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Abstract

Model Predictive Control (MPC) has recently gained increasing interest in the adaptive manage-
ment of water resources systems due to its capability of incorporating disturbance forecasts into
real-time optimal control problems. Yet, related literature is scattered with heterogeneous appli-
cations, case-specific problem settings, and results that are hardly generalized and transferable
across systems. Here, we systematically review 149 peer-reviewed journal articles published over
the last 20 years on MPC applied to water reservoirs, open channels, and urban water networks
to identify common trends and open challenges in research and practice. The three water sys-
tems we consider are inter-connected, multi-purpose and multi-scale dynamical systems affected
by multiple hydro-climatic uncertainties and evolving socioeconomic factors. Our review first
identifies four main challenges currently limiting most MPC applications in the water domain:
(i) lack of systematic benchmarking of MPC with respect to other control methods; (ii) lack of
assessment of the impact of uncertainties on the model-based control; (iii) limited analysis of the
impact of diverse forecast types, resolutions, and prediction horizons; (iv) under-consideration
of the multi-objective nature of most water resources systems. We then argue that future MPC
applications in water resources systems should focus on addressing these four challenges as key
priorities for future developments.

Keywords: Model predictive control, Water resources, Water reservoirs, Open channels, Urban
water networks

1. Introduction

Adaptive water resources management is a priority for resilient development and adaptation
to increasing hydro-climatic variability and socio-economic transformations (Brears, 2018; Şen,
2021; Stevenson et al., 2022; Zhao and Boll, 2022). Global physical and socio-economic changes
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add pressure on governments and policy-makers to urgently address water-related multi-sector
challenges including energy and food security, human and environmental health, economic devel-
opment, and climate change mitigation and adaptation (e.g., GWP, 2021; Srivastava et al., 2022;
Miralles-Wilhelm, 2022). To address these challenges, improve the sustainability and efficiency
of water resources management, and adapt to transformative changes, new opportunities may
come from adaptive control techniques and hydro-meteorological forecasts (Coelho and Andrade-
Campos, 2014; Ding et al., 2018; Dobson et al., 2019; Yuan et al., 2019; Wu et al., 2020b; Abioye
et al., 2020; Giuliani et al., 2021; Şen, 2021; Bwambale et al., 2022).

Control methods and tools have been used in the water management community to design
optimal water resources operations for several decades already, since the 1955 Harvard Water
Program (see Reuss (2003) for a historical perspective, the pioneering work by Maass et al. (1962)
and the reviews in Yeh, 1985; Malaterre, 1995; Malaterre et al., 1998; Labadie, 2004; Mareels
et al., 2005; Castelletti et al., 2008b; Coelho and Andrade-Campos, 2014; Garćıa et al., 2015;
Creaco et al., 2019; Macian-Sorribes and Pulido-Velazquez, 2020; Van Der Werf et al., 2022).
Yet, this is still a very active research field, as water systems are uncertain dynamic systems
with challenging features that make the use of optimal control tools particularly complex. First,
water systems’ disturbances and related risks are ever-changing, as the variability induced by
changing hydro-climatic conditions has been expanding in recent decades (e.g., Hall et al., 2014;
Sreeparvathy and Srinivas, 2022), alongside the frequency and intensity of extreme events that
are being exacerbated with climate change (Trenberth et al., 2014; IPCC, 2021; Stevenson et al.,
2022; Gründemann et al., 2022). Second, human pressure on water resources has been augmenting
with population and socio-economic growth, leading to increased water and energy demands at
the global scale (e.g., van Ruijven et al., 2019; Boretti and Rosa, 2019; Wu et al., 2020c). This, in
turn, has shifted decision makers’ preferences and risk perception (e.g., Poff et al., 2016; Giuliani
et al., 2021). Third, water systems usually serve multiple stakeholders with often conflicting and
time-evolving objectives (Soncini-Sessa et al., 2007), which makes the exploration of trade-offs
essential (e.g., Reed et al., 2013).

The advantages of using real-time adaptive model-based control techniques are evident in the
context of hydro-climatic and socio-economic changes, as the use of forecasts unlocks the con-
trol potential to anticipate and, therefore, adapt to changes in the system’s characteristics and
disturbances. These approaches can be grouped under the umbrella of Model Predictive Control
(MPC) (Bertsekas, 2005; Scattolini, 2009), which is a popular approach, mostly well-established
for industrial applications (e.g., Qin and Badgwell, 2000; Forbes et al., 2015; Schwenzer et al.,
2021) yet attracting increasing attention from the water systems community (e.g., Giuliani et al.,
2021) due to recent advances in monitoring and forecasting systems and increasing computational
capabilities (e.g., Wu et al., 2020a). Hydro-meteorological forecasts have constantly been improv-
ing in quality and accessibility over the last few decades (e.g., Buizza, 2019; Wu et al., 2020a).
Similarly, hydrological and water systems’ models have been substantially refined in recent years,
allowing both the representation of physical processes at the highest resolution (e.g., Bierkens
et al., 2015; Nair et al., 2020) and the efficient emulation of high-fidelity models via surrogate
models based on machine learning techniques (e.g., Wu et al., 2014; Miro et al., 2021; Huang
et al., 2021). Today, it is possible to assimilate earth observations and operational forecasts in
real-time and run optimization and simulation models within a reasonable time thanks to recent
technological advances (Blair et al., 2019; Creaco et al., 2019; Camporese and Girotto, 2022;
Baardman et al., 2022).

In this context, we believe that a review of MPC applications to water management problems
is timely and important to stimulate reflections on MPC benefits and challenges in the water
sector and set the path for further research and practice developments. While previous reviews
focused on discussing the use of different optimal control methods in specific water systems (e.g.,

2



water reservoirs), here we contribute a comprehensive analysis of the most recent advancements in
MPC for different types of water systems. The heterogeneous features of these systems introduce
distinct challenges to optimal control techniques and often require diverse MPC approaches. In
this review, we focus on three key types of interconnected water systems designed and operated
to store, convey, and distribute water for human and environmental needs as well as to manage
sewer and drainage flow at the basin to urban scales: water reservoirs, open channels, and urban
water networks. To build our comprehensive review of 149 peer-reviewed journal articles, we
follow an automatic search procedure and then refine the paper selection using a set of eligibility
criteria, as detailed in the Methods.

The Methods section first recalls the MPC methods used for water systems’ operations. Then,
the three types of water systems within the scope of this review are introduced, explaining why
these systems are relevant and detailing the models used in the MPC applications. The Results
Section then provides a detailed summary of the reviewed papers across the three types of water
systems. Finally, the Discussion and Conclusions Sections summarize the limitations and merits
of the applications reviewed and highlight the most urgent needs for future developments.

2. Methods

2.1. Model Predictive Control

Model Predictive Control is a control strategy based on the sequential, online resolution of
multiple open-loop control problems defined over a finite, receding time horizon (Bertsekas, 2005).
At each time step, the resolution of an MPC problem yields a sequence of optimal control actions
(i.e., the releases for reservoirs, gate openings for channels, etc.) over the future horizon [t, t+h],
given a predicted trajectory of the disturbances over the same horizon. The optimization is
generally formulated considering a single objective; when the problem involves multiple objectives
(e.g., water supply, hydropower production, flood control, environmental protection, irrigation,
transport, etc.), these are generally aggregated using a scalarization function (e.g., weighted
combination) or via the lexicographic goal programming technique in cases where there is a clear
hierarchy of priorities across the objectives (e.g., Horvath et al., 2022). The online optimization
scheme is reiterated forward in time over a receding horizon during the operational life of the
system. After each optimization, only the first control action of the optimized control sequence
is actuated, before reiterating the optimization at the next time step. Through this reiteration of
the model-based optimization, MPC determines the control law implicitly in a closed-loop form,
as it computes the optimal control action at each time step t based on the observed state of the
system (xt). The current state of the system can be directly observed in most of the cases for
the water systems considered in this review. A state estimator is needed otherwise.

MPC requires a model of the system (see Section 2.2), also known as internal or predic-
tion model, to predict the effect of control actions on the controlled system’s dynamics, and to
determine the set of actions that yield the optimal performance with respect to the considered
objectives subject to physical and operational constraints. The choice of the model plays a major
role in the performance yielded by the MPC. The flexibility of the direct use of any models avail-
able for the systems to be controlled is one of the main advantages of this approach, particularly
in terms of controlling highly non-linear systems. The requirement for computational efficiency
is the main factor that can limit the use of fully physically-based models of large-scale complex
water systems like urban water networks, for which reduced-order data-driven models can be
developed to be used in MPC (see Section 3.3). The flexibility in working with (nonlinear) con-
straints is another advantage of MPC compared to other control methods. And this advantage
is particularly relevant for water systems, as explicit physical constraints (with non-linearities),
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like limits of actuators, or legal constraints, like a minimum release from reservoirs, are often
required.

Another advantage of MPC with respect to other control approaches is the mitigation of the
curse of ‘dimensionality’ (Bellman, 1957) that limits the applicability of Dynamic Programming
family methods to large water systems because of the challenges associated with the computation
of the value functions for increasing dimensions of state and control vectors. Moreover, the use
of real-time information and probabilistic/ensemble forecasts in the optimization process allows
MPC to adapt to evolving external conditions and mitigate the impacts of uncertain extreme
events.

Different configurations of MPC exist depending on how they handle the control of multiple
actuators in large-scale systems (centralized, decentralized, or distributed MPC), the param-
eter estimation problem (adaptive or non-adaptive MPC), and the uncertainty in disturbance
forecasts (deterministic or robust and stochastic MPC; see Sections 2.1.1 and 2.1.2).

A centralized MPC configuration assumes that a single controller processes measurements
from all sensors/gauges and determines optimal actions to be applied by all actuators. However,
water systems are usually spread over large, often transboundary regions, and several water
boards can be involved in their management. In such large systems, centralized management may
become unfeasible or computationally cumbersome, and may also be undesirable with regard to
system reliability, scalability, and responsiveness. Thus, multi-agent control, whereby the control
effort is divided among local agents (also referred to as controllers), each in charge of part of the
overall system, emerges as a possible way to circumvent the drawbacks arising from centralized
implementations. Two main criteria by which to classify multi-agent control approaches are the
existence of communication links and hierarchy among local controllers. On the one hand, an
approach is said to be decentralized if interactions among local controllers are neglected, and
distributed if communication links among local controllers are enabled for the sake of improved
overall performance, although at the expense of increased computation times. On the other
hand, an approach is said to be single-level if all local controllers are at the same hierarchical
level, and multi-level if a subset of local controllers has ascendancy over the rest.

Regarding the problem of reducing model uncertainties, in standard (non-adaptive) MPC,
the model used for prediction is often assumed to be accurate and fixed in time, while only its
state is updated. However, by using a fixed model parameterization the changing uncertainties
within the system are not taken into account, which can reduce the MPC performance. In
contrast, in adaptive MPC, the model parameters can be updated online by using available
measurements, and the estimation problem is addressed by including a parameter estimation
procedure as part of the control strategy. The control action is then calculated not only based on
the estimated current state but also on the updated model, which can help reduce the dynamic
model uncertainties affecting MPC (Lemos et al., 2009).

2.1.1. Deterministic MPC

In cases where a single deterministic prediction of the systems’ disturbances is available, the
formulation of the (single-objective) MPC problem over the prediction horizon (h), to be solved
at each control time step, is as follows:

min
ut,...,ut+h

t+h−1∑
τ=t

gτ (xτ ,uτ , ε̂τ+1) + gt+h(xt+h) (1)
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subject to:

xτ+1 = fτ (xτ ,uτ , ε̂τ+1) (2)

c (xτ ,uτ , ε̂τ+1) ≤ 0 (3)

ε̂τ+1 given for τ = t, . . . , t+ h− 1 (4)

xt given (5)

where: xτ is the state of the system at time step τ (e.g., the reservoir storage, the water level in
channels, and the state of other dynamical components); uτ is the control vector including all
control actions for the actuators (e.g., gates or pumps); ε̂τ+1 is the deterministic forecast of the
system’s disturbances provided by a prediction model for each time step τ over the prediction
horizon [t+ 1, t+ h]; gτ (·) is a time-separable cost function associated with the transition from
time step τ to τ + 1; gt+h (·) is a penalty function associated with the final state (xt+h ) that
represents the future costs beyond the prediction horizon. It should be noted that the control
horizon, i.e., the time span for which the control inputs are allowed to vary, can be shorter than
the prediction horizon, though often they are assumed to be equal as in Eq. 1.

The optimal control problem 1 is subject to the dynamic constraints provided by the state
transition function (Eq. 2) along with different types of physical constraints (e.g., limits of
actuators) and operational/legal ones (e.g., minimum environmental flows) that can be expressed
as (non linear) inequality constraints (Eq. 3).

2.1.2. Robust and Stochastic MPC

One of the limitations of Problem (1) is that it requires the availability of the sequence of
future system disturbances {ε̂}t+h

t+1 , which is unrealistic to expect to be perfect in many prac-
tical situations. To deal with this issue, the MPC framework includes strategies that handle
uncertainties in a robust manner via worst-case formulations, e.g., min-max and robust MPC.
While these methods guarantee the satisfaction of the problem constraints as long as some as-
sumptions are satisfied (mainly, that disturbances are bounded), they also generally lead to very
conservative control policies because a worst-case scenario approach is followed. To remedy this
situation, stochastic MPC approaches exploit the characterization of the forecasted uncertain-
ties, to obtain a trade-off between closed-loop constraint satisfaction and performance. Stochastic
MPC approaches typically employ so-called chance constraints, i.e., constraints that should be
satisfied with a predefined probability level (Mesbah, 2016). Thus, occasional violations of the
constraints might occur, but system performance will be increased during normal system oper-
ation because the controller will be allowed to work closer to the constraints in comparison to
worst-case approaches.

Here, we propose a classification of existing robust and stochastic MPC approaches used in
the water systems literature so far into two categories, based on the way the knowledge of the
probability distribution function (pdf) of the disturbances is implemented into the optimization
problem: (i) explicit robust and stochastic approaches, that use the explicit information on the
pdf, and (ii) implicit approaches, that rely on a set of scenarios (or ensemble forecasts) which
encode information about the disturbance evolution and its uncertainty in an implicit manner.

(i) Explicit approaches, require an explicit (probabilistic) characterization of the disturbance
behavior. A classical strategy to deal with uncertainty explicitly is the use of Open-loop
feedback control (OLFC), as introduced by Bertsekas (1976). This approach presents the
future disturbances according to their probability distribution and computes the objectives
through a function to filter the disturbances (e.g., expected value). The OLFC performance
can be improved by adopting a partial open-loop feedback control (POLFC) formulation
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(e.g., Castelletti et al., 2008a; Pianosi and Soncini-Sessa, 2009), which explicitly assumes
that in the future the state of the system will be measured and a new problem will be
reformulated. The POLFC problem, therefore, computes at each time step the optimal
release decision for the first time step reflecting first-step uncertainty and the optimal
operating policy for the following time steps.

(ii) Implicit approaches rely on the use of a set of scenarios of the disturbances. The set
of scenarios can be either built using data from previous realizations or using real-time
probabilistic forecasts. A classical implicit approach that uses scenarios in MPC is the
Scenario-based MPC which allows optimizing the system behavior for several disturbance
realizations. This approach has been generalized in Calafiore and Campi (2006); Calafiore
and Fagiano (2013a,b), and has been applied to water systems in van Overloop et al.
(2008); Tian et al. (2019); Velarde et al. (2019); Tian et al. (2017b). An interesting feature
of this approach is that multiple models can be considered, thus allowing to consider model
uncertainty in addition to disturbance uncertainty. The scenario-based MPC approach
can be extended via the Tree-based MPC (TB-MPC) formulation to provide the controller
with enhanced closed-loop control capabilities so that it can adapt to future events, as
uncertainty is resolved via bifurcation points along the prediction horizon, as first applied
to water systems in Raso et al. (2014). Implicit approaches are particularly relevant for
water systems as the forecasts are often provided in the form of an ensemble of multiple
time series, usually generated by running the forecast model multiple times with perturbed
initial conditions or using multiple models. Given their capacity to account for the inherent
forecast uncertainty, ensemble forecasts have become a standard in hydro-meteorological
forecasting (Gneiting and Raftery, 2005; Buizza, 2019; Zhao et al., 2021). This ensemble is
then transformed into a tree where similar ensemble members are bundled together into one
trajectory (branch) up to the point when some of them start to significantly diverge from
the others. The tree structure is then used to optimize a control tree defining a distinct
control sequence for each branch. Control sequences are constrained to be the same up
to the time when two ensemble members diverge. Examples of applications of TB-MPC
can be found in Maestre et al. (2013); Raso et al. (2014); Ficchi et al. (2016); Uysal et al.
(2018a).

Explicit knowledge about the disturbance (pdf) might be available and can used to build
a set of scenarios for implicit approaches, such as multi-scenario MPC or TB-MPC, so as to
achieve approximate robust MPC strategies (Lucia et al., 2013). Alternatively, one may proceed
the other way around, by using historical data (e.g., previous realizations of the disturbances
or reforecasts) to generate an explicit model (possibly with some limitations) and use that in
explicit stochastic approaches.

Finally, stochastic approaches can be considered robust as well if very strict requirements are
imposed regarding the probability of closed-loop constraint violation. As the imposed probability
of constraint violation tends to zero, the controller becomes more and more robust as it needs
to increase the safety margin with respect to the problem constraints. For this reason, there are
some articles in the literature that present stochastic approaches from a robustness viewpoint
(Shang et al., 2020; Chen et al., 2021; Chen and You, 2021).

2.2. Models for water systems applications

This section provides an overview of the models used for representing the different water
systems considered in this review, namely water reservoirs, open channels, and urban water
networks. It is worth mentioning that despite we illustrate and discuss these systems separately,
they are often interconnected with water reservoirs feeding either open channels and/or urban
water networks.
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Figure 1: Schematic representation of a multi-reservoir network, adapted from the Zambezi river system’s scheme
reported in Giuliani and Castelletti (2013).

2.2.1. Water reservoirs

A water reservoir is a regulated storage or lake, controlled by a dam that either blocks the
flow of a watercourse that is drained from upstream catchments (in-stream reservoir) or creates
a retention basin collecting water supplied by an adjoining stream, a canal, pipeline or aqueduct
(off-stream). Reservoirs can be part of networks of different levels of complexity, with two or
more reservoirs in parallel or in series (see Figure 1 for a schematic representation), connected
with water users via natural or artificial canals.

Reservoirs are usually multi-purpose systems, serving power plants, irrigation districts, urban
and industrial water users, as well as contributing to other targets like flood control, environmen-
tal management, navigation, water quality, etc. Traditionally, reservoir control is implemented
by a human operator that can act based on static rule curves or control actions suggested by a
Decision Support System (DSS) in real-time. Since the control time step is discrete, the model
for a reservoir is typically written in time-discrete form too, even though the physical processes
involved in the system are time-continuous. The control time step varies based on the type
of systems and objectives, with control frequencies typically ranging from hourly or daily for
smaller systems and for flood control or hydropower generation, to monthly for large systems
and for water supply objectives. The generic model for a system of N reservoirs is based on the
mass-balance equation describing the dynamics of the water storage at each reservoir j as:

xj
t+1 = xj

t + qjt+1 − rjt+1 (6)

where: xj
t is the state of reservoir j at time step t, i.e., the reservoir storage; qjt+1 is the net

inflow volume (i.e., inflow and direct precipitation minus evaporation and seepage losses) from
time step t to t+1; rjt+1 is the actual release from the reservoir in the same time interval. In the
notation in Eq. 6, the time subscript of each variable indicates the time instant when the value is
deterministically known. The reservoir storage is measured at time step t and thus is denoted as
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xj
t , while the net inflow and the actual release are denoted as qjt+1 and rjt+1, respectively because

they can be known only at the end of the time interval. For multi-reservoir systems, the global
model is obtained by aggregating the models of the N reservoirs that compose it, i.e., all the
variables in Eq. 6 become vectors (e.g., xt, qt+1) and the network topology can be represented
by an incidence matrix (Giuliani et al., 2021).

The actual release rjt+1 is a function of the control variable uj
t (i.e., the release decision at

time step t), of the storage xj
t and of the net inflow qjt+1:

rjt+1 = Rj
t

(
xj
t , u

j
t , q

j
t+1

)
(7)

where the function Rj
t (·) is called the release function and it is a nonlinear function, which binds

the actual release within a range of physical acceptability. The range is defined by the minimum
and maximum releases that would occur from time step t to t+1 by keeping all the sluice gates
completely closed and open, respectively (Castelletti et al., 2008b). Thus, the release function
allows for the inclusion of physical constraints on reservoir storage and release into the model.
The actual release may differ from the control decision when the available water is not sufficient
to realize the decision or when a spill takes place. The release function is inherently stochastic
because between the time step t at which the release decision is taken and the time step t+1 at
which the control action is completed, the uncertain net inflow qjt+1 affects the reservoir storage.

The net inflow qjt+1 is an aggregation of several hydro-meteorological contributions including
upstream and lateral flows from tributaries and runoff, direct precipitation over the reservoir mi-
nus evaporation and infiltration losses. The net inflow is often modeled as a system disturbance
(i.e., qjt+1=εjt+1 ), aggregating multiple sources of uncertainty, though its contributions can also
be separately modeled as distinct disturbances. On the other hand, the hydrologic processes
contributing to the net inflow can be represented using dynamic hydrological models of differ-
ent types, from conceptual to physically-based, lumped or spatially distributed, deterministic
or stochastic models. Data-driven alternatives or simple statistical models are often preferred
because of their computational efficiency (e.g., Wang et al., 2009) and, recently, efforts are be-
ing made to move towards hybrid models (a combination of pure data-driven and process-based
models) that can be more interpretable by users (e.g., Chakraborty et al., 2021). These models
can be used to provide a set of deterministic or stochastic forecasts of the disturbance, that can
be issued before every control time step and used in an optimal control problem.

2.2.2. Open channels

Open-channel systems are large-scale networked systems that consist of natural rivers and
artificial canals and serve multiple purposes. As part of the integrated urban water management
cycle, open-channel systems can be used to convey treated water to consumer areas, which
may then be supplied to consumers (using pressurized pipeline networks) or used for irrigation
purposes. Open-channel systems can also be employed for freight and passenger transportation,
provided that water depth and width are sufficient. Moreover, the watercourse should not be
interrupted too frequently by elements that must be avoided, e.g., reefs, rocks and sandbanks,
and bridges should have sufficient clearance. Although not strictly in the scope of this paper,
it is interesting to note that research on inland waterborne transport is attracting increasing
attention, as it is one of the most environmentally friendly and cost-effective transport modes.
A schematic representation of an open-channel system is given in Figure 2, which shows its
main constitutive elements. On the one hand, canals are stretches of the watercourse bounded
between two control structures. On the other hand, actuators are hydraulic infrastructure, e.g.,
gates, weirs and dams, available for water control purposes (see examples above). Finally, nodes
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Figure 2: Schematic representation of an open-channel system.

represent canal junctions, i.e., locations wherein a stream flows into or branches off from the
main stream (these are known as tributary and distributary, respectively).

Open-channel dynamics are most accurately described by the Saint-Venant equations, a set
of coupled nonlinear partial differential equations that can be formulated as follows (Litrico and
Fromion, 2009):

∂A(l, t)

∂t
+

∂Q(l, t)

∂l
= 0, (8a)

∂Q(l, t)

∂t
+

∂

∂l

(
Q2(l, t)

A(l, t)

)
+ gA(l, t)

(
∂Y (l, t)

∂l
+ Sf (l, t)− Sb(l)

)
= 0. (8b)

Equations (8a) and (8b) represent the mass and momentum conservation equations, re-
spectively, the latter comprising inertia, advection, gravitational force and friction force terms.
Moreover, l is the longitudinal abscissa (continuous independent variable), t is the time (con-
tinuous variable), A(l, t) is the wetted area [m2], Q(l, t) is the discharge [m3/s] across section
A, V (l, t) = Q(l, t)/A(l, t) is the average velocity [m/s] in section A, Y (l, t) is the water depth
[m], Sf (l, t) is the friction slope [m/m], Sb(l) is the bed slope [m/m] and g is the gravitational
acceleration [m/s2].

Equation (8) must be completed with initial and boundary conditions. On the one hand,
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the initial condition is given in terms of (Q(x, 0), Y (x, 0)), for all x ∈ [0, L], where L is the
length of the canal. On the other hand, boundary conditions must be chosen depending on flow
characteristics: subcritical flow requires an upstream and a downstream condition; supercritical
flow requires two upstream conditions; and intermediate situations require to specify one, two, or
three conditions, depending on the situation (Litrico and Fromion, 2009). Furthermore, available
measurements and controls must be specified. It is typically the case in practical situations that
available measurements and controls are boundary water levels and gate openings, respectively
(Litrico and Fromion, 2009).

Because of their accuracy, the Saint-Venant equations constitute the basis of state-of-the-
art simulation software, e.g., SOBEK1 and SICˆ22. However, they are demanding in terms of
computational resources and provide too much information for applications such as controlling
average water levels, two facts that render their direct use impractical for control purposes (hence
the variables in (8) are not directly connected with the notation introduced in Figure 2). For this
reason, the use of alternative and simpler models as prediction models (i.e., internal MPC models)
is commonly encountered in the literature. These simplified models generally compensate the
loss of precision with a significant reduction of the computational burden, which in turn allows
to use more elaborated formulations within the MPC framework. Several classes of simplified
models have been developed:

• Some models are obtained directly from the Saint-Venant equations, discretizing the system
in space (e.g., using a staggered grid) and linearizing. The kind of discretization method
employed plays a crucial role in the stability of the obtained model. On the one hand,
certain time-implicit methods yield stable models regardless of the step size chosen, even
for nonlinear hyperbolic systems (Hirsch, 2007). On the other hand, the stability of explicit
discretization methods depends on the discretization step size (Conde et al., 2021).

• Other models are based on strong mechanistic simplifications of the behavior of the canal
dynamics:

– One of the first proposals was the Integrator Delay (ID) model (Schuurmans et al.,
1995, 1999), an approximation model for flow in an open channel with a backwater
effect. The integrator term captures the canal volume change according to the water
level variation, and the time delay indicates the required time for a disturbance gen-
erated at one end of the canal to have an effect at the other end. It is worth noting
that some authors simplify the ID model even further, considering only the integrator
term (I), thus assuming that the canal behaves like a reservoir.

– A modification to the ID model was proposed by Litrico and Fromion (2004) to rep-
resent the high-frequency phenomena and thus describe a canal in any flow condition.
This new model, which features a zero in the transfer function to represent the di-
rect influence of the discharge on the water level in high frequencies, is known as the
Integrator Delay Zero (IDZ) model.

– The Integrator Resonance (IR) model was proposed by van Overloop et al. (2010b),
to characterize the effect of reflecting waves on the water levels, which dominate the
behavior of the short and deep open-channel flow.

• System identification techniques have also been employed for the purpose of open-channel

1https://www.deltares.nl/en/software/sobek/
2http://sic.g-eau.net
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modeling. In particular, black-box models, which do not make use of any physical insight,
have proven to perform well (Weyer, 2001; Rivas-Pérez et al., 2014).

The common feature shared by the different simplified models is the connection between
discharges and water levels. However, some of these models are formulated using continuous time
input-output representations (e.g., ID, IDZ and IR), and must be discretized for implementation
purposes. On the other hand, models with full space-time discretization are directly described
in discrete-time state-space form.

With some minor adjustments, all these models can be framed within the more general
control-oriented model given below:

xt+1 = F (xt,ut,wt,dt), (9a)

0 = G(xt,ut,wt,dt). (9b)

The variables used in Eq. (9) follow the notation introduced in Figure 2, and their meaning is
as follows: the vector of states xt contains the water levels (and possibly other terms, depending
on the simplified model that is employed), ut denotes the vector of control inputs (e.g., actuator
flow or position setpoints; for an exhaustive list of control variables see Section 3.2), wt represents
the vector of uncontrollable flows due to environmental phenomena (e.g., rainfall, infiltration
and percolation), and dt is the vector of water demands (e.g., off-takes by farmers) that act as
system disturbances εt+1. Note that (9) includes differential and algebraic equations: the former
represent the system dynamics, and the latter account for the mass balances that must hold at
the nodes.

2.2.3. Urban water networks

The integrated urban water cycle is composed of several infrastructural and operational com-
ponents, including water sources management, water treatment, water transport and distri-
bution, sewer/wastewater collection, and rainwater/stormwater drainage systems (Loucks and
Van Beek, 2017), which have the main goal of providing water for human needs reliably, effi-
ciently, and safely, and then returning it to the environment with the lowest possible impact
(Walski et al., 2003). The problem of optimal operation of large-scale urban water networks has
been extensively investigated in the literature in the last 50 years (Mala-Jetmarova et al., 2017),
with the main focus on water transport and distribution networks and optimal management of
sewer and drainage infrastructure, beside smaller-scale applications that focus on solving local
optimization problems of individual network components, such as individual pumps/pumping
stations and water treatment processes in water/wastewater treatment plants.

Taking water transport and distribution networks for instance (see Figure 3 for a schematic
representation), an optimal control problem is typically formulated as an optimal pump operation
control problem targeting resources and economic savings in energy use and related cost, while
ensuring that water is conveyed to final users to satisfy their water demands. Modeling a water
distribution network requires modeling its main components, which can be classified into nodes
- which include demand junctions (where water leaves or enters the network), reservoirs (water
sources), and tanks (where water is stored) - and links - which include pipes connecting different
nodes and valves and pumps, which are the actuators in the system to be controlled. Account-
ing for all aforementioned system components, a control-oriented model of a water distribution
network can be formulated as in Wang et al. (2017):

xt+1 = F (xt, zt,ut,wt,dt), (10a)

0 = G(xt, zt,ut,wt,dt), (10b)
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Figure 3: Schematic representation of a water distribution network, adapted from the Epanet 2: user manual
(Rossman et al., 2000).

where the dynamic states in vector xt are the water storage levels (heads) of the network tanks
at time step t, the algebraic states zt is the vector of hydraulic heads in all other nodes of the
network, resulting from flow balance, ut is the vector of control inputs (pump operations and
valve status), and wt is the vector of non-controllable flows through pipes. dt is the vector of
water demand intended as system disturbances εt+1. Pump and valves might vary in type and
size. For instance, pumps might be with fixed-speed or variable-speed drives, valves might be
pressure modulating or pressure reducing valves, non-return valves, head control, etc., which
should be accounted for in modeling such components, as their characteristics also constrain the
type and range of available controls.

The above discrete-time model includes difference and algebraic equations, based on mass and
energy conservation. The mass balance should be guaranteed at the network nodes, implying
that the flow rate of water q in node n from all its connected pipes p is balanced by the actual
demand in that node dact,nt in each time step t (Rossman et al., 2000):∑

p∈Pn

qp,nt − dact,nt = 0. (11)

Energy conservation is formulated to satisfy the Bernoulli’s principle, while head losses in pipes
are accounted for via the Hazen-Williams formula. Once the above model is formulated for a given
water distribution network, the system can be simulated either in demand-driven mode, which,
under normal conditions, assumes that the pressure in the system depends on node demands
and, thus, the mass balance and head loss equations are solved assuming that node demands
are known and satisfied, or in pressure-driven mode, which assumes that the delivered demand
depends on the available pressure in the system and accounts for possible demand shortages. In
emergency/anomaly situations (i.e., firefighting, power outages, pipe leaks), consumers do not
always receive their requested demand in a pressure-driven scenario.

Several state-of-the-art software tools are available to model water distribution networks of
various scales. Arguably, the most widely used among them is EPANET, developed as open-
source software by the United States Environmental Protection Agency (Rossman et al., 2000).
EPANET can perform also water quality simulation beside hydraulic simulations, thus allowing
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for coupled hydraulic and water quality simulation, which increases the size of the problem
formulated in Equations (10) by adding states related to water quality parameters, along with
the possibility of controlling it (e.g., via chlorine dosage). Yet, EPANET model implementations
are not straightforward as control-oriented models, since they often include several switches and
discrete operation conditions that make them not suitable for the direct application of gradient-
based optimization approaches.

Alternative software tools exist to model other networks of the urban water cycle such as
combined and sanitary sewers and other drainage systems, e.g., the US-EPA Storm Water Man-
agement Model (SWMM) (Rossman et al., 2010). A broad formulation of the system model as
indicated in Equation (10) and overall modeling strategy still stands, with water flows being ruled
by mass and energy conservation laws. However, individual system components to be modeled
change, with disturbances to be forecasted being most typically rainfall and inflow to the sys-
tem, and controls being basin outflows, gate settings, and, more on an infrastructure planning
perspective, Low-Impact Development (LID) controls. Complementary tools such as the one
reported in Riaño-Briceño et al. (2016) allow the use of SWMM to design control strategies, in
particular, applied to drainage systems, with some flexibility and considering dynamical models
and a more realistic setup including disturbances and their forecast models.

In some cases, e.g., for large-scale urban water networks, it is useful to replace the full model
of the system with a reduced model of the network that can offer higher computational efficiency
(Shamir and Salomons, 2008). This is usually done via skeletonization by reducing the number of
components of the system (e.g., by removing irrelevant pipes and nodes) while retaining a high
level of similarity between the reduced and full model outputs and performance. Alternative
approaches instead rely on the development of data-driven surrogate models.

2.3. Literature Search and Classification Methods
This section describes the search methods, keywords and criteria followed for the bibliographic

search highlighting common points and workflows across water systems, as well as differences
(e.g., keywords, etc.). Real-time control techniques applied to water systems take sometimes
different names but can be reduced to an MPC-like approach as long as they embed the three
main blocks of MPC (see Introduction): (i) the internal model of the system, used to simulate
the effects of the control actions on the system, (ii) the use of forecasts available in real-time,
either real, synthetic or ‘perfect’ forecasts and (iii) an online optimization that is reiterated over
a receding horizon. In the water systems’ literature, several studies have adopted an MPC-like
technique either referring to it with different wordings, like ‘rolling horizon control’, ‘receding
horizon control’, ‘real-time optimization’, or proposing some theoretical modifications to the
MPC approach and providing an alternative name (e.g., Partial Open-loop Feedback Control).
To account for such alternative wordings for “Model Predictive Control” and domain-specific
differences, we formulated customized versions of the literature search string for each of the
three water system types considered and used them to identify relevant papers in the Web of
Science platform 3. The resulting search strings are the following:

• For water reservoirs: (optimal AND water AND reservoir* AND (operation OR control OR
management) AND (predictive control OR forecast-based OR receding horizon OR rolling
horizon OR receding-horizon OR rolling-horizon))

• For water channels: (Model predictive control OR MPC OR receding horizon OR rolling
horizon) AND (water canal* OR water channel* OR irrigation OR inland OR inland wa-
terway*)

3https://www.webofscience.com/
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• For urban water networks: (optimal AND water AND (drinking OR distribution OR trans-
port OR wastewater OR drainage OR grey water OR sewer OR sewage) AND (networks
OR systems) AND (operation OR control OR management) AND (model predictive control
OR predict* control OR naive feedback control OR receding horizon OR rolling horizon
OR receding-horizon OR rolling-horizon))

The search queries are not restricted to the word ‘Model Predictive Control’, so the records
found include some irrelevant studies. Exclusion criteria only regarded (i) article language (only
papers written in English were considered) and (ii) and article type (only peer-reviewed publica-
tions in scientific journals were considered). Conference papers were excluded to avoid redundan-
cies since some conference publications often present preliminary versions of studies subsequently
published in full journal papers. We acknowledge that some of the most recent advanced devel-
opments, that might be present in a few recent peer-reviewed conference publications, may not
have been covered in this review, but overall we do not expect that it would have a significant
impact on the identified trends and challenges, given the large sample of journal articles included.

Manual filtering on the resulting records was performed based on paper title and abstract, to
discard items that were out of scope for this review (i.e., not focusing on MPC or not applying
it to the water systems of interest), before evaluating the eligibility of a restricted set of papers
based on their full-text assessment. A smaller set of additional relevant papers not retrieved
with the search query (7 items) was added to the final database from other sources, namely from
references in previous review papers resulting from the search (see Figure 4 for details on the
sample selection).

3. Review Results

3.1. MPC for water reservoirs

In the last 15 years, several studies analyzed the potential of forecast-based real-time con-
trol techniques for water reservoir systems across different real-world problems by leveraging
the increasing availability and improved quality of hydro-meteorological forecasts. The query
formulated to retrieve peer-reviewed journal articles on MPC for water reservoir systems (see
Section 2.3) returned an initial set of 105 papers. After screening these manuscripts, we retained
33 publications and added 7 more documents (from references in previous reviews on optimal
control of reservoirs that were found by the query), yielding a total of 40 articles that have
been analyzed in detail (see PRISMA diagram in Fig. 4). As recently highlighted in Giuliani
et al. (2021), our review confirms that MPC approaches (and analogous approaches that could
be reduced to MPC) have been applied more commonly only in recent years, with the 40 studies
reviewed here that have been published from 2008 to 2022 (see the temporal distribution in Fig.
5).

Almost all reviewed papers implement a centralized control architecture to determine the
optimal releases from one or more reservoirs, with only a few applications also dealing with
the control of pumps (e.g., Galelli et al., 2014; Javan Salehi and Shourian, 2021). Most studies
implement a daily controller (e.g., Wan et al., 2016; Anghileri et al., 2016), but we found ap-
plications working at either sub-hourly (e.g., Breckpot et al., 2013a; Lin et al., 2020) or hourly
(e.g., Delgoda et al., 2013; Karimanzira et al., 2016; Xu et al., 2020) or monthly (e.g., Zambelli
et al., 2011; Kistenmacher and Georgakakos, 2015) frequencies. Suppose the forecast frequency
is not sufficient to timely inform the control action. In that case, the MPC results should be
seen as a recommendation provided by a decision support system that the operator can adjust,
potentially taking into account local expert knowledge and any operating factors that the MPC
optimization could not cover (e.g., Roetz and Theobald, 2019).
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Figure 4: Flow diagram with paper exclusion/inclusion criteria. The flow diagram reports the exclusion/inclusion
criteria applied to the dataset of papers retrieved for review, represented according to the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses guidelines (PRISMA; Moher et al., 2009). nr indicates the
number of papers on MPC for water reservoirs, nuwn those on MPC for urban water networks, and noc those on
MPC for open channels. n is the number of total papers (equal to the sum of the above, i.e., n = nr+nuwn+noc).
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In almost all the reviewed studies (see Table 1), the forecast represents the inflow to the
reservoir, which is usually generated using a hydrological model fed by meteorological forecasts
and any other significant information available at each control time step (e.g., snowpack and
hydrological conditions, including the streamflow upstream, being routed using the model). Only
two studies (Galelli et al., 2014, 2015) complement the inflow with tide forecasts. Moreover, many
studies (more than half) use a deterministic forecast and MPC formulation (e.g., Giuliani and
Castelletti, 2013; Anand et al., 2013; Galelli et al., 2015), although the adoption of stochastic
formulations is increasing in the last few years (e.g., Uysal et al., 2018b; Sahu and McLaughlin,
2018; Ahmad and Hussain, 2019). These stochastic approaches (see Section 2.1.2 and Table 2)
allow the explicit probabilistic characterization of the forecast uncertainty by relying on ensemble
forecasts and, therefore, better hedge against risk (Breckpot et al., 2013a).

The reviewed papers used a wide range of control time steps (see Table 3) and of forecast
horizons (also called lead times in the forecasting literature) ranging from a few hours for re-
sponding to rapid events such as floods (e.g., Blanco et al., 2010; Galelli et al., 2014, 2015; Xu
et al., 2020) to seasonal or longer scales (e.g., Xu et al., 2015; Anghileri et al., 2016; Raso and
Malaterre, 2017; Gavahi et al., 2019). However, multiple timescales have never been incorporated
into a seamless multi-timescale system in any case study.

Despite changes in societal perceptions of water resources generally enlarge the number of ob-
jectives considered (e.g., Giuliani et al., 2014a,b; Wild et al., 2019), a large majority of the studies
we considered formulate a single-objective control problem (e.g., Wang, 2010; Breckpot et al.,
2013a; Xu et al., 2015; Sahu and McLaughlin, 2018; Arsenault and Cote, 2019) or an a-priori
aggregation of multiple objectives (e.g., Castelletti et al., 2008a; Kistenmacher and Georgakakos,
2015; Uysal et al., 2018a), with very few exceptions that consider either 2 or 3 competing ob-
jectives (e.g., Giuliani and Castelletti, 2013; Xu et al., 2020; Lin et al., 2020; Mohanavelu et al.,
2022) (see Table 4). The scalability of MPC to multi- and many-objective control problems is
indeed an important limitation for the application of this control strategy to water reservoir
systems (Giuliani et al., 2021), which often has limited ability in exploring multi-dimensional
trade-offs (e.g., Giuliani et al., 2016).

About half of the reviewed articles (see Table 4) provide a comparison between MPC against
an alternative, off-line control strategy often designed via Stochastic Dynamic Programming
(SDP) or against the current operational schemes of real-world reservoirs (e.g., Castelletti et al.,
2008a; Xu et al., 2015; Sahu and McLaughlin, 2018). All these studies found that MPC outper-
forms other strategies. This is often attributed to the fact that MPC ensures that the control is
adapting to extreme events that can be forecasted in the short- to long-term based on current
observations and other forecast data (e.g., Galelli et al., 2014; Ficchi et al., 2016; Ahmad and
Hussain, 2019). However, the choice of a reservoir control method is expected to depend upon
multiple factors, including the system’s characteristics, the objectives of the control, the speci-
fied constraints, data and forecast availability (Macian-Sorribes and Pulido-Velazquez, 2020). So
large comparison studies are needed to investigate MPC’s applicability, effectiveness, and value
in different contexts.

Only a few studies benchmark MPC against multiple state-of-the-art control methods, such
as different Approximate Dynamic Programming (ADP) methods (see Table 4)). Notably, Mo-
hanavelu et al. (2022) compare six state-of-the-art control methods for the operation of a real-
world reservoir system in India (i.e., the Pong reservoir). They found that MPC outperforms
all the other methods, yielding the closest solution to the ideal one designed via Deterministic
Dynamic Programming (DDP). A limitation of their study is that MPC was driven by a single
forecast close to perfect forecasts, so further studies are needed to extend such comparisons for
different case studies and use real forecasts with different levels of skill and timescales within the
MPC. Similarly, Kergus et al. (2022) benchmark an MPC-based approach against SDP and the

17



ideal DDP solution with perfect foresight for the operation of a reservoir in Vietnam (Hoa Binh).
Their MPC-like approach (combining hierarchically MPC with an inner parametric data-driven
feedback controller) uses statistical forecasts with a random noise added on the disturbances.
Despite the error in the disturbance predictions, the MPC-based approach outperforms SDP by
obtaining better trade-offs between the two objectives (hydropower and flood control) and ap-
proaches the ideal solution by DDP. However, as pointed out by Kergus et al. (2022), while these
results are encouraging for MPC, the robustness to prediction errors requires further investiga-
tion. Likewise, other six studies (Castelletti et al., 2008a; Wang, 2010; Galelli et al., 2014; Sahu
and McLaughlin, 2018; Ahmad and Hussain, 2019; Payet-Burin et al., 2021) benchmark MPC
with SDP reaching similar conclusions. MPC approaches outperform the offline benchmark by
better anticipating the inflow events, especially those out of their typical season, even if a simple
inflow forecasting model is used (e.g., Castelletti et al., 2008a; Wang, 2010). MPC generally
leads to better trade-offs between objectives, with the performance increasing with increased
prediction horizon (e.g., Castelletti et al., 2008a; Galelli et al., 2014). MPC can also deal with
problems that are computationally intractable by SDP due to the number of reservoirs in the
system (e.g., Wang, 2010), as it overcomes the curses of dimensionality and modeling of SDP.

A limitation of the current body of literature on MPC for reservoir operation is that most
studies do not assess the impact of the MPC internal model uncertainty, as usually the same
models have been used for both the open-loop optimization and closed-loop simulation (with
the associated update of model states) in almost all studies reviewed. A few exceptions exist
(Munier et al., 2015; Lin et al., 2020). For example, Lin et al. (2020) used two different models: a
simplified internal model was used in the open-loop optimization, as is usually done in MPC, and
a more refined and computationally-intensive model was employed to represent the real water
system in closed-loop, to update water levels and flows.

3.2. MPC for open channels

An initial set of 193 research journal papers was obtained using the query formulated in
Section 2.3, of which only 58 were retained after the manual screening of titles and abstracts
(see PRISMA diagram in Figure 4). Inspection of the time distribution of the final set of papers
(depicted in Figure 5) reveals that all papers were published less than twenty years ago (and
twenty-six of them less than five years ago), which allows identifying a growing interest in the
topic (see Figure 5). It is also worth noting that other review papers were returned by the
query: although not strictly research papers, they are surveyed for completeness. An exhaustive
review of modeling and control of open-channel irrigation systems is carried out in Conde et al.
(2021), and an entire section (Section 4.5.3) is devoted to MPC. Different applications of smart
agriculture are presented in Ding et al. (2018), including the use of MPC for irrigation systems
(Section 3.1). The developments of an industrial-scale project that culminated in the complete
automation of a large irrigation system in Australia are discussed in Mareels et al. (2005).
Although MPC approaches are not explicitly developed therein, the same research group has
recently employed MPC to control a river (Foo et al., 2014) and an irrigation canal (Nasir et al.,
2021).

Control of water canals and rivers aims to satisfy human needs, which are expressed in the
form of a cost function. Most of the reviewed papers are characterized by cost functions built as
the weighted sum of individual terms (i.e., the relative importance of each term is adjusted using
weights), with the minimization of water level setpoint tracking errors and operational costs
being the most common objectives (see Table 4). Additional goals, e.g., simultaneous control
of water quantity and quality (Xu et al., 2013; Aydin et al., 2019, 2022), preservation of water
levels within safe navigation bounds (Wagenpfeil et al., 2012; Tian et al., 2019; Segovia et al.,
2019; Pour et al., 2022; Horvath et al., 2022) and pressure reduction for the pressurized part
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of the network (Zhu et al., 2020), are also considered in the literature. Moreover, Foo et al.
(2014) tailor a cost function to the needs of their case study, e.g., maintain off-stream storage
volume above a threshold, release as little water from a lake as possible and keep flows for early
spring to mid-summer under a threshold to create slack-water pockets. On a wider note, joint
water and energy management in water canals appears to be a topic of increasing interest in the
water-energy nexus context (Doan et al., 2013; Pour et al., 2022; van der Heijden et al., 2022;
Horvath et al., 2022).

Operational management of water canals is carried out by manipulating the available ac-
tuators. Inspection of the surveyed papers reveals the use of a wide variety of actuators, i.e.,
gates, weirs, sluices, pumping stations, dams, turbines and electro-valves (see Table 3). Control
decisions are either actuator flow or position setpoints; an assessment of the optimal choice of
the input variable is carried out in Horvath et al. (2015b). These decisions are computed over
prediction horizons (the reviewed papers report values ranging from one minute to ten days), and
are applied with fixed frequencies (ranging from once every five seconds to once every six hours)
for the whole duration of the experiment (ranging from thirty minutes to one year). The effect of
these decisions on the system is measured using available sensors that capture relevant informa-
tion, e.g., water levels, salinity and concentration of chemical species. This information, together
with estimates of unmeasurable states (obtained using observers), allows adjusting the decisions
at the next time step. It is interesting to highlight the large variability in terms of time scales
across reviewed papers (see Tables 1 and 3). These differences can be explained by the different
nature of the experiments: real case studies, either on a real system (Foo et al., 2014; Nasir et al.,
2021) or in silico (Romera et al., 2013; Tian et al., 2017a; Kong et al., 2019b), laboratory canals
(Lemos et al., 2009; Figueiredo et al., 2013; van Overloop et al., 2014; Horvath et al., 2015b,a;
Aydin et al., 2017), canal benchmarks (Wahlin, 2004; Wahlin and Clemmens, 2006b; Rodriguez
et al., 2020) and academic examples (Xu et al., 2011, 2012, 2013; Breckpot et al., 2013b; Xu and
Schwanenberg, 2017) are reported. In particular, laboratory canals are characterized by reduced
dimensions in comparison to the rest of the case studies, which explains the use of smaller time
scales.

It was discussed in Section 2.1 that MPC is a model-based approach and that, as such,
an internal model is required to predict the effect of control actions on the system. Existing
open-channel internal models have been presented in Section 2.2.2. On the one hand, some of
the employed models are directly derived from the Saint-Venant equations, e.g., discretizing the
system in space and linearizing (Wagenpfeil et al., 2012; Xu et al., 2012; Tian et al., 2015; Aydin
et al., 2019, 2022). On the other hand, other papers resort to the integrator delay (Hashemy
Shahdany et al., 2017; Zheng et al., 2019; Kong et al., 2019b; Rodriguez et al., 2020; Avargani
et al., 2022; Askari Fard et al., 2022; Liu et al., 2023), the integrator delay zero (Romera et al.,
2013; Segovia et al., 2019; Pour et al., 2022) and the integrator resonance (van Overloop et al.,
2014; Horvath et al., 2015a,b) models. While a large variety of models is employed in the reviewed
papers, it can be concluded that the use of the ID model is prevalent (in its equivalent state-space
form). Finally, a model-free strategy is proposed by Ren et al. (2021), whereby control policies
are obtained via deep reinforcement learning.

The performance of MPC is also affected by disturbances. Water canals are operated under
time-varying environmental conditions, which are exogenous inputs that attenuate the effect of
control actions and thus complicate the attainment of the operational objectives. Therefore, the
occurrence of these events may have a severe effect on water levels unless properly accounted
for in the MPC design. Although the type of disturbance considered depends on the case study,
uncontrolled in- and/or outflow forecasts, e.g., rainfall (van Overloop et al., 2008; Negenborn
et al., 2009; Xu et al., 2011; Maestre et al., 2013; Velarde et al., 2019), surface-groundwater
interaction (Foo et al., 2014; Aydin et al., 2019) and sea discharges (van Ekeren et al., 2013;
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Tian et al., 2015; van der Heijden et al., 2022), are typically used (see Table 1). In addition to
these, operational disturbances, e.g., offtake flows for irrigation purposes (Wahlin, 2004; Wahlin
and Clemmens, 2006a,b; van Overloop et al., 2010a; Breckpot et al., 2013b; Hashemy et al.,
2013; Shahdany et al., 2015; van Overloop et al., 2015; Shahdany et al., 2016; Xu, 2017; Zheng
et al., 2019; Kong et al., 2019a; Shahdany et al., 2019; Kong et al., 2021), wind effect (Wagenpfeil
et al., 2012) and lock operations for navigation purposes (Segovia et al., 2019; Pour et al., 2022),
are also considered. While either perfect or no knowledge about operational demands is usu-
ally considered (scheduled and unscheduled operations, respectively), uncertain meteorological
conditions have motivated the development of stochastic MPC approaches for water canals (van
Overloop et al., 2008; Maestre et al., 2013; Tian et al., 2017b, 2019; Velarde et al., 2019; Nasir
et al., 2021), whereby different disturbance realizations with individual occurrence probabilities
are considered (see Table 2).

In terms of the architecture of controllers for water canals, given the characteristics of cen-
tralized/distributed controllers (as introduced in Section 2.1), distributed control architectures
appear to be preferable to overcome the computational and scalability drawbacks arising from
centralized implementations. However, only eight papers consider distributed architectures (see
Table 3), of which four are characterized by a two-layer structure in which the top layer takes
care of the high-level problem setup: uncertainty realization (Velarde et al., 2019), reduction of
communication overhead among local controllers (Farhadi and Khodabandehlou, 2016), selection
of optimal network topology (Fele et al., 2014) and execution of risk mitigation actions (Zafra-
Cabeza et al., 2011). The remaining four papers consider distributed single-level architectures
(Negenborn et al., 2009; Maestre et al., 2013; Alvarez et al., 2013; Doan et al., 2013). The re-
duced number of papers that employ distributed multi-level architectures may be explained by
the fact that the choice of control architecture depends mostly on the extent to which systems
are coupled, communication reliability and computational resource availability. Canals have
been traditionally regulated either manually or using decentralized proportional-integral (PI)
controllers that adjust the setpoints dictated by a centralized coordinator (Sadowska et al., 2014,
2015; Nasir et al., 2021), which means that coupling effects might not be too relevant for their
usual operation.

The benchmarking of MPC performance against other approaches is rarely included in the
literature on open-channel control, as shown in Table 4. MPC is only compared to other two
control approaches, namely LQR (Liu et al., 2023; Zheng et al., 2019; Kong et al., 2019a; van
Overloop et al., 2010a; Wahlin and Clemmens, 2006a) and PI(D) (Liu et al., 2023; Kong et al.,
2019a; Foo et al., 2014; van Overloop et al., 2015; Figueiredo et al., 2013; Lemos et al., 2009;
van Overloop et al., 2008; Wahlin and Clemmens, 2006b; Wahlin, 2004), whereby the superior
performance of MPC is demonstrated. Furthermore, although not explicitly reported in Table 4,
benchmarking MPC against manual control demonstrates that MPC leads to better performance
and thus improved system operation (Foo et al., 2014; Askari Fard et al., 2022).

As a final remark, not all papers report information regarding, e.g., nature of the forecast, sys-
tem size (number of states), prediction horizon, frequency of decisions and optimization method,
in an explicit manner. This fact complicates the analysis of the reviewed references.

3.3. MPC for urban water networks

The query to retrieve peer-reviewed journal articles on MPC developments and applications
to control urban water networks (see Section 2.3) returned an initial set of 521 papers. From
this set of papers, 453 were excluded from further analysis after manually screening each paper’s
title and abstract, and 19 more based on relevance and fit within the scope of this review (see
PRISMA diagram in Fig. 4). As a result, a subset of 48 articles was retained for detailed tagging
and classification. This group of 48 papers corresponds to 9.4% of the initial dataset of papers
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retrieved with the formulated query. Many of the excluded papers were initially obtained as a
result of the search query because they include the keywords listed in the search query in their
main text or other parts. However, they were then deemed not relevant in relation to the scope of
this review primarily either because of their actual MPC implementation (they only mentioned
MPC or other control schemes but eventually only focused on model development), or because of
their spatial scale of interest. Many studies indeed mentioned urban water systems and networks
but eventually focused only on optimal control of processes occurring in individual network
components (e.g., water treatment plants). For the above reasons, many papers initially identified
in the search were assessed as not eligible for consideration in this review. The time distribution
of these 48 articles shows that the last 25 years have witnessed an increasing interest towards
the implementation of MPC schemes to control urban water networks. Likely motivated by
the increasing amount of (quasi) real-time sensor data from distributed infrastructure networks,
which act as enablers of real-time control schemes (Creaco et al., 2019), more than 45% of the
reviewed studies (n = 22) were published in the last 5 years only (see Figure 5).

Integrated urban water management requires optimal planning and operations of different
network systems which make up the urban water cycle, including drinking water networks,
stormwater, greywater, and wastewater networks. Accordingly, examples of MPC developments
and applications emerge from the literature for supply-side management of drinking water net-
works and stormwater and wastewater management. In addition, other recent publications re-
viewed the existing literature on control schemes for urban water networks. Yet their scope is
rather constrained to only one type of network infrastructure, i.e., sewer systems (Van Der Werf
et al., 2022) or water supply and distribution networks (Coelho and Andrade-Campos, 2014),
and various control schemes are considered. Conversely, the scope of this review is only spa-
tially constrained by the boundaries of the integrated urban water system and thematically by
the focus on MPC-like control. Still, it is inclusive of all its sub-components. This review thus
compares MPC studies focused on drinking water networks, as well as wastewater and sewage
networks, to identify the type of disturbances, objectives, actuators, and type of MPC in each
case, ultimately evaluating the benefits brought by MPC and its related challenges.

Most of the reviewed papers address the problem of optimal control of water distribution
and transport networks (n = 34). The typical research goal in these works is to identify optimal
operations of pumps and valves, i.e., the actuators distributed in a water distribution/transport
network. The number of actuators in network infrastructure systems depends on the considered
network’s topological and structural characteristics and size. Their number affects the number
of control variables in the optimal control problem. In our compilation of reviewed papers (see
Table 3), control variables vary from less than 10 in simplified or small systems (e.g., Sankar
et al., 2015; Salomons and Housh, 2020) to more than 120 in larger, real-world systems (Ocampo-
Martinez et al., 2011). Water distribution systems are operated under varying water demand
conditions. Forecasts of water demand are thus needed as input to the underlying hydraulic
or data-driven models used in MPC. Water demand forecasts usually span over a period of 24
hours, relying on the day/night periodicity of water demand patterns, whereas the frequency of
decisions is in the range of a few minutes (e.g., 5 minutes as in Liu et al. (2020)) and 1 hour (Wang
et al., 2016, 2020). Controls in water transport and distribution networks are computed in such
a way that an economic objective accounting for the cost of running the system (mainly due to
electricity consumption for water pumping and pump start-up costs) is minimized, while water
demands in the system are satisfied (e.g., Shamir and Salomons, 2008). Additional objectives
such as guaranteeing safety storage in water tanks, pressure control, or smoothness of the controls
are also often weighted in the complete objective function (e.g., Ocampo-Martinez et al., 2012;
Wang et al., 2017; Grosso et al., 2014; Grosso Pérez et al., 2016). Only a recent paper on
optimal reconfigurations of large-scale systems via backup actuator activation formulated a multi-
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objective mixed-integer programming (MIP) problem with two separate objectives (see Table 3),
which was then solved with a lexicographic approach (Trapiello et al., 2021). A minority of
works also considers water quality objectives, typically quantified via chlorine concentration in
the supplied water (Biscos et al., 2003; Muslim et al., 2008).

The remaining 14 papers deal with optimal management of sewer and drainage infrastructure,
where pumps and gates should be controlled to guarantee cost-effective and smooth operations,
reduced peak flow to wastewater treatment plants, flood control, and avoid overflow in combined
systems (CSOs; Darsono and Labadie, 2007; Puig et al., 2009; El Ghazouli et al., 2022). Rainfall is
usually the uncertain variable to be forecasted (see Table 1) usually with a sub-hourly prediction
horizon (e.g., 30 mins in Joseph-Duran et al., 2014; Sun et al., 2020), which provides information
on the expected inflow to the system to design optimal decisions of gates to be applied with
an operational frequency of 1-5 minutes (Marinaki et al., 1999; Sun et al., 2020; Joseph-Duran
et al., 2015, 2014) to a few hours or a day (Dong and Yang, 2019).

Further, a limited yet recently growing number of articles develops control schemes based
on MPC to operate pumps as turbines and harness the excess energy that would be otherwise
dissipated for electricity production (Venturini et al., 2017; Stefanizzi et al., 2020; Levieux et al.,
2021; Pirard et al., 2022). While they are not included in this review because they are not directly
concerned with the optimal management of water resources, it is worth mentioning them as
recent literature is shaping around joint opportunities for water and energy management within
the broader context of the water-energy nexus.

The reviewed papers present a variety of applications and case studies, with different for-
mulations of the objective function, controls, disturbances and forecasting horizon, system char-
acteristics, and overall goals. Hence, results are also often case-specific and hard to generalize.
However, in most reviewed works, MPC schemes - primarily implemented with a centralized
architecture - are benchmarked against other control strategies and comparatively attain a bet-
ter performance (i.e., reduced operational costs and violation of physical and operational con-
straints). Historical/current rule-based controls are usually taken as baseline reference (e.g., in
Wang et al., 2020; Balla et al., 2022), along with local controllers (Puig et al., 2009) and PI
controllers (Martin et al., 2022). A solid alternative for either implementing non-centralized
control approaches or complementing control strategies for the management of UWNs is based
on evolutionary game theory (Quijano et al., 2017). For the former case, several proposals have
been reported towards not only designing predictive controllers accounting for the suitable parti-
tioning of a large-scale drinking water network (Barreiro-Gomez et al., 2019; Muros et al., 2018)
but also the synthesis of control strategies entirely based on such game theory (Barreiro-Gomez
et al., 2016, 2017b; Obando et al., 2022). Regarding game-theory-based approaches that assist
a predictive controller, tuning methodologies for multi-objective predictive controllers are also
reported (Barreiro-Gomez et al., 2017a).

Overall, MPC has proven to be effective in attaining substantial cost savings in comparison to
existing rule-based or set-point controllers in water distribution networks, which usually operate
based on storage level thresholds. For instance, energy cost savings between 8% and 10% were
calculated with simulations for a summer and winter month in Shamir and Salomons (2008).
Other studies considering MPC controllers in urban drainage networks found that MPC can re-
duce the number of flooded nodes during an extreme weather event and lower peak flow by more
than 50% in drainage systems subject to heavy rainfall events (Shishegar et al., 2021; Kändler
et al., 2022). Case-specific results and cost/energy savings referred to different baseline values,
implementations of the objective functions, and MPC parameters, though, do not allow for a
direct quantitative comparison of MPC performance across studies. Further, several limitations
and existing research gaps emerge from the analysis of the 48 reviewed papers. Most of the
considered studies adopt, at least to some extent, a series of simplifications to address the chal-
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lenges related to (i) accounting for uncertainties in disturbance prediction and (ii) dealing with
the computational burden of simulating potentially large real-world networks in model-based
approaches.

Concerning the first group of challenges, only six studies out of 48 consider the uncertainty
in disturbance forecasts by implementing a stochastic or combined deterministic and stochastic
MPC approach. The majority instead focuses on demonstrating the superiority of MPC in
comparison to other control strategies under a deterministic scenario. This scenario is sometimes
built assuming perfect disturbance prediction (Marinaki et al., 1999; Tedesco et al., 2016) or
simple statistics on water demands from past data, while the type of forecast remains unclear in
many other cases.

Concerning the second group of challenges, reducing the computational effort required to
simulate large real-world networks is addressed in the literature with three different types of
simplification approaches. First, some studies only consider very small networks, usually built
ad hoc as artificial systems for research purposes, composed of a handful of nodes and just a
few actuators (Sankar et al., 2015). This approach also makes up for the lack of data that often
limits the possibility of developing studies based on real-world urban water networks. Other
studies instead simplify the size of existing real-world systems by removing irrelevant nodes and
links and obtaining a skeletonized system (as, for instance, in Shamir and Salomons, 2008). Be-
side the physical properties of the considered system, its operational properties and the physical
characteristics of its actuators are often simplified, too. For example, some work only consider
fixed-speed pumps, simple valve models characterized only by upper and lower bounds on the
flow, and none consider dynamic/time-varying energy prices, but a few exceptions. Our review
found that 27 studies are based on simplified or synthetic case studies, while only 10 rely on full-
scale real-world systems. A third strategy to deal with the computational effort required by the
simulation of large-scale hydraulic networks is the implementation of data-driven surrogate (or
meta) models that substitute the high-fidelity hydraulic model with more computationally effi-
cient yet still accurate models that can be coupled with optimization. Dong and Yang (2019), for
instance, implement a long-short-term memory (LSTM) neural network for operation scheduling
of water diversion and drainage pumping stations in the presence of complex hydrometeorologi-
cal constraints. Many research efforts have been recently developed revolving around surrogate
models, also pushed by recent development in artificial neural networks and deep learning (e.g.,
Fiedler et al., 2020). As many are pretty recent and only appear so far in conference proceedings,
they might not have been captured by our review.

Finally, it must be noted that, while it was possible to identify the above trends and challenges,
one non-negligible finding is that many works do not report sufficient details on the type of
forecasts, system size (state variables), implemented optimization method, benchmark, and in
some cases even the formulation of the objective function. This limits our capabilities to carry
out a complete analysis of the attributes of such studies and, in general, hampers their full
reproducibility.

4. Discussion

While the three types of water systems considered (water reservoirs, open channels and urban
water networks) feature domain-specific physical characteristics and different types of actuators,
objectives, and disturbances that should be accounted for in a control problem, common advan-
tages/drawbacks of MPC, trends and challenges emerge from this review.

MPC offers three primary advantages over more conventional SDP and ADP methods: (A1)
MPC overcomes the so-called ‘curse of dimensionality’ of Dynamic Programming, as it avoids the
computation of the value function, by iterating the optimal control problem over a finite receding
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Table 1: Summary of the disturbances and forecast features of the studies reviewed applying MPC to water
systems, grouped by type of system (WR: Water Reservoirs; OC: Open Channels; UWN: Urban Water Networks).
Numbers indicate the frequency for each class, with citations for rare features in the literature (up to 3 articles)
to highlight the studies with peculiar or unique features.

DISTURBANCE AND FORECAST FEATURES

FORECASTED
VARIABLE

Rainfall /
inflow

Tide
Water
demand

Electricity
demand

Lock
operations

Concentrations of
chemical species

Wind
Head /
water levels

WR 40
2 (Galelli et al.
(2014,2015))

0 0 0 0 0 0

OC 22

3 (van Ekeren
et al. (2013),
Tian et al.
(2015), Pour et
al. (2022))

33
1 (van der
Heijden et
al. (2022))

2 (Wagenpfeil
et al. (2012),
Segovia et al.
(2019))

3 (Xu et al. (2013),
Aydin et al. (2019),
Aydin et al. (2022))

1 (Wagenpfeil
et al. (2012))

0

UWN 6 0 24 0 0 1 (Dong and Yang (2019)) 0

2 (Dong and
Yang (2019),
Kändler et
al. (2022))

FORECAST TYPE
(PERFECT/REAL)

Perfect

Statistical
or ML-based
(including
synthetic)

Process-
based

Hybrid (process-based +
statistical/ML))

Complete
lack of
knowledge

Unclear

WR 15 21 16
2 (Ahmad and Hossain (2019),
Wei and Xun (2019))

0 4

OC 35 6 5 1 (van Overloop et al. (2008)) 13 9

UWN
2 (Marinaki et al. (1999),
Tedesco et al. (2016))

8
1 (Shishegar
et al. (2021))

0 0 37

PREDICTION
HORIZON

≤ 1 hour ≤ 1 day ≤ 1 week ≤ 1 month ≤ 1 year > 1 year Unclear
WR 0 5 12 9 7 4 3

OC 10 34 5
1 (Tian
et al.(2015))

0 0 9

UWN 6 28
2 (Salomons and Housh (2020),
Shishegar et al. (2021))

0 0 0 13

Table 2: Summary of the disturbances representation (deterministic and stochastic approaches, uncertainty model)
of the studies reviewed applying MPC to water systems, grouped by type of system (WR: Water Reservoirs; OC:
Open Channels; UWN: Urban Water Networks). Numbers indicate the frequency for each class, with citations
for rare features in the literature (up to 3 articles) to highlight the studies with peculiar or unique features. Note:
if the ensemble is reduced, the reduced ensemble size is reported, as the one used in the optimization problem.

DISTURBANCE AND UNCERTAINTY REPRESENTATION

DETERMINISTIC/
STOCHASTIC

Deterministic Stochastic Both (Stochastic / Deterministic)
WR 23 13 4
OC 52 4 2 (Maestre et al. (2013), Tian et al. (2017b))
UWN 36 5 1 (Pedrosa et al. (2022))

TYPE OF
STOCHASTIC
APPROACH
AND ENSEMBLE
SIZE

ENSEMBLE
PDF≤ 10 ≤ 30 > 30

WR

3 (Delgoda et
al. (2013), Ficch̀ı
et al. (2016), Payet-
Burin et al. (2021))

8
2 (Anghileri
et al. (2016),
Uysal et al. (2018))

4

OC

2 (van Overloop
et al. (2008),
Maestre et
al. (2013))

3 (Tian et al. (2017b),
Tian et al. (2019),
Velarde et al. (2019))

1 (Nasir et al. (2019)) 0

UWN
2 (Grosso et al. (2014),
Grosso et al. (2016))

0 1 (Grosso et al. (2017))
2 (Pour et al. (2020),
Pedrosa et al. (2022))

OPERATOR OVER
ENSEMBLE (IMPLICIT)
OR PDF (EXPLICIT)

IMPLICIT EXPLICIT

Expected value Tree
Min-max or
quartiles

Expected value (PDF)

WR 8 4

3 (Cuvelier et
al. (2018),
Ahmad and Hossain
(2019), Arsenault
and Cote (2019))

2 (Pianosi and
Soncini-Sessa (2009),
Wang (2010))

OC

3 (van Overloop
et al. (2008), Tian
et al. (2019), Nasir
et al. (2021))

3 (Maestre et al. (2013),
Tian et al. (2017b),
Velarde et al. (2019))

0 0

UWN
2 (Grosso et al. (2014),
Grosso et al. (2016))

1 (Grosso et al. (2017)) 0
2 (Pour et al. (2020),
Pedrosa et al. (2022))
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Table 3: Summary of the control variable characteristics of the studies reviewed applying MPC to water systems,
grouped by type of system (WR: Water Reservoirs; OC: Open Channels; UWN: Urban Water Networks). Numbers
indicate the frequency for each class, with citations for rare features in the literature (up to 3 articles) to highlight
the studies with peculiar or unique features.

CONTROL-RELATED INFORMATION

FREQUENCY
OF CONTROL
ACTIONS

≤ 1 hour ≤ 1 day ≤ 1 month ≤ 1 year > 1 year Unclear
WR 11 18 9 1 (Xu et al. (2015)) 0 1

OC 51
3 (Foo et al.
(2014), Tian et
al. (2015,2017b))

0 0 0 4

UWN 32

2 (Dong and
Yang (2019),
Shishegar
et al. (2021))

0 0 0 15

NUMBER OF
CONTROL
ACTIONS

1 ≤ 5 ≤ 10 ≤ 50 > 50 Unclear

WR 20 11

3 (Wang (2010),
Kistenmacher and
Georgakakos (2015),
Karimanzira
et al. (2016))

4
1 (Zmijewski
et al. (2016))

1

OC 8 21 10 16 0 3

UWN
1 (Kändler
et al. (2021))

9 10 6 10 0

TYPE OF
CONTROL
ACTION

Reservoir
release

Pump/valve
operations

Gate operations
Chemical
dosage

Other Unclear

WR 39 4 4 0

3 (Galelli et
al. (2014,2015),
Gavahi et al.
(2019))

0

OC
1 (Foo et
al. (2014))

14 38 0 6 13

UWN
1 (Marinaki
et al. (1999))

34 6 0

2 (Shishegar
et al. (2021),
van der Werf
et al. (2021))

5

CONTROL
ARCHITECTURE
(CENTRALIZED/
DECENTRALIZED/
DISTRIBUTED,
SINGLE-LEVEL/
MULTI-LEVEL)

Centralized,
single-level

Centralized,
multi-level

Decentralized,
single-level

Decentralized,
multi-level

Distributed,
single-level

Distributed,
multi-level

WR 40 0
2 (Giuliani and
Castelletti (2013),
Anand et al. (2013))

2 (Giuliani and
Castelletti (2013),
Anand et al. (2013))

0 0

OC 46
1 (Pour et
al. (2022))

0
3 (Sadowska et al.
(2014,2015),
Nasir et al. (2021))

4 4

UWN 35 0
1 (Martin
et al. (2022))

1 (Wang et al. (2017)) 0 0
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Table 4: Summary of the problem size (state variables), objectives (number and type), and benchmarking of the
studies reviewed applying MPC to water systems, grouped by type of system (WR: Water Reservoirs; OC: Open
Channels; UWN: Urban Water Networks). Numbers indicate the frequency for each class, with citations for rare
features in the literature (up to 3 articles) to highlight the studies with peculiar or unique features.

SYSTEM SIZE, OBJECTIVES AND BENCHMARKING

NUMBER
OF STATE
VARIABLES

≤ 5 ≤ 10 ≤ 50 > 50 Unclear

WR 30
3 (Wang (2010),
Kistenmacher and Georgakakos (2015),
Karimanzira et al. (2016) )

3 (Myo Lin et al.
(2018,2020), Salehi
and Shourian (2021))

1 (Blanco et
al. (2010))

3

OC 18 9 18 9 4

UWN 8 4 9

3 (Marinaki
et al. (1999),
Grosso et al.
(2016), Tedesco
et al. (2016))

0

NUMBER OF
OBJECTIVES

1 ≤ 4 > 4 Unclear
WR 35 5 0 0
OC 0 56 2 (Foo et al. (2014), Pour et al. (2022)) 0
UWN 37 2 0 10

OBJECTIVE
TYPE

Economic
(cost
minimization)

Flood/
overflow
minimization/
water level
control

Water supply/
demand
satisfaction

Active
actuator
minimization/
smooth
operations

Contaminant/
salinity
concentration
minimization

Environmental
protection
(environmental
flow)

Hydropower

WR 8 25 18

2 (Karimanzira
et al. (2016),
Uysal et al.
(2018a))

1 (Galelli
et al. (2015))

4 17

OC 8 55
2 (Foo et al. (2014),
Horvath et al. (2022))

47
2 (Aydin et al.
(2019,2022))

2 (Foo et al. (2014),
Horvath et al. (2022))

1 (Doan et
al. (2013))

UWN 11 8 0 11

3 (Biscos et al.
(2003), Muslim
et al. (2008),
Cong Cong
et al. (2016))

0 0

BENCHMARK

DDP
(Deterministic
Dynamic
Programming)

SDP
(Stochastic
Dynamic
Programming)

Historical operation
or current curves

PI control LQR
No
benchmark/
unclear

WR 4 8 11 0 0 19

OC 0 0
2 (Foo et al. (2014),
Askari Fard et al. (2022))

6 5 46

UWN 0 0 10
2 (Muslim et al. (2008),
Martin et al. (2022))

0 35
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horizon; as a result, the computation costs of MPC do not increase exponentially with problem
size (i.e., state and control dimension), which makes MPC a more viable approach for large-scale
multi-reservoir systems with more than three reservoirs (e.g., Wang, 2010; Kistenmacher and
Georgakakos, 2015; Ficchi et al., 2016), as well as for large OC (e.g., Shahdany et al., 2019;
Rodriguez et al., 2020; Kong et al., 2021) and UWN (e.g., Mart́ınez et al., 2007; Tedesco et al.,
2016; Wang et al., 2021). (A2) MPC overcomes the ‘curse of modeling’ of DP by allowing the
optimization model to take updated decisions at each time step with a real-time receding horizon
strategy, making use of existing models and optimization frameworks (e.g., Segovia et al., 2019;
Nasir et al., 2021; Mohanavelu et al., 2022). (A3) MPC can deal with hydro-climatic variability,
nonstationarities and uncertainty (e.g., Castelletti et al., 2008a; Maestre et al., 2013; Velarde
et al., 2019; Payet-Burin et al., 2021). By using real-time information and probabilistic forecasts
in the optimization process, MPC allows water systems operation to adapt to changes in the
climate or catchment and to mitigate the impacts of extreme hydrological events anticipating
them, particularly those occurring in unusual periods of the year (e.g., Castelletti et al., 2008a).
These advantages make MPC a more effective control technique and more feasible than DP for
large water systems (especially large channel and urban water networks), as shown in a few
studies benchmarking MPC against DP/ADP methods.

Although MPC has these advantages over more conventional DP and off-line methods, it also
has a few drawbacks: (D1) The iterative optimization involved in MPC can also lead to inten-
sive computations, especially for large-scale water systems with many actuators and a centralized
controller. For example, for open channels, Ren et al. (2021) discuss how the computation burden
associated with MPC can be a significant obstacle in large-scale systems with high-dimensional
state and control spaces, making it impractical to perform online calculations at each time step;
they call this a ’curse of dimensionality’ for MPC too, though this is less prohibitive than for DP.
Other authors have also paid attention to the trade-off between solution optimality and computa-
tion time, and have tested different MPC formulations to verify conditions under which optimal
control actions may be determined within a prescribed real-time control period. For instance,
Xu et al. (2012) test quadratic-programming-based (QP) and sequential-quadratic-programming-
based (SQP) MPC, and find out that SQP-MPC achieves better control performance than QP-
MPC at the expense of highly increased computation times (execution is 30 times slower).
Alternative approaches to overcome the costs related to centralized MPC controllers applied to
large-scale systems and to foster scalability have been explored also in urban water networks.
Tedesco et al. (2016), for instance, test the use of distributed approaches (command governor
strategies), in which the global control system is decomposed and local controllers are used,
each responsible for the supervision of each subsystem. (D2) The performance of MPC is highly
dependent on reliable prediction models, which may not be available for large-scale systems over
long prediction horizons, making MPC-based control approaches ineffective in some cases (e.g.,
Ren et al., 2021).

Two main common trends can be identified: (T1) an increasing number of studies adopting
ML-based models to predict the disturbances (e.g., inflows, tides); (T2) an expanding proportion
of stochastic MPC applications over the last decade (since 2013), though still a minority to
deterministic MPC.

The main challenges currently limiting the scope of MPC studies can be grouped into the
following four categories, which should serve as main goals to formulate a research agenda for
the next few years: (C1) lack of benchmarking studies that comprehensively compare MPC
against other control schemes and assess its performance in relation to the characteristics of
the physical system; (C2) lack of assessment of the uncertainty embedded in the model-based
control and simplifications adopted in the model structure; (C3) incomplete analysis on the
impact of the type of forecast, forecast resolution, and length of the prediction horizon; and
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(C4) limited exploration of tradeoffs and truly multi-objective MPC problems, to go beyond
the single-objective nature of the problem formulation (that is often achieved via aggregation of
multiple objectives functions appearing in multi-objective problems).

Related to the first challenge (C1) of evaluating the performance of MPC comprehensively
and objectively, in most of the reviewed studies, there is a lack of consistent benchmarking of
MPC with respect to other control methods and across systems with different characteristics.
Only a few studies compare MPC against multiple alternative techniques, and none compare
MPC with off-line alternatives using available forecasts in real-world settings. Most past studies
across all types of considered water systems either used only perfect forecasts to set the upper-
bound performance used as “ideal” reference (e.g., Uysal et al., 2018a; Marinaki et al., 1999),
or focused on an off-line benchmark control scheme without actual forecasts, but rather with
historical operations, typically based on rule curves or other set-point approaches (e.g., Delgoda
et al., 2013; Xu et al., 2015; Wang et al., 2020) and Stochastic Dynamic Programming (e.g.,
Wang, 2010; Galelli et al., 2014; Kergus et al., 2022). A comparative analysis of the MPC
performance in different contexts and in relation to case-specific characteristics (e.g., physical
features of the system, constraints, objectives, etc.) would be important to assess the dependence
between such characteristics and expected MPC results. However, many different factors are
varying across the reviewed studies and for different types of systems, both in terms of system
characteristics and optimization problem parameters. Thus, a direct comparison of existing
quantitative results would not be meaningful. A fair comparative analysis would instead require
consistent benchmarking studies comparing the relative performance of MPC with respect to the
same benchmark control method across studies. We acknowledge that the performance of MPC
can be affected by the characteristics of the basin, hydrology of the open channels, and other
factors, which can vary significantly between different geographic regions. Therefore, further
studies carrying out comparative analyses of MPC with consistent settings and with real-world
data (beside synthetic cases, which are frequent in the reviewed papers) should be considered for
water reservoirs, urban water networks, and open channels.

As for C2, the key element of MPC is the use of a model of the system to be controlled,
yet models are always subject to errors, inaccuracies, and uncertainties. MPC leverages the
accuracy of the models of the systems to ensure the robustness of the controller with respect
to uncertainties (e.g., Schwenzer et al., 2021). Many studies reviewed recognize this aspect and
provide at least some insights into the accuracy of the chosen internal models, supporting their
choice (e.g., Galelli et al., 2014; Munier et al., 2015; Ficchi et al., 2016; Giuliani and Castelletti,
2013). However, some studies do not analyze the model’s accuracy in sufficient detail, and few
do not provide any information on this. Moreover, most of the studies reviewed (more than
100 out of 149) do not assess the impact of the MPC internal model uncertainty as usually the
same models for both the open-loop optimization and closed-loop simulation (with an associated
update of model states) have been used. This is especially the case for water reservoirs and urban
water networks. Only for open channels, most of the studies (> 30 out of 58, with few studies with
unclear information) test MPC with a different internal prediction model than the model used
for the closed-loop simulation. Simplified versions of the Saint-Venant equations are usually used
as an internal model in the MPC, while the full Saint-Venant equations, implemented in software
solutions such as SOBEK (e.g., Wahlin and Clemmens, 2006b; van Overloop et al., 2010a; Fele
et al., 2014; Hashemy Shahdany et al., 2017; Tian et al., 2019; Liu et al., 2023) and SICˆ2 (e.g.,
Alvarez et al., 2013; van Overloop et al., 2014; Horvath et al., 2015a,b; Segovia et al., 2019; Pour
et al., 2022), are used as closed-loop simulation models. Using the same internal model for the
closed-loop simulation is likely to lead to an overestimation of the MPC performance, but this is
the solution adopted by many authors for two obvious reasons: (i) computation time reduction,
and (ii) lack of more (refined) models readily available. For water reservoirs, only a few studies
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(e.g., Munier et al., 2015; Lin et al., 2020) have adopted a more refined and computationally-
intensive model for the closed-loop simulation, which is essential to assess the robustness of the
controller. Moreover, many studies, primarily on MPC applications in urban water networks,
rely on simplified or synthetic systems (e.g., Sankar et al., 2015) due to the limited availability
of calibrated high-fidelity models and the computational requirements of coupled hydraulic and
water quality simulations of large-scale network systems models. While more computationally-
efficient alternatives exist, including data-driven surrogate models (see Section 3.3), they often
come with a tradeoff between computational savings and model accuracy. This should also be
better quantified, possibly in relation to system size and characteristics.

Regarding the type of forecasts used in MPC (C3), various forecast variables, types and
models emerge from the current literature, with differences depending on the type of water
systems considered. In terms of forecasted variables, for water reservoirs, all the studies used
either rainfall, inflow or tide forecasts. For urban water networks, water demand forecasts are
mostly used, with a minority of studies also using rainfall/inflow or water levels. On the other
hand, a more diverse set of forecasts are used for open channels, with more than half using
water demand forecasts, less than half rainfall/inflow and a few other variables (see Table 1).
In terms of the type of forecasts, for urban water networks, almost all the few studies relying
on real (non-perfect) forecasts used statistical or ML-based models (e.g., Salvador et al., 2020;
Dong and Yang, 2019). For open channels, six studies used statistical or ML-based models (e.g.,
Maestre et al., 2013; Tian et al., 2017b), five used process-based models (e.g., Xu et al., 2013;
Aydin et al., 2019), and a single study used a hybrid approach (van Overloop et al., 2008). The
picture is more complex for water reservoirs, for which the studies adopting real forecasts used
more sources and forecasting techniques: less than half of them used well-established process-
based hydrological models fed by operational meteorological forecasts (e.g., Wang et al., 2014;
Raso et al., 2014; Ficchi et al., 2016) to produce the forecasts used in MPC, while slightly more
than half used statistical or machine learning-based models that are calibrated on past observed
data (e.g., Pianosi and Soncini-Sessa, 2009; Giuliani and Castelletti, 2013; Galelli et al., 2015;
Gavahi et al., 2019). Only a few studies compared or integrated these two different techniques
(Wei and Xun, 2019; Ahmad and Hussain, 2019). Given the recent increase in the availability
of both real hydro-meteorological forecasts and efficient machine learning models, it is logical to
expect benefits from more testing of hybrid forecast products in MPC and further applications
are needed. Along the same lines, also the availability of forecasts at multiple timescales has
been increasing, from short-range (few days) to seasonal- or long-range (up to 6-7 months or
a year), and there is growing interest in seamless forecasts (e.g., Wetterhall and Di Giuseppe,
2018). However, there is a lack of research integrating multiple forecast products across time
scales in MPC. Moreover, there is a lack of research investigating the dependence of the optimal
prediction horizon and relative MPC performance on the accuracy of forecasts. The optimal
horizon and the MPC performance are expected to be intensely dependent on the quality of the
forecasts (e.g., Payet-Burin et al., 2021; Wei and Xun, 2019), and this dependence is not trivial
due to the receding horizon and on-line update of the control strategy.

Finally, a key point for multipurpose water systems is that only a limited number of stud-
ies explored possible Multi-Objective (MO) MPC frameworks (e.g., Lin et al., 2020) typically
required to address the tradeoffs across sectors by providing a set of Pareto-optimal solutions
(C4). The majority of the reviewed papers rather compute a weighted sum of the objectives
(e.g., Dong and Yang, 2019; Tedesco et al., 2016), which aggregates multiple objectives in an
individual objective function, and some authors reduce the number of objectives by enforcing
more constraints in the control problem. Further work is needed to explore Pareto-optimal so-
lutions from MPC both at each control time step and over a long simulation horizon rolled by
multiple receding horizons to account for the multi-objective nature of water systems’ operation
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problems and enable tradeoff analysis.
Lastly, we noticed that the level of detail in reporting model description, optimal control

problem formulation and explanation of the proposed control/management methodology is het-
erogeneous across the collection of reviewed papers. In many cases, there is no sufficient level of
detail in the reviewed journal articles to allow for a full and fair comparison. A final recommen-
dation is thus to develop a standardized framework to report key information on the essential
components of future MPC studies (e.g., type of forecasts, system size and state variables,
implemented optimization method, benchmark methods, objective function, control variables,
their number and their frequency) to facilitate comparison across studies, ultimately supporting
knowledge transfer and reproducibility.

5. Conclusions

In recent years, Model Predictive Control has gained interest in the adaptive management
of interconnected water resources systems, motivated by its capability of incorporating forecasts
of evolving disturbances into a real-time optimal control scheme. Our comprehensive review
of 149 peer-reviewed journal articles published in the last 20 years, selected after screening an
originally more extensive set of 826 papers and checking them for eligibility, confirms an overall
increasing adoption of MPC in all considered inter-connected sub-domains at the basin to urban
scale, i.e., water reservoirs, open channels, and urban water networks. Despite the differences
across these three types of systems, some common advantages, drawbacks, trends and challenges
were identified in relation to MPC applications. In particular, our review identifies four main
categories of challenges currently limiting most MPC applications in the water domain: (i) lack of
systematic benchmarking of MPC with respect to other control methods and lack of assessment
of the MPC performance in relation to the characteristics of the physical system; (ii) lack of
assessment of the impact of uncertainties on the model-based control; (iii) limited analysis of the
impact of diverse forecast types, resolutions, and prediction horizons; (iv) under-consideration
of the multi-objective nature of most water resources systems. We argue that future MPC
applications in water resources systems should focus on addressing these four challenges, as key
priorities for future developments.
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List of acronyms

ADP Approximate Dynamic Programming
ANN Artificial Neural Network
CSO Combined Sewer Overflow
DDP Deterministic Dynamic Programming
DSS Decision Support System
EPANET Environmental Protection Agency Network Evaluation Tool
ESP Ensemble Streamflow Prediction
FQI Fitted Q-Iteration
IPCC Intergovernmental Panel on Climate Change
I Integrator
ID Integrator Delay
IDZ Integrator Delay Zero
IR Integrator Resonance
ISO Implicit Stochastic Optimization
ML Machine Learning
MO Multi-Objective
MPC Model Predictive Control
OC Open Channel
OLFC Open-Loop Feedback Control
PID Proportional-Integral-Derivative
POLFC Partial Open-Loop Feedback Control
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
SDP Stochastic Dynamic Programming
SWMM Storm Water Management Model
SICˆ2 Simulation and Integration of Control for Canals
SOP Standard Operating Procedure
SSDP Sampling Stochastic Dynamic Programming
TB-MPC Tree-Based Model Predictive Control
UWN Urban Water Networks
WR Water Reservoirs
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