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Predictive Control of a Human-in-the-loop Network
System Considering Operator Comfort Requirements

A.D. Sadowska, J.M. Maestre, R. Kassing, PJ. van Overloop, and B. De Schutter

Abstract—We propose a model-predictive control (MPC)-based
approach to solve a human-in-the-loop control problem for a
network system lacking sensors and actuators to allow for a
fully automatic operation. The humans in the loop are therefore
essential; they travel between the network nodes to provide the
remote controller with measurements and to actuate the system
according to the controller’s commands. Time instant optimists
MPC is utilized to compute when the measurement and actuation
actions are to take place to coordinate them with the network
dynamics. The time instants also minimize the burden of human
operators by tracking their energy levels and scheduling the
necessary breaks. Fuel consumption related to the operators’
travel is also minimized. The results in a digital twin of the
Dez Main Canal illustrate that the new algorithm outperforms
previous methods in terms of meeting operational objectives
and taking care of human well-being, but at the cost of higher
computational requirements.

Index Terms—MPC, human-in-the-loop, network systems

I. INTRODUCTION

The optimal operation of large-scale networked systems can
require a significant amount of automation, but the cost of in-
stalling and maintaining the corresponding sensors, actuators,
and the communication infrastructure can become prohibitive.
A cost-effective alternative observed in many real-life appli-
cations is to have human operators traveling between various
parts of the system to take measurements and provide actuation
as they see fit, avoiding or minimizing the use of sensors
and actuators. Irrigation canals management is a well-known
example in this regard due to the high setup and maintenance
costs, and the problems of theft and vandalism, for automatic
equipment is installed and left unattended. Although multiple
automatic methods have been proposed [1], it is still common
to resort to manual control so that a human operator travels
along the canal, changing gates settings as he or she deems
appropriate.

Nevertheless, it is still possible to design advanced control
methods based on the employment of human operators to
measure [2,3] and act within the system to improve perfor-
mance. For example, the case of irrigation canals is explicitly
considered in [4]. A similar concept is explored in [5], where
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the controller provides the human with a set of admissible
control actions that he or she is allowed to choose from.
Indeed, this is often the case of decision support systems [6],
which drive operator decisions, although they can occasionally
be overruled based on human expertise.

As a matter of fact, the entanglement between automation
and humans is anything but exceptional, especially since many
control systems are specifically designed to satisfy human
needs. Typical examples include the control of vehicles [7, 8],
exoskeletons [9] and groups of robots [10, 11], rehabilitative
robotics [12, 13], and bilateral teleoperation [14]. To this end,
a wide variety of approaches are employed, e.g., reference
models [15]; formal methods [16] to satisfy the required
control specifications; model predictive control (MPC) to
compute operator actions [6, 17] and model his or her control
law [18]; Markov models to describe human behavior [19];
and a family of feedback methods to obtain references, e.g.,
via touchscreens [11] and haptic interfaces [20], and also learn
from the human, e.g., via physiological measurements [12,21]
and ratings [13]. Furthermore, research also explores topics
such as fatigue detection in pilots [22], the minimization of
cognitive overload [23], and human tendencies, e.g., to antic-
ipate commands [24] and minimize efforts [18,25], operator
properties such as passivity to obtain stability guarantees [26],
and even human biases, e.g., overconfidence [27]. Finally, in
the context of large-scale systems operated by humans, we also
note similarities between the underlying problem of finding a
route for an operator and the asset routing problem [28] as
well as the visit scheduling problem for target patrolling [29].
In this regard, the issue of explicitly considering human factors
was discussed in [30].

The specific human-in-the-loop problem we deal with was
first studied in [17, 31], which introduced the so-called mobile
model predictive control (MoMPC) approach,! where human
operators travel between various locations of an irrigation
canal taking measurements and following the instructions
provided by a centralized MPC controller in an event-driven
fashion. In particular, the operator communicates new mea-
surements from a visited location to the controller using a
mobile device, and in return receives the control actions to be
applied as well as the next location to go to, which is computed
accounting for the travel time between different locations and
the time needed at a local site. In [32], the MoMPC framework
was enhanced using time instant optimization MPC (TIO-
MPC) [33, 34]. Unlike [17, 31], where actuation instants follow
directly from the travel times of the route computed, TIO-MPC

'MoMPC is a patented technology that is commercialized by Mobile Water
Management. More information at https://mobilewatermanagement.nl.



allows the controller to freely determine these time instants
subject to operational constraints, e.g., to introduce waiting
periods that synchronize the operator action with the system
dynamics, thus enhancing performance [32].

In previous works [17, 31, 32], the case of multiple operators
was simplified by optimizing the route and control actions of
one operator at a time (with the schedules of other operators
kept constant) [17]. Here, we propose a generic multi-operator
problem where the schedules for all operators are computed
based on a more realistic transportation infrastructure, where
multiple routes, time-of-day-dependent travel times, and fuel
consumption are considered. Given the highly scarce nature
of the measuring and actuating actions that the operator can
provide in a large-scale system, the controller is given the
freedom to schedule both when the measurement is taken and
the exact time instants at which the control action is applied.
Also, to enhance the information gathering, we add a new
penalty that encourages the controller to assign operator visits
evenly, so that all parts of the system can be monitored even
in the absence of fixed remote sensors. Finally, we consider
novel human-related aspects to improve human operators’
well-being, e.g., stress levels and scheduling of breaks.

The outline of this article is as follows. In Section II,
we define the network system and the internal model of
the controller. In Section III, the objectives weighted by the
controller and the optimization problem solved are given. The
performance of the controller is illustrated in Section IV using
the Dez canal in Iran as a case study. Finally, conclusions and
future directions are given in Section V.

II. NETWORK SYSTEM MODELING

We consider a network system described by a graph G =
(V,€). Here V is the set of nodes (i.e. all measurement and
actuating locations in the network system?) and £ denotes the
set of edges of the graph such that (v;,v;) € £ if there is a
direct route between nodes v; and v; in G [35].

Define a set of all admissible routes in the network from
node v; to node v; as

R'Ui‘}'Uj = {,R'vljiﬁvj? ce

7R’Ui—)’Uj /

6]

Nroutes.v,y —vj }

Each individual route Rf, Sy €= 1, ..., Nroutes,v;—v,
is associated with a specific distance D7, _,, that must be

traveled by the operator along that route. It is required that
there are no cycles on the routes and that the distance of each
route Ry, _,, is bounded, i.e., Dy _,, < Dmax. Furthermore,
assume that each path Rf _,, 1is associated with a certain
operator stress level S¢, € (0,1) per time unit and is
assigned an average time-varying speed vy, S (t) with which
one travels along this route. Variations between stress levels
and average speed for different routes between two nodes
could stem from a different nature of different routes, e.g. one
route may be a calm, rural road and another may be a highway
with different traffic conditions depending on the time of the

day (i.e., at peak and off-peak times).

’It is assumed that at each node both measurements can be taken and
actuations can be applied. However, the method can be easily extended to
accommodate measurement or actuation only nodes.

Head
gate
Gate

110 A 5

(m+MSL

100 4

I—— S
— Y
©

Elevation

90 A

Reach E i E § i P I
1 2 3 I 5 6 P7 8841 9 1 10 111412 &
80 T — : ! *

0 10 20 30 40
Distance (km)

Figure 1. Longitudinal profile of Dez canal. Due to the elevation with respect
to mean sea level (MSL), water flows downstream along its more than 40
kilometers length. The canal is composed of 13 sections separated by gates
that can be adjusted manually to regulate flows and water levels.

To calculate the instants of time of the operators’ actions,
we consider a network with |V| = N nodes and employ the
continuous-time model’

#(t) = Az(t) + Bau(t) + Bad(t) + w(t), 2)
y(t) = H(t)z(t) + v(t), 3)

where z(t) € R™ denotes the state, u(t) € R™ denotes
the input, d(t) € R" denotes the known exogenous input,
w(t) € R™ denotes the unknown process noise, y(t) €
RP denotes the measured output, and v(f) € RP is the
unknown measurement noise. The overall state and control
input vectors can be written as x(t) = (z{(t),... 7aﬁ\,(t))T
and u(t) = (uﬂt),...,uJTV(t))T, and they are subject to
operational constraints, i.e., z(t) € X and u(t) € U, where X
and U/ are nonempty sets.

For example, consider the case of an irrigation canal (see
Figure 1). Here, x(t) is a vector containing the deviations
of water levels with respect to their setpoints (i.e., regulation
errors) and possibly delayed flows of the 13 nodes of the
canal, u(t) typically represents increments in water flows due
to changes in the operating infrastructure (e.g, the position
of gates), d(t) contains exogenous inputs such as the ma-
nipulation of offtakes by farmers to take water, and w(t)
and v(t) are disturbances that model issues such as rainfall
runoff, evaporation, and instrument noise. Therefore, x;(t)
and wu;(t) refer to these magnitudes at the node i € V of
the canal, which are relevant to the local dynamics of the
corresponding section. Also, sets X and U/ contain the set of
admissible values for the previously mentioned magnitudes,
e.g., maximum and minimum water levels and flows. Finally,
the matrices A, B, Bqy and H(t) can be calibrated using
identification methods or follow a mechanistic structure as in
integrator-delay models [38].

Remark 1: The output matrix H(¢) changes over time
depending on how many operators are at the measurement
nodes at a given time. Specifically, an operator at one of the

3Models of this kind can be found in the literature for different systems,
e.g. for traffic systems in [36] and for irrigation systems in [37].



nodes can provide measurements of the corresponding output.
Consequently, H(t) may be an empty matrix when at a given
time none of the operators are at any of the measurement
nodes. Therefore, the system observability is not ensured. In
addition, due to the noise terms w(t) and v(t), the controller
requires state estimates (cf. [39]), which can be obtained,
e.g., using Kalman filters [40], observers based on Takagi-
Sugeno models [41], and moving horizon estimators [42]. In
particular, the observer must fuse the measurements obtained
by the operators in unevenly spaced sampling steps (cf. [43]).
However, our problem setup is designed for systems that are
currently operated manually. In this regard, a system must
possess certain facilitating conditions to be directly controlled
by human operators. For example, irrigation canals are passive
systems with very slow dynamics. Likewise, as discussed
in [44], the loose coupling between canal sections can be
exploited to generate decentralized observers with bounded
uncertainty. Finally, the reader is referred to works such
as [45,46] and the references therein for a proper discussion
of the technical challenges with regard to observability in
switching linear systems.

III. CONTROL ALGORITHM

Following [32], we use TIO-MPC [33,34,47] to explic-
itly consider as optimization variables the time instants of
measurements and actuations.* In comparison to the original
MoMPC [17,31], the arrival and actuation time instants no
longer follow from fixed traveling times between locations,
i.e., the operator may have some waiting periods to synchro-
nize the measuring and actuating processes with the system
dynamics to improve performance. In the current setup with
human operators, the resulting control algorithm is named
Time Instant Optimization MoMPC (TIO-MoMPC).

A. Route definition

Consider a network with N,, > 1 operators indexed by
j € O :={1,...,Ny,}. Given an activation time teR
of the proposed event-driven control strategy, a subset of
operators (’3(5) C O are considered available to take and
communicate measurements from their current locations, and
receive information on what actions to apply. Thus, operators
j ¢ O(i) are either traveling or completing some activities.
We define a travel status function for operators j ¢ O() as

o | 1 ifoperator jistraveling,
st () = { 0 otherwise. @)

It is assumed that traveling operators must go to the next loca-
tion that they were originally assigned to, but the remainder of
their trip can be altered. Those operators that are completing
some activities at a location, need to be allowed Tiusy,; (f)
time units to finish the activities before new instructions can
be given to them. Since they have not yet departed en-route,
they can be given a completely new schedule by the controller
once they are free.

“4For simplicity, it is assumed that the delay between taking measurements,
sending them to the controller, and receiving back instructions is negligible.
However, the approach can be easily extended for non-zero delays.

Define the path variable for the operator j as p;(f) =
(p1,;(£),-..,pn.; (), pej(f) € V, which contains the Ny
consecutive indices of nodes to be visited by the operator,
in which p; () = vcunenw(f) (the current node visited) for
Jj € O(ZE)’ and pl}j(tu) = pl,j(fprev) fOI'j ¢ O(tv) if Stj(Lf) =1,
where 1., denotes the time of the preceding activation of
the controller. The elements of the path variable pj(f) may be
repeated, as it may be worthwhile for an operator j to inspect
and actuate a subset of possible locations more than once.
However, we will later introduce a penalty term (cf. (8)) in the
cost function of the model predictive controller to stimulate all
locations to be visited regularly to prevent growing uncertainty
about some parts of the system. This helps to obtain recurrent
measurements from all locations whenever possible, as there
is no other means of monitoring the local sites.

For Nroutei,pz_j(f)—)pvprl,j(f) .
subsequent nodes py ;(t) and pe11 ;(f) on the operator’s route
Dj (f), as an additional degree of freedom, the controller
also assigns what specific route the operator should follow
between py;(f) and pey1j(f). To this end, we define a
route index variable 7;(f) such that each element 1, ;(f) €
{1, Nooutes,pes (1) —pesa s (i) OF T () detervmines the index
of the selected admissible route between py ;(t) and pyi1,;(%),

i.e. 1y ;(t) is the index ¢ of R, SBopess (B

We denote by T/es(f) = (T{¢*(1),...,TRe*({)),
Tpees(t {) € R, the time instants at which the operator Jj should
take measurements at the consecutive locations of the path
p;(t ) Similarly to the first element of the sequence p;(f), for
j € O({) the first element of Ties(t f) is fixed to the current
time Tfflfas(t) = {. Next, denote the time instants in which the
operator j should apply the actuation at the visited locations
by Tt (t) = (T{S(D), ..., Tact; (1), TpSH(f) € R. Unlike
Tmeas( ), the first element of Wthh is fixed, all elements of

act
Toet(t {) are assigned by the controller.

> 0 routes between any two

The control actions that the operators apply are, in a general
case, defined on a continuous domain to allow the associated
control input to be modified continuously. However, in some
applications, it may be reasonable to restrict the domain to
integers only when the control actions relate to switching the
equipment according to its discrete settings (e.g. on/off). We
denote the control actions to be executed by the operator 7 on
path p;(£) by u(D) = (% (D)., w3} (). u (D) € R
Similarly to TaCt( ) this whole sequence is computed given
the up-to-date measurements provided by the operator.

With the help of the variables p;(f), Tress(t ), et f), and
ujp(f) for all j € O, the trajectories of the control input u(-)
are formulated for the duration of the prediction window 77,
i.e. from the current activation time 7 until the end of the
prediction window £ +T},. This results in the following relation
for 7 € [t,1 + T}):

Mma{wxwe—ww» if v;
’ 0

in which ¢ denotes the Dirac impulse function. Therefore, the
operator should communicate to the controller the measure-
ments taken at location py ;(#) at time T7"°%(¢ £). Then, at time

= Pe,j (tu)a 5
otherwise, )



TPt f), the control action (L f) should be applied at that
locatlon After that, the operator proceeds to the next location
pey (D).

To complement the continuous-time dynamics of the net-
work (2)-(3), we use continuous sampled-data MPC [48,49].
It uses a continuous-time model of a system, but measure-
ments are taken from the system and new control actions are
applied only at consecutive sampling times (as opposed to
continuously). In our framework, the use of sampled -data MPC
enables us to define the time instants 77"°(% f) and it f) as
real-valued variables.

Assuming that the estimate &(t) is at hand, we characterize
the performance of the system by the cost function

i+
Iorpc(f) = / (@ (T B)Qa(r D) + u" () Ru(r[D) dr

t (©)
where () and R are positive semi-definite matrices. Here, we
use a simple quadratic cost function, but more specialized non-
linear cost functions can easily be used.

For example, in the irrigation canal example, () and R are
typically diagonal matrices so that cost (6) integrates squared
regulation errors and changes in the infrastructure. In this
way, the control designer can balance the trade-off between
regulation accuracy and control effort, which is related to the
lifetime of actuators, by tuning these weight matrices.

Remark 2: From a practical viewpoint, one could use the
state of a digital twin of the irrigation canal as a proxy of the
real state (e.g., after setting the canal and the digital twin at a
certain operation point) and then update the digital twin with
the actions implemented and the measurements sent by the
operators. Although this practical procedure would introduce
uncertainty, the MPC framework has alternatives to deal with
this issue, e.g., robust and stochastic formulations [50-52].

B. Network monitoring

Based on the concepts of node refresh time [53] and node
idleness [54], we promote regular visits to all locations by
adding a penalty Jj.(t), which grows with the time since
each location was visited for the last time, see Figure 2. To
this end, let us define for each v; € V the elapsed time as

if 7 =T () A v =
otherwise,

“

pe,j(t),

. 0
attrt = { o

(N
where 125t (7|f) represents the last time instant that node v; €
V is visited by the operator within the time horizon [f, + T}]
according to the computations performed at activation time
{. At every new controller activation in response to operator
measurements from a location at time £, the initial value is
125t (£]F) = 1254 (|{ prey ), in Which £, denotes the activation
time immediately before {. The resulting cost function Jo.(t )
takes the form

y N T, y
Joe() =Y / Qe At (T]F)dT,
i=171t

in which ajoc; > 0 put more or less priority on visiting
certain locations as needed. A weighted-sum strategy is used

®)

new activation
At; ) ith penalty is
operator arrives B
t the locati Ppeeyt T
at the location At (7[Eprev)dr
— Forov
5 1 T
tprev + Uprev + T T
+Tp
;th
penalty is Aty (T|f)dr
Aty {
. operator arrives at the location
value carried
forward

t+ 1T,

Figure 2. Definition of the variables At;(7|t). The i*" component of the
penalty Jioc (€prev) ((f), respectively) represents the blue (green, respectively)
area shown.

(cf. (17)) to integrate (8) with other cost components, whereby
the minimization of (8) aims at stimulating the controller to
take frequent measurements at all locations. On the other hand,
it can also bring subsequent time instants closer, which could
diminish performance in terms of cost Jyompc(t). Therefore,
careful selection of the weights (see (17)) of the individual
components in the overall cost function is crucial.

In addition to the current persistent monitoring condition,
in settings with asynchronous and distributed sampling, the
scheduling mechanism could also directly minimize the state
estimation error. To this end, one could consider a penalty
such as Jestimate () Zfil f{t+Tp Broci|H(T|E)&(T]) —
y(7|f)||?dr, where Bioc,i > 0. Additionally, the weighting
parameters ioc; and Pigc,; could be made time-varying or
adaptive to the state estimation error. Such extensions are
beyond the scope of the present article. The reader is referred
to [55] for more details.

C. Operator-centric approach

In contrast to the previous results in [17,31,32], where the
average travel speed of the human operator was assumed to
be constant all the time, in the current article, the operator’s
speed can vary at different parts of the path p;(f), j € O, or
even at the same segments of the path but at different times.
However, we note that these time-varying speed profiles are
imposed on the controller and are not subject to control.

1) Travel time penalty: Define the time spent by operator
j traveling from node ps ;(f) to ps.1;(f) at time f taking the

.

route with the index 7, ;(t) as

)
Ps,j (£)=Ps+1,5 (F)
Ts,j { o
v (t) Q)

paj(H)—=pay1,; (D)

75,4 (%) _
P, () =psy1,5 ()

€))

Ts,j t) . .
With 7;%  (Dpesn ¥ @ the total time that an operator j spends

traveling between locations is expressed as

Z

rb B10)
Ps.i () —=pst1,5(8)

(10)

Opj



It is argued in [56] that long travel times (e.g., of professional
drivers or commuters) may be associated with fatigue and
deterioration of health, with physical inactivity mentioned as
one of possible reasons. Therefore, minimizing (10) serves the
purpose of reducing the operator’s workload.

2) Waiting time penalty: Waiting times can be perceived by
some operators as wasted time [57], generating discomfort.
Hence, a second term is added in the cost function of the
operator to consider his or her preferences regarding waiting
and traveling:

(% ]\]q i, “,
T35 () = 3052y (T2 () — Ty (D)) .
predtt )
No—1 5 (D =Psi1, (D,
+Zs:1 Snlelasj( ) TaCt( ) mod ;g’pjzzt“;LJ d ) .
an
The first part of J3|, (¢ f) accounts for the waiting time between

taking measurements and applying a control action and the
second part accounts for waiting time when traveling to a
new location. To balance between Jf)p ; and Jgo . for each
operator, the operators choose whether they prefer to travel or
wait. Based on that, two mutually exclusive sets Oyt and
Oiravel are defined such that O = Oyait U Ogravel. The set
Ouwait contains the indices of the operators who dislike waiting
more than traveling, and set Oy, avel contains the indices of the
operators who dislike traveling more than waiting. Sets Oyait
and Oiavel are used to specify contributions from various
operator-centric cost components for each operator (see (15)),
where penalty (10) is used for operators j € Oypavel (sO the
waiting time is not penalized) and penalty (11) is used for
operators j € Oyait (therefore travel time is not penalized).

3) Operator’s stress penalty: A third component of the
operator cost function is motivated by understanding that
different routes may have different levels of stress associated
with them for different people. This may originate from the
different perception of driving on a busy highway versus a
local road, where one may prefer the quiet local roads, or the
opposite — the convenience of highways versus using smaller,
local roads [58,59]. The controller selects the route 7 ; (f)
taking into account the burden for the operator given his or
her preferences:

Ng—1
s (7 0 p 77 ()
Tona(l) = 2_; Sipes®=perns @ Do S 0open s (12D

where the stress level variable S re.3 (1) () is related
J>Ps J(t)_>pb+1 J(t)

to the stress level of the operator 7 on a path segment between
node ps ;(f) and psyq () taking route r ;(f). It is time-
varying to allow one to assign different levels at different times
in response to, e.g., traffic congestion or weather conditions.
We allow here for the stress levels to differ amongst various
operators. As seen in (12), to compute the overall stress level
on a particular path segment s = 1,..., Ny —1 the stress level
is multiplied by the time spent on that path segment.

4) Operator’s energy level: Another aspect that the con-
troller accounts for is tracking the operators’ energy levels and
scheduling their breaks. We define ¢; to denote the energy level
of the operator j € O. It is assumed that as operators travel,
perform activities at scheduled locations, or wait in between

other activities, the energy level drains linearly, possibly at a
different rate for different operators. To express this, we use
& = At with

]

Ae;ra"el if operator j travels,
N AeMditing g operator j waits,
Ae;cmlty = Ae?“’meas if operator j is at a location,
for measurements and actuation,
Ae]r-e“ if operator j takes a break,

where Aetravel < Ae}vaiting < 0, Ae;Ct’meaS S(I?)),
and Ae]r-es > 0. The energy level e; cannot fall below a
threshold e;“m. To ensure this, the controller is free to schedule
up to NVyest breaks for each operator. This is done with
the help of a variable T;ESt(f) = (TfeJSt( ), - T]’{,efetshj( ),
Trebt( ) € R, which denotes the times when the breaks
for the operator j are to start, and a variable AT} ) =
(ATFSH(D), ..., AT 4t ), ATZZSt(f) > 0, which denotes
the duration of the breaks of the operator j. Note that the
controller may decide to schedule breaks at times when the
energy level e; is still relatively large, but it is worthwhile for
the system to have a pause between various activities, when
the operator would otherwise have to wait. We recognize that
from the human well-being perspective, it may be sensible
to impose a minimum duration of a break, but this is not
considered in the current formulation of the controller.

5) Uniform workload penalty: Lastly, with multiple opera-
tors involved, we propose a penalty term Jy,;, whose aim is to
promote schedules with uniform workload between operators.
The workload is expressed in terms of the average travel time
Ttnj(f) given in (10) and the waiting time Twaiw(f) given
in (11) We define the total time variable for operator j as
Tiot,; (T {) = Ty, gt £) + Tait ]( f), with an average amongst all
operators denoted as T2°(f) = N%p > jeo Trot,j(t f). Recall
that when operators perform activities on network nodes, they
are neither traveling nor waiting, so time is not accounted for
in Tiot ;(f). The penalty that we propose is

Juni({) - Z (Ttot,j (E) - Ttaé)vte({))2

jeo

(14)

Because the total time variable is considered in (14) as
opposed to its individual components Ti, ; and Tiyai¢ 5, the
operators’ preferences to spend more time traveling or waiting
are not conflicting with this penalty (cf. (15)). Understandably,
the choice of penalty (14) to incentivize the controller to
spread the workload evenly amongst the operators could be
different. For instance, one might also use the operators’
energy levels.

6) The overall penalty: The cost function that describes the
burden on the operators is a weighted sum of the objectives:

92 .

JOp(t) = Zje(’) (a(t)p,vjjct)p,j (t) op j‘]c‘))\; ]( ) op j‘](S)p ](t))
+auni<]uni (t)v
(15)
with weighting parameters %p o af)"p,j, agm, t=1,...,Nop,

and a,;. Observe that due to the definition and role of sets
Owait and Oiravel, We have aop ;=0ifj € Owait and QAop.j
0 if .] € Otravel-

“



D. Fuel consumption minimization

The fuel consumption cost can be formulated as

No—1
H=2 D R

JEO s5=1

rs,5 (£)

Ps,i (D) =pst1,5(E)
(16)

where R () is the rate of fuel consumption (in liters per dis-

75,4 (0) ... The exact
. ; Ps,i ()2 Pst1,5(8)
form of the function R () is vehicle-specific, but generally
resembles a quadratic function with a flat area of minimum

value in the region of the highest fuel efficiency [60].

fsﬁj(f) )
ps,j (D) —=psy1,; (D)

tance unit) that depends on speed v

E. The new control algorithm

The optimal control problem to be solved whenever the
operator provides new measurements is then

min woJyompc (¢ £) + w1 Jioc(f) + wadop (£) + w3 e (£),

U; ()
jeO

(17)
subject to
a(r|f) € X, Vr € [{,{ + T}, (18)
w(TPS'|E) eU for b =1,..., Ny, j €O, (19)
meas ac T arr de
Té—i—l] > T, t*%ﬁjﬁpuu + dpulj +AT pF;J
(20)
ford =1,...,Ng—1if ps; # pet1,5, 5 € O,
TS > TS + AT (21)
f0r£:1 LN —1ifpe; =pey1,5, 5 €O,
Tact >Tmeas+A SC;[/ , forf = 1,,,,,]\75,_7'6(97
(22)
Tlmeas = E, P1,j = Vcurrent,j, fOI'j € (53 (23)

T > T s (24)

]OCJ' —P1,j (t)

f+ Tbusy,j +
p1j €V, forj ¢ Oandst; =0,

T1,5
T1 eas > f + 7;0% N 25)
1, =p1,;(t prev) forj ¢ O and st; =1,

Ty < t 4+ Tmax, j € O (26)
Tfe;’t > {, 27
Ty > TSt ford=1,...,Neest — 1, j € O,
ATrest >0, forl=1,..., Ny, j €O,

g > emin (28)
and (2), (3),(5), (7), (29)

where the time dependence (f) is omitted in
the constraints for brevity, loc; is the location
of a traveling operator j at time ¢, wU(t) =

(py (B, r(B), T (), T2 (1), uSP (1), TE (1), ATI(E)),

and wy, w;, wy, ws are positive weighting parameters.
If the next location is different from the preceding one
(Pé,g(u) # Pet1 g(v)) the controller can freely schedule the
corresponding measurement time instants Tmea“( ) and the
actuation time instants T‘“t( f). However, they must comply
with the resulting sums of travel times between locations, the

arr

times 71"}, needed after arrival at a location v; € V to set up

» needed
at location v; to finish the required work before being able
to proceed to the next location; see (20). On the contrary, if
the operator is scheduled to stay at the same location at some
time (pr;(f) = pes1,;(f)), the actuation activity can only
occur after a given minimal time delay Tmm L@ €€ (21).
Constraint (22) represents the time delay that the operator
needs to get ready to apply a control action after exchanging
information with the controller, constraints (23)—(25) specify
when the first measurement needs to be scheduled depending
on whether the operator is traveling or is at a location,
constraint (26) means that at least one additional location has
to be scheduled for each operator within a given maximal
idle time Tax < T}, to provide the controller with new
measurements from the system, constraint (27) relates to
scheduling breaks, and constraint (28) introduces minimum
operators’ energy levels. Finally, constraint (31) defines the
internal model used by the controller in its calculations of
the predicted water levels and elapsed times.

The optimization problem (17)-(29) is a mixed-integer
nonlinear programming problem. Various algorithms can be
used to deal with such problems, e.g. genetic algorithms [61],
or branch and bound [62].

To reformulate the algorithm in a distributed way to im-
prove its scalability, the principles of the problem of multiple
traveling salesmen could be used [53]. Alternatively, approxi-
mation methods for large-scale MINLP problems [63] can be
used to obtain computationally lighter problem formulations.
However, the human-related aspects and the sampling and
asynchronous nature of the measurements and actuations make
this a nontrivial task.

Finally, Table I summarizes the main elements of the
proposed strategy. While there is no general rule for tuning
the controller, it is always convenient to normalize the weight
of each term in the cost, e.g., by choosing an initial value
for each weighting parameter that makes the contribution of
the corresponding term become one for average values of the
corresponding variable. After the initialization, parameters can
be adjusted to provide more or less relevance to each term
according to the designer’s goals.

everything needed at that location, and the times T; o

IV. CASE STUDY

We use a numerical model of an irrigation canal in Dez
in Iran [64,65] to extend the preliminary version of TIO-
MoMPC of [32] and compare its performance with that of the
original MoMPC [17,31]. This canal consists of 13 pools, see
Figure 1, between which there are gates that the operator can
raise or lower to allow more or less flow to the subsequent
pool. For simplicity, we use flow rates through the gates as
control inputs; however, gate positions can also be used. At
the canal inlet, there is a head gate providing water from a
reservoir created by a dam on the Dez River. We assume that
the access to the head gate is not limited, and so measurements
and actuations of the head gate are available at all times. In
contrast, the remaining gates are serviced by a human operator,
and so measurements can only be taken and a control action
can only be applied when the operator is in a specific location.



Table I

MAIN ELEMENTS OF THE PROPOSED STRATEGY.

Cost function
Eq. Meaning Symbol Related to
. . . . System performance (6
Performance index optimized by the proposed controller, which comprises costs wo ystem perton (.)
. i ) . w1 Frequency of revisiting locations (8)
(17) | regarding overall system performance, the refreshment of measures on each location, 5
) . N . w2 Operators’ welfare (15)
the operators’ well being, and fuel consumption. -
w3 Fuel consumption (16)
6) Quadratic cost of the overall system calculated at time ¢ along a horizon Q Predicted state evolution &' (7|f)
TEEE+ Ty R Optimized input trajectory u(7|t)
8) Cost that accumulates the time since the last measurement in each location. Qloc,i Relevance of each spot ¢ € [1, N]
. . . o 1y Travel times (1
It comprises weighted costs dealing with issues that affect the welfare of operators, agvP J Wr:fn{e II'I]CQ‘( 101)
(15) | namely, travel and waiting times, stress and energy levels, and distribution of agp J aiting times (11)
workload among operators. Xop,j Stress levels (12)
Qluni Workload distribution (14)
ost of the fuel consumed along route. uel consumption function.
(16) | Cost of the fuel d along rout R Fuel ption funct;
Constraints
(18) | Constraints on states of the irrigation canal. X Limits of water levels and flows.
(19) | Constraints on inputs of the irrigation canal u Limits of gates and water flows
Tg{lﬁa? The measurement time instant
3 . . . . . act - T T
(20) Constraints on the separation between consecutive measuring and actuation activities . TZ. 7 The actuation time instant
when the operator is traveling 7;,2’; —pri1 Travel time from ¢ to £ + 1
A dr;é+1 Time needed after arrival
2 2
ccliepi Time needed before departure
»Pe.j
Constraints on the separation between consecutive measuring and actuation activities min .
21 . . AT, T . .
@D when the operator is not traveling dpe, ime between act. and meas
(24) Constraints on scheduling the measuring time instant of the first location on a current Thusy,j Time to finish at a current location
route 1;1C‘j py (D) Travel time to the first location
J 1.7
(26) | Constraints on scheduling of the second location max Maximum time of the sec. location
. . . Trest Resting time i
(27) | Constraints on scheduling the rest time £,j h fastmg terle mstanF
ATl}rejst Minimal resting duration
. s i Operat level
(28) | Constraints on the operators’ energy level Iffm perator SRergy eve
e Minimal energy level

We approximate problem (17)—(29) using a discrete-time
model with a sample and a control step of 7. = 5 minutes to
ease the implementation. However, this way of implementation
implies that the time instants ijeas(f) and TJ@Ct(f) are no
longer real-valued variables but instead they are integers
(i.e. sample steps). The genetic algorithm (GA) with a random
feasible initial population implemented in the Matlab Global
Optimization Toolbox is used together with a quadratic pro-
gramming (QP) solver from CPLEX to solve the optimization
problem. GA involves a metaheuristic nonlinear optimization
procedure that starts from a random population of genes
representing possible solutions, which are iteratively mixed
and mutated based on their performance to minimize the
desired cost function, providing the best solution available
after a certain condition is met (e.g., based on the maximum
number of generations and execution time) [66,67]. QP algo-
rithms can find the optimal solution of a continuous quadratic
function subject to linear constraints in polynomial time using
well-known algorithms, e.g., interior-point methods [68, 69].
These two optimization methods are combined as follows: the
solution at every activation is first found by the GA passing
a candidate route to the QP solver which then determines the
optimal flows through the gates on the route and passes them
back to GA. These together are used to compute the cost
function by the GA and at the end the optimal route and flows
follow. The pseudocode of the implemented approach is shown
in Algorithm 1.

Remark 3: As it is common in metaheuristic methods, there
are no guarantees regarding the convergence of GA unless
sufficient time is given to find the global optimum [70].
Otherwise, GA employs the best solution obtained in the
available time. One way to guarantee that GA provides
performance equal to or superior to that of MoMPC is to
use the MoMPC solution as one of the initial seeds of the
GA method. In this way, it fixes a lower bound on the
performance of GA. Also, note that there are some well-known
alternatives for reducing the computation burden, e.g., using
surrogate models, approximating integer programming with
continuous domain optimization, optimizing over a coarser
grid, employing shrinking prediction horizons [71], etc.

To assess the performance of the proposed method, we
compare the results obtained with those of the algorithm in
[17,31]. We use the process model identical to the prediction
model, Ny = 8, prediction horizon N,, = 48, and control
horizon N, = 48, where these last two parameters belong to
the optimization problem used in [17,31] and, respectively,
correspond to the number of time steps included in the
performance index and the number of instants for which the
input is to be determined. To allow for a fair comparison, the
model of the system is assumed known to the controller and
some operational parameters that were not considered in the
previous approach are set to 0, namely, the time to perform
necessary tasks upon arrival to a new location (AT}J"), the

,U
time to implement the actuation (AT3"), and also the time



Algorithm 1: Pseudocode of the genetic algorithm
Data: Nyembers, Niter
Create population of Ny empers random solutions of
Problem (17) s.t. (18)—(29);
|+ 1;
while | < Njier do
I+ 1+1;
Rank members of the current population by
wWoJIMoMPC (tv) + w1y Jloc(f) + U)QJOP({) + wng(f);
Start the new population with the top 5% members;

while new population size < Npembers A0
Select and rank a random subset of 4 members

of current population;

Generate new member for new population by
mutating the subset’s top member or
randomly combining its two top members
(satisfying (18)—(29));

end
end
Return solution with lowest cost;

Offtake flows [m*/s]

Figure 3. Offtake profile used in the case study, which provides the hourly
representation of the water taken from each section of the canal for farming
activities. From the viewpoint of the internal model of the controller, this
outflow is interpreted as an exogenous input.

needed before departing from a location (ATievp). In addition,
the length of the prediction horizon and the time step are con-
sidered to be the same, i.e., Tyax = Ne1e, and AT;};“ =Te.
A number of disturbance offtakes are employed, see Figure 3.

_ —_ 106 — 10-3 _
We use oe,1 = Qoc,2 = 107°, agp, 1 = 1077, agvp% =0,
t t 10— _ _ — 10=
Qo1 = 0, Qoo = 1072, w1 =1, we = 1, w3 = 107°. The

operators’ nominal velocity is 30 km/h, operator 1 starts at
reach 1 at full energy charge and operator 2 starts at reach 13
at 80% energy. The energy is drained at 1% per sample step
and the recharge rate is 15% per sample step.

We use the posterior performance index Joper.obj. =

ﬁil («7(k)Qz(k) + u"(k)Ru(k)), which relates to how
well the process is executed and thus the operational objectives
are met, and Ja;, = S22, ST At (k), which relates to how
often individual gates are visited. The parameter Ny = 288 (a
period of 24 hours) denotes the total number of simulation
steps. The weighting matrices are () = 100/ and R = 0.011.

Remark 4: The determination of weighting parameters re-
mains an open issue. To improve the trial-and-error process
followed in this article, one can normalize the components in
the cost function and then increase the weight of more critical

elements based on the designer’s preferences. Another possible
alternative is to reformulate the problem as a multi-objective
optimization problem and search for a Pareto optimal solution.

A. Long computation time set-up

The first set of simulations are set up to allow a considerable
computation time to solve the optimization problem (17)—(29)
at every activation. As the simulations are performed on a
high-performance computer cluster consisting of machines of
various computational power, to indirectly control how much
computation time is used per activation step, we limit the
number of generations per one genetic algorithm run. In the
first case, the maximum number of generations is 500, and the
population size is 5000. These result in computations taking
on average per computation step 2462.4 s for the TIO-MoMPC
method and 2440.0 s for the MoMPC method. Although these
computation times are large, they are of the order of magnitude
of the sampling times of large canals. As will be seen in
the following subsections, it is straightforward to limit the
computation burden by reducing the number of generations of
the GA. Therefore, the optimizer can be adjusted to apply the
best solution found within the available computation time.

To illustrate the benefits of scheduling the timing of mea-
sures and actions (rather than following strictly predetermined
travel times between gates as in MoMPC [17,31]), the cost
function accounts only for the Jyompc component, thus
measuring solely the performance of the process.

In this scenario, an operator is working along the canal.
The posterior performance index is Joper.obj. = 261.65 for
the TIO-MoMPC method, and the corresponding water levels
and flows in all pools as well as the path of the operator
are shown in Figure 4 (upper-left plot). In turn, Joper. obj. =
339.75 for MoMPC from [17,31], see Figure 4 (upper-right
plot). Thus, the new method gives a 23% improvement. At
the same time, while not directly used in the optimized cost
function of either method in the case study, we observe that
Jar = 3.41 - 107 for the TIO-MoMPC method and Ja, =
3.05-107 for MoMPC. Such results are expected: better control
performance is achieved in terms of the Jgper. obj. index but,
since there are waiting periods allowed, overall the frequency
of visits to all gates is decreased, and, simultaneously, there
are longer periods of time between the operator’s visit to each
gate. In the simulation, this did not cause any problems due to
the absence of model-plant mismatch and model uncertainty.
However, in reality, when the prediction model never truly
matches the real system and there are uncertain terms in the
model, the canal reaches need to be monitored regularly to
correct any potential model-system discrepancies. Therefore,
the use of the network monitoring penalty (8) is key in real
applications, and is indeed included in the cost function used
in the next subsection.

B. Tractable controller set-up

In the second set of simulations, the maximum computation
time allowed per sample step is reduced by forcing the GA
solver to return a solution after 15 generations with the pop-
ulation size of 5000. Average computation times per control
step are reported below. We look at four scenarios:
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Table 11
MEAN POSTERIOR RESULTS FOR SCENARIOS A, B, C, AND D.

x107

A B C D
Joper. obj. 106.3 102.1 569.1 494.5
N 1.53-107 | 1.59-107 | 3.25-107 | 3.25-107
A) TIO-MoMPC with two operators and two routes for

some nodes (average computation time is 111.1 s)

B) TIO-MoMPC with two operators and one route (av-
erage computation time is 111.1 s)

C) TIO-MoMPC with one operator and one route (av-
erage computation time is 104.4 s)

D) MoMPC with one operator and one route (average

computation time is 104.1 s)

Due to the early termination of the optimization routine
at every control step and the stochastic nature of the genetic
algorithm, the simulations are run multiple times with the same
initial conditions. Then, the results are collectively analyzed
in terms of their statistical significance, see Figure 5. The
resulting mean values across the populations for the four
scenarios, respectively, are given in Table II.

We use the two-sample Welch’s test [72] to compare the
results for the four scenarios. It can be shown using the Jarque-
Bera test [73], that the data are consistent with the normality
assumption. In addition, we note that the two-sample Welch’s
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Figure 5. The obtained values of Joper. obj. and Jay for the population of
simulation runs for Scenarios A-D.

test is robust to small sample sizes and non-normality of the
distribution of the data.

We test the null hypothesis that the mean value of the
posterior performance indices Jyper. obj. and Jay is higher for
a particular scenario (A, B, C, and D) than for other scenarios.

Based on the probability values (p-values) reported in
Table III and using the one-tailed significance level of 0.001,
we accept the alternative hypotheses claiming that the mean
performance indices Joper. obj. and Jag for scenarios A and B
are lower than for scenarios C and D. The observed data do
not show any significant differences in the mean performance
index Joper. obj. between scenarios A and B. At the same time,
the data show weaker evidence (p-value of 0.35-10~2) that the



Table IIT
P-VALUES TESTING THE NULL HYPOTHESIS OF INDICES Jper. obj. AND
JAt IN SCENARIOS A TO D (COLS.) EXCEEDING THEIR VALUES IN OTHER
SCENARIOS (ROWS).

A B C D
A || N/A 0.74 4.48-10-8 | 7.95-10"11
B || 0.26 N/A 3.98-108% | 7.13.10"11

Joper. obj.
C 1 1 N/A 0.12
D 1 1 0.88 N/A
A || NA | 0.35-1072 | 1.41-1071° | 1.52-1031
B 1 N/A 2.90-10~18 | 1.46-10—28
Jat

C 1 1 N/A 0.17
D 1 1 0.83 N/A

mean performance index Ja for scenario A is lower than for
scenario B. This indicates that by introducing additional faster
routes, the actuation and measurement frequency of the system
increases. There are no statistically significant differences in
the mean performance indices Joper.obj. and Jag between
scenarios C and D.

Evidently, the multiple-route algorithm is able to handle the
multiple route formulation tracking the operator energy levels
and scheduling adequate breaks for the operators. This all is
achieved while controlling the system’s process performance
and thus converging to the desired setpoints. For completeness,
the graph showing the median simulation results for Scenario
A is given in Figure 4 (lower-left plot) while the plots for
Scenarios B-D are omitted due to space limitations.

Finally, note that the case with two routes is created by
artificially adding extra links between some pools in the
Dez canal network (which originally only had a single route
between any two sets of pools). The properties of these
routes vary throughout the day, with an increased travel time
around the morning (8am) and afternoon (Spm) peak times;
see Figure 6. This way, taking the "highway’ routes is faster
off-peak but slower at peak times. Note that to simplify the
algorithm implementation and the analysis of the results, we
do not consider the operators’ preferences related to what kind
of roads they like traveling on, as described with the help of
the stress levels S (cf. (12)).

C. Discussion

We have considered a practical application where the op-
erational objective is to regulate water levels of a realistic
irrigation canal model while considering operators’ well-being.
In this regard, there is a trade-off between performance and
computational requirements, which are strongly influenced by
the number of iterations employed by the GA method. Since
usual sampling times in these applications are of the order
of minutes, this issue is not critical and, as can be seen in
Figure 4, average errors in water level regulation are close to
zero in all cases, with peaks below 15 cm, which is excellent
performance considering that the canal is manually operated.

= First route
28
Second route

Travel time

8§ 10 12 14 16 18 20 22 24
Time of day

Figure 6. The fixed travel time of the original route between pools 5 and
13 (dashed line), and the time-of-day dependent travel time of the new route
(solid line).

The results show that when the computation resources are
limited, a global minimum is not achieved due to the early
termination of the solver. However, the TIO-MoMPC still
achieves a performance comparable to that of the MoMPC
of [17,31] for the original regulation objectives using an
identical simulation setup, and outperforms this controller for
the newly introduced goals (e.g., the consideration of the well-
being of the operators, their energy levels and preferences
for either waiting or traveling). On the other hand, the TIO-
MoMPC method clearly outperforms MoMPC when given
more computation resources because it has a larger search
space, although it requires more time to find a high-quality
result. In Section IV.B, allowing the GA more time per control
step yields much better performance than the other method,
but global convergence is untested. Therefore, the two sets of
simulations (Sections IV.B and C) suggest a trade-off between
computation requirements and performance.

Finally, it is worth noting that the current case study consid-
ers only one operator. However, we propose a generic multi-
operator problem that enables the schedules for all operators
to be recomputed on demand. This approach is particularly
useful in cases where multiple operators are involved, or
when dealing with extreme events that require continuous
and careful replanning of measurements and actions by the
operators. Likewise, each particular application needs to assess
the minimal number of human operators required to satisfy
the observational demand while accounting for factors such
as staff stress and workload to ensure that errors do not
accumulate to an intolerable level.

V. CONCLUSIONS

A human-in-the-loop control problem for a network system
has been considered. Human operators are considered as
moving sensors and actuators providing a central controller
with measurements from visited locations and performing
control actions requested by the controller. Given the limited
sensing and actuating actions of the operators, the precise
timings of their measuring and actuating actions have been
used as optimization variables in a time instant optimization
MPC framework to improve performance with respect to the
method previously introduced in the literature.



The simulation results demonstrate that the new method
is able to improve the operational performance, but more
computation resources are needed. Also, the new method uses
a multi-criteria objective function to explicitly balance: i) the
evolution of the system and the routes followed by operators;
ii) network monitoring; iii) the operators’ burden (includ-
ing travel and waiting times, stress and energy levels, and
workload); and iv) fuel consumption. The original MoMPC
approach was mainly focused on the first of the elements
mentioned, and its rationale is clear in the context of an
irrigation canal management problem. The same holds for the
fuel consumption cost, which is also easy to implement. The
network monitoring cost represents a practical approach to
limit the uncertainty in the evolution of the system outputs that
must be monitored by the operators and is consistent with the
type of application considered. The most original contribution
of this work lies in the operator-centric costs, which stem
from issues that appear in the references given along the
article, many of them coming from the field of psychology.
Certainly, we do not claim that the list of elements considered
is exhaustive, but we believe that this article contributes to
the design of controllers that are operator-aware for human-
in-the-loop processes. Similarly, the assessment performed
shows some of the trade-offs that occur when these aspects
are integrated. Therefore, the expansion of this line of work
requires joint efforts from other fields such as psychology.
In this regard, the versatility of the MPC framework will be
beneficial for the inclusion of other aspects related to the
operator.

We also acknowledge some limitations of our work that
require further research. In particular, observability issues have
been greatly simplified by considering that an estimate of the
state is available to the controller. Although it is clear that
systems currently controlled by humans must have features
that allow for this type of operation, our contribution can
help increase performance with minimal investment, there can
be a complex interplay between the route followed by the
operator and fundamental properties such as controllability and
observability that is worth exploring.

Future work includes identifying more precise models of
human behavior for the model predictive controller. The prob-
lem of observer design for the settings considered will also be
explored. Moreover, we will work towards solving the problem
using a distributed control approach.
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