of 20 type 1 jobs followed by 10
type 2 jobs and then 20 type 3 jobs. We randomise the length of
the blocks and number of times these blocks repeat to mimic
arrival patterns of jobs in practice. We generate 50 instances
for each job size in {5,10,50,100,150,200,300,500,1000}.
Our heuristic approach is implemented as an extension

to three schedulers from the literature – Bounded Heuris-
tic Constraint Scheduler (BHCS) [39], As Soon As Possi-
ble (ASAP) Scheduler, and Modified Nawaz-Enscore-Ham

(MNEH) Heuristic [43]. BHCS is a list scheduler developed
specifically for our use case, while the ASAP scheduler is
also a list scheduler that uses the same ordering requirements
as BHCS but places operations as soon as possible (ASAP).
MNEH is a modification of the popular NEH heuristic [44],
[45] that is suitable for re-entrancy. Maintenance-incorporated
versions of these schedulers are referred to as MIBHCS,
MIASAP, and MINEH respectively where the MI prefix refers
to ‘‘maintenance incorporated’’. In each of these experiments,
we tune the heuristic approach to include a maintenance
activity if a deterioration threshold is crossed or if 90%4

of the upper bound of a threshold that affects the quality
of an operation further down the line is crossed. Since we
insert maintenance between two operations, we always have
complete information about the next operation. We can also
reliably infer what operations are further down the line for
the entire planning window based on which operations have
already been scheduled.
In the basic schedulers – BHCS, ASAP, and MNEH –

maintenance is reactive and interrupts the schedule during
production runs. We simulate the behaviour of reactive main-
tenance in these schedulers by evaluating the completed
schedules they produce for maintenance and compare these
with versions of the scheduler that incorporate our proactive
maintenance heuristic.

B. PERFORMANCE EVALUATION
Figure 5 compares the makespan of the schedules produced
by MIBHCS, MIASAP, and MINEH to the makespan of
schedules produced by BHCS, ASAP, andMNEH respectively.
We also compare the exact solutions CP and MIP with the
best solutions provided by MIBHCS, MIASAP, and MINEH.
MNEH has the least performance improvement due to it not
being a pure list scheduler.WithMNEH, only relative positions
of operations are decided in each iteration and there is no
partial sequence that is guaranteed to remain the same from one
iteration to the next; as such the evaluation of the deterioration
of a machine loses somemeaning from one iteration to the next
since sequences change at each iteration. The exact approaches
– CP and MIP – should ideally always be better than all of the
heuristic approaches but they are sometimes worse because
they do not always solve till optimality within the time out.

Figure 6 shows the distribution of the time spent on mainte-
nance. We see that with maintenance-included versions, we
spend up to 70% less time on maintenance. This is because
considering deterioration allows us to perform maintenance
before machines deteriorate to a state where we have to pay
larger maintenance costs. The difference is also this significant
because there is up to one order of magnitude difference
between the durations of different maintenance activities for
this use case (see Table 1d). This difference translates to shorter
makespans for the schedulers.
In both Figures 5 and 6, there are instances where the

4This value can be tuned. We chose 90% after performing a parameter
sweep that showed this value performed best.
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Type P(oi1) P(oi2) P(oi3) P(oi4) D(oi1, oi2) D(oi2, oi3) D(oi3, oi4)

0 0.25 0.30 0.30 0.21 0.85 12.30 1.00
1 0.35 0.42 0.42 0.30 0.95 12.42 1.12
2 0.50 0.59 0.59 0.42 1.10 12.59 1.29
3 0.70 0.84 0.84 0.60 1.30 12.84 1.54
4 0.99 1.19 1.19 0.85 1.59 13.19 1.89

(a) Job processing times and due dates

Machine Setup Time

µ1 0.20
µ2 0.05
µ3 1.00

(b) Machine setup times

Path Travelling Time

µ1 to µ1 0.60
µ2 to µ2 10.00
µ2 to µ3 0.70

(c) Job travelling times

Activity Class Duration Deterioration States

1 0.5s 10 – 15
2 10s 15 – 30
3 20s 30 – ∞

(d) Maintenance policy

TABLE 1: Properties of jobs in use case. All timings are in seconds and job travelling times are treated as setup times between operations
of the same job.

FIGURE 5: Makespan improvement of maintenance-included versions over base versions
Instances where the solver timed out without providing any solution are marked with *.

Jobs Optimality gap (%) Time to find first solution (s) % of instances solved

CP MIP CP MIP CP MIP

5 0.60 0.00 0.82 2.44 100 100
10 1.10 4.60 2.38 419.80 100 26
50 166.01 - 84.95 - 100 0

TABLE 2: Performance of CP and MIP solutions

heuristic approach worsens the results particularly for smaller
job sets. The instances that are worsened by the heuristic are a
result of (i) scenarios where the heuristic maintenance trigger
is too conservative and performs maintenance even though
the job set could be completed without it, and (ii) scenarios
where the list scheduler picks a sequence that triggers shorter

maintenance activities.

Neither of the exact solutions are able to scale to provide
solutions for larger job sets within the 30 minute time out –
this accounts for the missing columns in Figures 5 and 6. In
Table 2 we show the performance of the CP and MIP solutions.
We see that the CP model is able to solve more instances than
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FIGURE 6: Duration of maintenance activities
Instances where the solver timed out without providing any solution are marked with *.

the MIP model but for the instances where the MIP model is
able to provide solutions, the optimality gap is smaller.

The runtime increases with the number of jobs as expected
and Table 3 shows the average runtime over the job size of the
different schedulers compared in this evaluation. The exact
approaches are given a 30 minute timeout and in bold are the
solutions with the worst run times for a job size. Instances
where no solution was provided by a method before time out
are left unfilled and are the worst for that job size. The heuristic
solutions are able to provide solutions in runtimes below
350ms for job sizes up to 500. Above that, the runtime grows
to 1800ms. The biggest time sink for the heuristic solutions
is how often the maintenance evaluation and consequently
schedule repair is triggered5. This is based on the operation of
the base scheduler itself. MNEH evaluates whole sequences
while ASAP and BHCS evaluate partial sequences at every
decision point thus triggering maintenance evaluations more
often, leading to higher runtimes.

In summary, we find that the heuristic approach is scalable
and can produce competitive results compared to exact solvers
even for small instance sizes. In general, we also find that
apart from improving the actual goal of reduced makespan,
integrated production and maintenance planning can also
reduce the total time spent on maintenance which can result
in reduced costs in some cases.

VIII. CONCLUSION
Efficient maintenance scheduling is important for sustained
productivity of industrial processes. This paper studied the

5Runtimes of ASAP, BHCS, and MNEH are similar.

Jobs CP MIASAP MIBHCS MINEH MIP

5 505.16 0.00 0.00 0.00 5.81
10 1083.43 0.01 0.01 0.00 1522.37
50 1611.23 0.67 0.56 0.07 -
100 - 2.72 1.94 0.32 -
150 - 7.06 4.84 1.12 -
200 - 14.19 8.65 2.23 -
300 - 42.10 23.11 5.94 -
500 - 164.71 84.80 30.19 -
1000 - 1756.40 854.44 303.66 -

TABLE 3: Average runtime of solution methods (s)

problem of sequence- and time-dependent maintenance and
presented three solution methods namely, mixed integer pro-
gramming, constraint programming and a heuristic solution.
As the problem is motivated by an industrial use case, we have
evaluated all the methods on jobs in this case. We show that
list scheduling heuristics can be extended to include proactive
maintenance with significant performance gains over reactive
approaches.

This paper considers maintenance activities that are on the
same time scale as the jobs themselves. An interesting future
direction is to include longer-termmaintenance planning in the
scope and to investigate the combined problem of production
and maintenance planning over multiple time scales.

Additionally, we solve the problem from a predictive mainte-
nance perspective, i.e., where maintenance actions are carried
out based on the health status of machines. However, this
requires knowledge of how machines deteriorate and this in-
formation is not always available. Many other papers consider
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a preventive maintenance perspective where the challenge
is either scheduling around a set maintenance schedule or
determining what the maintenance schedule itself should be.
While we know that preventive maintenance runs the risk of
either maintaining machine too little or too often compared
to the needs-based approach of predictive maintenance, and
both preventive and predictive maintenance have been shown
to outperform reactive maintenance approaches, it is still
interesting to compare both approaches and determine what
problem properties make it necessary to use one or the other.
This is because even when complete information on the health
status of machines is available, the gains made by integrating
them in the decision making process may not necessarily be
worth the increased runtime.
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