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A tractable failure probability prediction model for
predictive maintenance scheduling of large-scale

modular-multilevel-converters
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Frede Blaabjerg, Fellow, IEEE, and Bart De Schutter, Fellow, IEEE

Abstract—Modular-multilevel-converters (MMCs) are vital
components in direct current transmission networks. Predictive
maintenance scheduling of MMCs requires estimations of the
failure probabilities of MMCs during a period of time in the
future. Particularly, the predicted future failure probabilities
are influenced by two main factors, the mission profiles of the
MMCs and the maintenance decisions on the MMCs during
the prediction period. This paper proposes a failure probability
prediction model (FPM) for MMCs by considering these two
factors. First, the expectations of the failure probabilities of the
components for all the scenarios of mission profiles are obtained.
Second, in predictive maintenance scheduling problems, the
decisions to perform the maintenance actions are represented by
binary variables. When the number of submodules is very large,
using the binomial probability form currently used in reliability
engineering to express the “r-out-of-n” failure probability of arms
of the MMCs is intractable. Thus, this paper proposes a tractable
form (T-form) in FPM by observing that the submodules on one
arm are homogeneous. Furthermore, an approximation method,
i.e., clustering and assignment (C&A), is proposed to reduce the
computation times for calculating the parameters needed by the
proposed T-form. Then, we perform a case study that assesses
the accuracy and computation time of the C&A approach. The
results show that the accuracy of the C&A approach is high and
that the computation time is reduced significantly compared with
the accurate method. We also show that the computation time
for solving the predictive maintenance scheduling problem can
be reduced hugely by using the T-form instead of the binomial
probability form.

Index Terms—Large-scale modular-multilevel-converters, Pre-
dictive maintenance scheduling, R-out-of-n reliability model,
Uncertainty of renewable energy generation, Direct current
transmission network.

I. INTRODUCTION

Large-scale renewable energy farms are established or
planned around the world [1]. These farms integrate many
renewable energy generators, e.g., wind turbines and solar
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panels. Due to the large distances between renewable energy
farms and load centers, transmitting the generated renewable
energy using alternating current transmission lines results
in considerable energy losses [2], [3]. Consequently, direct
current transmission lines are leveraged to transmit the gener-
ated energy to the load centers. Because of their advantages,
e.g., high modularity and high power quality [4], modular
multilevel converters (MMCs) are widely selected as power
conversion devices in direct current transmission networks.

In direct current transmission networks, sudden failures on
MMCs may result in large-scale outages. Thus, preventive
maintenance actions should be scheduled to avoid sudden
failures. For example, in [5], a method is proposed to estimate
the preventive maintenance period for MMCs. In [6], a peri-
odical preventive maintenance strategy is proposed regarding
random-chance failure probabilities, wear-out failure distri-
butions, etc. Although periodic preventive maintenance can
efficiently avoid the occurrence of failures, over-maintenance
and also lack of maintenance may occur because of improper
maintenance periods [7], [8]. Predictive maintenance is char-
acterized by predicting the health conditions of the converters
and then scheduling the maintenance actions if the actions
are necessary. So, predictive maintenance can avoid over-
maintenance and lack of maintenance. At each time step, the
current health conditions of the MMCs are diagnosed, then the
health conditions are predicted over a period of time according
to the predicted mission profiles of the MMCs. In this paper,
this period of time is called the prediction horizon. Afterward,
the maintenance actions are scheduled and performed during
this prediction horizon, considering that the predicted health
conditions of MMCs at the end of the prediction horizon
should be high enough to guarantee the reliability of the
MMCs. Then, at the next time step, the process is repeated.
Thus, the predictive maintenance scheduling relies on the
health condition prediction model.

In some of our previous works [9], [10], two factors, i.e., the
mission profiles and performance of maintenance actions, were
determined as the ones that will mostly influence the reliability
of the converters. In the literature, the influence of mission
profiles on the health condition prediction model of converters
has been widely studied [11]–[15]. Furthermore, the influence
of performing maintenance actions on the health condition
prediction model has also been widely studied, e.g., [5], [16],
[17]. However, these papers focus on periodic maintenance. In
periodic maintenance, the maintenance intervals of the MMCs
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are pre-determined; so whether and when to perform main-
tenance actions during the prediction horizon is known. On
the contrary, in predictive maintenance scheduling, since the
maintenance intervals are not fixed as periodic maintenance, so
whether and when to perform maintenance actions are decision
variables to be determined dynamically over time.

Thus, this paper proposes a failure probability1 prediction
model (FPM) related to the mission profiles and the main-
tenance decision variables of the MMCs. Furthermore, one
specific challenge, i.e., the tractability of FPM for large-
scale MMCs containing huge numbers of submodules, is
handled in the newly proposed FPM. Moreover, the uncertainty
of the mission profiles resulting from the renewable energy
generation is included in the proposed FPM.

The challenge of tractability of FPM emerges, especially
when the numbers of submodules on the arms of the MMCs
are huge. Since an arm with submodules follows a “r-out-
of-n” configuration [18], a direct form to express the failure
probability of an arm is the binomial probability [19], as
indicated in (3) in Section IV. The failure probability of an
arm related to the maintenance decision variables in binomial
probability form is either nonlinear or involves a significant
number of auxiliary variables when recasting the nonlinear
constraints into linear ones. Therefore, the predictive main-
tenance scheduling problem including the failure probabilities
of arms in binomial probability form is intractable. To address
this challenge, by observing that the submodules are homo-
geneous (see the explanation of homogeneity in Section V.A),
this paper proposes a tractable form (T-form) to express the
failure probability of an arm.

When obtaining the T-form for large-scale MMCs, the
computation times for calculating the parameters of the T-
form will be extremely long. Thus, a clustering and assignment
(C&A) approximation approach is proposed to calculate offline
the parameters of the proposed T-form efficiently. The key
idea of the proposed C&A approximation approach is first to
cluster the submodules whose failure probabilities are nearly
the same. Then, the failure probabilities of the submodules in
one group are approximated by the mean failure probability
of submodules in this group. The idea of C&A originates
from using clustering methods to compress the images in the
literature on signal processing, e.g., [20], [21].

Moreover, since the generation powers of the renewable en-
ergy generators are uncertain, the mission profiles for MMCs
in transmission networks with renewable energy generations
are also uncertain. Thus, in our proposed FPM, the uncer-
tainties of renewable energy generation are also considered.
Specifically, scenarios are adopted to reflect these uncertainties
as is also done in [22], [23].

The contributions of this paper are as follows:
• A failure probability prediction model (FPM) for large-

scale MMC converters is proposed. The relationship
between the predicted failure probability, the maintenance
decision variables, and the mission profiles is obtained.

• By observing that the submodules on the arm of MMCs
are homogeneous, this paper proposes a tractable form

1This paper adopts the failure probability to describe the health condition.
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Fig. 1. Layout of a half-bridge-based MMC converter.

(T-form) to express the relationship between the failure
probability and the maintenance decision variables. The
proposed T-form is linear and without using many aux-
iliary variables compared with the binomial probability
form.

• The parameters of the T-form can be calculated offline.
To tackle the long computation time for the parameters,
we propose a clustering and assignment (C&A) approach
to obtain approximate values of the parameters.

This paper is organized as follows. Section II explains the
failure mechanism of MMCs and the main steps for obtaining
the proposed FPM. Section III presents the proposed method
to calculate the failure probabilities of the submodules. Section
IV explains the method to calculate the failure probabilities of
arms using the binomial probability form. Section V illustrates
the method to calculate the failure probabilities of arms in the
proposed T-form with the proposed C&A approximation ap-
proach. In Section VI, the predictive maintenance scheduling
problems of converters are formulated. In Section VII, the
proposed C&A approach is compared with the conventional
(accurate) approach and the proposed T-form is compared with
the binomial probability form via tests. Section VIII concludes
the paper and presents possible topics for future work.

II. FAILURE MECHANISM OF MMCS AND MAIN STEPS FOR
OBTAINING THE PROPOSED FPM

A. Half-bridge MMC failure mechanism

This paper studies the half-bridge MMCs which are widely
applied in practical engineering as an representative of MMCs.
As illustrated in Fig. 1, an MMC comprises converter-level
components and arms. For large-scale MMCs, each arm links
hundreds of submodules in series. Each submodule comprises
several components, i.e., IGBTs, diodes, and capacitors, as
shown in Fig. 1. The failures in half-bridge MMCs involve
four levels, i.e., failed components in submodules, failed sub-
modules, failed arms, and failed converter. The relationships
between these four levels are as follows:

If any component in a submodule has failed, the submodule
is considered to fail too. Moreover, failed submodules will not
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necessarily result in failed arms. In practice, the submodules
on arms follow the “r-out-of-n” configuration. That is, there
are some redundant submodules on each arm. Because of the
“r-out-of-n” configuration, the failed submodules on arms can
be bypassed and replaced by the redundant submodules on the
same arm without interrupting the operation of the converter.
However, if the number of failed submodules on one arm
exceeds the number of redundant submodules, this arm will
fail. If any of the arms and converter-level components in the
MMC has failed, the converter will fail [24].

B. Main processes for obtaining the proposed FPM

The main processes for obtaining the proposed FPM are
shown in Fig. 2. Seven processes are involved, as follows:

1) Multiple scenarios of renewable energy generation and
load profiles are generated to reflect the uncertainties
during prediction.

2) Then, according to the load and generation profiles of
each scenario, the corresponding loading profiles of the
converters, i.e., the power flow passing through MMC,
can be obtained by solving the optimal power flow
equations. Moreover, the predicted ambient temperature
profiles of MMCs can be obtained by historical tem-
perature data. In this way, the predicted mission profile
of MMCs including the predicted loading and ambient
temperature profiles can be obtained.

3) For each scenario, the predicted mission profiles of
MMCs are used for remaining useful life (RUL) pre-
diction for the components in submodules, i.e., IGBTs,
diodes, and capacitors.

4) According to the predicted RUL for all scenarios, the
failure probabilities of components in submodules can be
estimated.

5) Afterwards, the failure probabilities of submodules are
obtained.

6) According to the failure probabilities of the submodules,
the relationship between the failure probabilities of the
arms and the maintenance decision variables can be
obtained. Here, the proposed T-form and C&A approach
are applied.

7) The relationship between the failure probability of the
whole converter and the maintenance decision variables,
i.e., FPM, is obtained.

In the following sections, we will introduce the details of
the processes. Specifically, in Section III, Processes 1) to 5)
will be introduced. Then, in Sections IV and V, the binomial
probability form, the proposed T-form, and the C&A approach
will be introduced for Process 6). In Section VI, Process 7) is
introduced and the predictive maintenance scheduling problem
for MMCs is formulated.

III. FAILURE PROBABILITY CALCULATION FOR
SUBMODULES

Since Processes 1) to 3) in Section II.B have been studied
in the literature, the current paper does not focus on these pro-
cesses. In detail, for Process 1), the scenarios can be generated
by an autoregressive integrated moving average model and the

scenario tree reduction method of [22]. Regarding Process 2),
modeling of the optimal power flow problem and the solution
methods can be found in [25]. Afterwards, the loading profiles
of the converters can be obtained by solving the optimal power
flow problems. Furthermore, for Process 3), RUL prediction
methods for the IGBTs, diodes, and capacitors can be found
in [14], [26], and [27], respectively. Since the RUL prediction
methods of the components in submodules are not the core
topic of this paper, this paper assumes that the RUL prediction
methods mentioned in [14], [26], [27] can accurately predict
the RULs of the components. Afterwards, the predicted RUL
cumulative distribution functions of the components in the
submodules can be obtained.

Then, the failure probabilities of the components in the sub-
modules, i.e., IGBTs, diodes, and capacitors, can be obtained,
such that:

λθ
i,j =

∑
s∈S

psΦ
θ
s(TD), ∀θ ∈ Θi,j , ∀i ∈ I, ∀j ∈ Ji (1)

where Θi,j represents the set of components in submodule j
on arm i, S = {1, ..., Ns} represents the set of scenarios, I is
the set of arms, Ji is the set of submodules on arm i, λθ

i,j is
the failure probability of component θ in submodule j of arm
i, ps represents the probability of the occurrence of scenario
s, Φθ

s is the predictive RUL cumulative distribution function
of component θ for scenario s obtained from Process 3), TD is
the prediction horizon for predictive maintenance scheduling.
For a given scenario s, (1) expresses that if the RUL of a
component in a submodule is less than the prediction horizon
TD, a failure will happen on the component. Then, recalling
the failure mechanism of submodules given in Section II.A, the
failure probability of submodule j on arm i can be obtained
by:

λsm
i,j = 1−

∏
θ∈Θ

(1− λθ
i,j), ∀i ∈ I, ∀j ∈ Ji (2)

where λsm
i,j is the failure probability of submodule j on arm i.

IV. THE FAILURE PROBABILITY MODEL OF AN ARM IN
BINOMIAL PROBABILITY FORM

In general, a half-bridge MMC has several arms. On each
arm, there are N c + N r submodules in total, where N c is
the minimum number of modules to guarantee the regular
operation of the converter [28]. In addition, N r is the number
of redundant submodules. Recalling the failure mechanism
given in Section II.A, when the number of failed submodules
on one arm is smaller than N r, the arm can still work well.
However, when the number of failed submodules on one arm
exceeds N r, the arm will fail. Hence, the failure probability
of arm i of the converter in binomial probability form can be
expressed as:

λar
i = 1−

∑
J ′

i∈Ji

( ∏
j∈J ′

i

(
(1− δsmi,j )λ

sm
i,j + δsmi,j λ

sm0
)
·

∏
j∈Ji\J ′

i

(
1−

(
(1− δsmi,j )λ

sm
i,j + δsmi,j λ

sm0
))) (3)
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Fig. 2. Main processes for obtaining the failure probability model of complete MMCs.

where δsmi,j = 1 represents that maintenance is being performed
on submodule j on arm i during the prediction horizon;
otherwise, it equals 0. In this paper, the maintenance action
for a submodule is to replace the submodule with a new one.
In (3), λar

i is the failure probability of arm i, λsm0 is the
initial failure probability of a newly replaced submodule. The
initial failure probability can be set as a small real value, as
widely reported in the literature [29], [30], or it can be set to
0 by rationally assuming “as good as new”. Furthermore, J ′

i

is the set of failed submodules on arm i, and set Ji contains
all the possible sets of failed submodules whose cardinality
is no larger than N r, i.e., card(J ′

i) ≤ N r. Moreover, the
cardinality of Ji is

∑
j∈{0,1,...,Nr}

(
Nr+Nc

j

)
. Equation (3)

implies that the failure probability equals 1 minus the survival
rate. For example, if N c = 2 and N r = 1, and assuming three
submodules (N c + N r = 3) on arm i are marked as “1, 2,
3”, the cardinality of the sets in Ji should be no larger than

N r = 1, so Ji={∅,{1},{2},{3}}. Then, based on the example
and (3), the failure probability of arm i is shown as (4).

From (3) and (4), it can be observed that modeling the fail-
ure probability of an arm including the maintenance decision
variables δsmi,j in binomial probability form is too complex.
There are two main reasons. First, in (3) or (4), the products of
maintenance decision variables yield nonlinear terms. Second,
recasting nonlinear products of binary decision variables into
a linear form2 requires a large number of auxiliary binary
variables (i.e.,

(
Nr+Nc

2

)
+
(
Nr+Nc

3

)
+...+

(
Nr+Nc

Nr+Nc

)
auxiliary vari-

ables). For example, for (4) the auxiliary binary variables
are ai,1 = δsmi,1 δ

sm
i,2 , ai,2 = δsmi,1 δ

sm
i,3 , ai,3 = δsmi,2 δ

sm
i,3 , and

ai,4 = δsmi,1 δ
sm
i,2 δ

sm
i,3 = ai,1δ

sm
i,3 . In practice, N c and N r

for large-scale MMCs usually range from tens to hundreds.

2According to the method in [31], the product of two binary variables α1

and α2, i.e., α = α1α2, can be equivalently recast as the bundle of linear
constraints −α1 + α ≤ 0, −α2 + α ≤ 0, and α1 + α2 − α ≤ 1, where α
is an auxiliary binary variable.

λar
i = 1−

(
(1− λsm′

i,1 )(1− λsm′

i,2 )(1− λsm′

i,3 ) + λsm′

i,1 (1− λsm′

i,2 )(1− λsm′

i,3 ) + (1− λsm′

i,1 )λsm′

i,2 (1− λsm′

i,3 )+

(1− λsm′

i,1 )(1− λsm′

i,2 )λsm′

i,3

)
,

where, λsm′

i,1 = (1− δsmi,1 )λ
sm
i,1 + δsmi,1λ

sm0
i,1 , λsm′

i,2 = (1− δsmi,2 )λ
sm
i,2 + δsmi,2λ

sm0
i,2 , λsm′

i,3 = (1− δsmi,3 )λ
sm
i,3 + δsmi,3λ

sm0
i,3

(4)

λar
i = 1−

(
zi,0

(
(1− λsm

i,1)(1− λsm
i,2)(1− λsm

i,3) + λsm
i,1(1− λsm

i,2)(1− λsm
i,3) + (1− λsm

i,1)λ
sm
i,2(1− λsm

i,3) + (1− λsm
i,1)(1− λsm

i,2)λ
sm
i,3

)
+

zi,1

(
(1− λsm0

i,1 )(1− λsm
i,2)(1− λsm

i,3) + λsm0
i,1 (1− λsm

i,2)(1− λsm
i,3) + (1− λsm0

i,1 )λsm
i,2(1− λsm

i,3) + (1− λsm0
i,1 )(1− λsm

i,2)λ
sm
i,3

)
+

zi,2

(
(1− λsm0

i,1 )(1− λsm0
i,2 )(1− λsm

i,3) + λsm0
i,1 (1− λsm0

i,2 )(1− λsm
i,3) + (1− λsm0

i,1 )λsm0
i,2 (1− λsm

i,3) + (1− λsm0
i,1 )(1− λsm0

i,2 )λsm
i,3

)
+

zi,3

(
(1− λsm0

i,1 )(1− λsm0
i,2 )(1− λsm0

i,3 ) + λsm0
i,1 (1− λsm0

i,2 )(1− λsm0
i,3 ) + (1− λsm0

i,1 )λsm0
i,2 (1− λsm0

i,3 ) + (1− λsm0
i,1 )(1− λsm0

i,2 )λsm0
i,3

))
,

and zi,0 + zi,1 + zi,2 + zi,3 = 1
(5)
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Thus, the complexity makes the binomial probability form
intractable, especially when N c and N r are large values.
To tackle the nonlinearity and to avoid introducing a huge
number of auxiliary variables, we propose to model the failure
probability of arms in MMCs in T-form.

V. THE FAILURE PROBABILITY MODEL OF AN ARM IN THE
PROPOSED T-FORM

A. The proposed T-form

The submodules on an arm in MMCs are homogeneous
because the maintenance costs for submodules are the same
(i.e., the costs for replacing submodules by new ones) and
the submodules on the same arm have the same weight when
calculating the failure probability of an arm. Here “the same
weight” does not mean that the failure probabilities of submod-
ules are the same, but the submodules on an arm are with the
same importance when calculating the failure probability of
an arm. If only βi submodules can be replaced with new ones
because of budget constraints, then to minimize the failure
probability of the arm, the strategy must be to replace the βi

submodules with the highest failure probabilities. For example,
if N c+N r = 3 and βi = 1, then δsmi,1 = 1 and δsmi,2 = δsmi,3 = 0,
as the failure probability of submodule 1 is the highest.

Then, regarding the example of (4), after ranking the failure
probabilities of submodules 1 to 3 from the highest to the
lowest, using the homogeneity of submodules, (4) can be
equivalently written in T-form as shown in (5). In (5), the
binary variables zi,0 = 1 to zi,3 = 1 represent replacing
submodules 0 to 3 by new ones, respectively. Compared with
(4), (5) contains two linear equations. Furthermore, there are
only N c + N r + 1 = 4 binary variables without using any
auxiliary variables to represent the products of the binary
decision variables. Then, we expand the T-form to general
MMCs for calculating the failure probability of arm i, such
that:

λar
i =

∑
x∈Xi

zi,xγi,x, i ∈ I∑
x∈Xi

zi,x = 1, i ∈ I
(6)

where Xi = {0, 1, ..., N c+N r}, γi,x is the failure probability
of arm i after x submodules are replaced. The parameters γi,x
in the T-form can be obtained offline by Algorithm 1.

Note that in Algorithm 1, the “C&A” approach mentioned
in Code lines 6 and 11 will be introduced in Section V.B.

B. An approximation method for calculating parameters in T-
form

In Code lines 6 and 11 of Algorithm 1, λar
i is calculated

via (3) for accurate results. However, when N r +N c and N r

are large, e.g., N r +N c = 100 and N r = 20, the cardinality
of Ji in (3) will be

∑
j∈{0,1,...,20}

(
Nr+Nc

j

)
which is a number

around 1020. Thus, to direct calculate the failure probability
by summing all the possibilities in Ji as (3) may be very time-
costly.

To avoid long computation times for obtaining the pa-
rameters in the T-form, this paper proposes a clustering

Algorithm 1: Pseudo code for offline obtaining param-
eters γi,x in T-form

1 According to N c and N r, formulate set Ji.
2 Use (1) and (2) to calculate λsm

i,j

3 Rank submodules from the one with the highest failure
probability (i.e., λsm

i,j ) to that with the lowest one.
4 Initialize x = 0.
5 δsmi,j ← 0, ∀j ∈ {1, .., N c +N r}.
6 Calculate λar

i via (3) for an accurate result or via the
proposed C&A for fast and approximated result.

7 γi,0 ← λar
i .

8 x← x+ 1.
9 δsmi,j ← 1, ∀j ∈ {1, ..., x}.

10 δsmi,j ← 0, ∀j ∈ {x+ 1, .., N c +N r}.
11 Calculate λar

i via (3) for an accurate result or via C&A
for fast and approximated result.

12 γi,x ← λar
i . If x < N c +N r, return Line 8. Otherwise,

end.

and assignment (C&A) approach to calculate the probability
that there are D failed submodules on an arm, where the
probability is marked as µD

i for arm i and D ∈ {0, 1, ..., N r}.
Then the failure probability of arm i can be obtained by
λar
i = 1−

∑
D∈{0,...,Nr} µ

D
i . The steps of the proposed C&A

approach will be introduced first and then followed by an
example. The steps of the C&A approach are:

1) Step I-Reset λsm
i,j : Recalling Code line 5 or lines 9-10

in Algorithm 1, if δsmi,j = 1, λsm
i,j ← λsm0. If δsmi,j = 0, keep

λsm
i,j .
2) Step II-clustering: Cluster N c + N r submodules into

N groups. The clustering strategy is to leverage the k-means
approach to cluster the submodules with the similar failure
probabilities, i.e., λsm

i,j , into groups. Assume that after cluster-
ing, group n contains mn submodules, for n ∈ {1, ..., N}. In
addition, the mean failure probability of submodules in each
group is calculated. Define λi,n as the mean failure probability
of submodules in group n. In the C&A approach, the failure
probabilities of submodules in group n are all approximated
by λi,n.

3) Step III-Assignment: After clustering N c + N r sub-
modules into N groups, in this step, we assign D failed
submodules to these N groups. When assigning, the number
of failed submodules assigned to each group should not
exceed the number of submodules in that group. Since the
assignment may have more than one possibility, define the
number of possibilities for assignment as W . Then, define dwn
as the number of failed submodules assigned to group n for
possibility w, where w ∈ {1, ...,W}. Accordingly, we have∑

n∈{1,..,N} d
w
n = D, where w ∈ {1, ...,W}, and dwn ≤ mn,

where n ∈ {1, ..., N} and w ∈ {1, ..,W}.
4) Step IV-calculation of probabilities of groups: For group

n with possibility w, the probability that there are dwn failed
submodules among mn submodules can be calculated by
pGw,n =

(
mn

dw
n

)
· (λi,n)

dw
n · (1− λi,n)

mn−dw
n .

5) Step V-calculation of probabilities of possibilities: The
probability of possibility w is obtained by multiplying the
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Fig. 3. Clustering and assignment for the example in Section V.B.

probabilities of groups, i.e., pPw =
∏

n∈{1,...,N} p
G
w,n.

6) Step VI-calculation of survival rate: The survival rate
with D failed submodules can be obtained by summing up the
probabilities of the possibilities, i.e., µD

i =
∑

w∈{1,...,W} p
P
w.

Hereby follows an example for illustrating the steps of
C&A.

Example: Assume arm i has five submodules in total and
two redundant submodules, i.e., N c+N r = 5 and N r = 2. The
example is to calculate the possibility that there are two failed
submodules on aim i, i.e., D = 2. Assume that, λsm

i,1 to λsm
i,5

equal 0.55, 0.5, 0.45, 0.15, and 0.9, respectively. Furthermore,
after executing Code lines 9 to 10 of Algorithm 1, δsmi,1 to
δsmi,5 equal 0, 0, 0, 0, and 1, respectively. The initial failure
probability of a newly replaced submodule is 0.05. The C&A
steps for this example are illustrated in Fig. 3.

Step I: Based on the δ values, it can be obtained that λsm
i,1

to λsm
i,5 equal 0.55, 0.5, 0.45, 0.15, and 0.05, respectively.

Step II: Five submodules are clustered into two groups, i.e.,
three for group 1 (submodules 1 to 3) and two for group 2
(submodules 4 to 5), via k-means approach. That is N = 2,
m1 = 3, and m2 = 2. The mean failure probabilities of the
submodules in the groups are λi,1 = 0.5 and λi,1 = 0.1.

Step III: There are three possibilities, i.e., W = 3, to assign
two failed submodules into two groups, with the satisfaction
of dw1 ≤ m1, dw2 ≤ m2, and dw1 + dw2 = D. That is,
(dw1 = 0) ∧ (dw2 = 2), (dw1 = 1) ∧ (dw2 = 1), and
(dw1 = 2) ∧ (dw2 = 0).

Step IV: For possibility 3, i.e., (dw1 = 2) ∧ (dw2 = 0),

the probability that group 1 has two failed submodules is
pG3,1 =

(
3
2

)
· 0.52 · (1 − 0.5)1 = 0.375. The probability that

group 2 has no failed submodules is pG3,2 =
(
2
0

)
· (1− 0.1)2 =

0.81. Accordingly, we can obtain the probabilities of other
possibilities, such that: pG1,1 =

(
3
0

)
· (1 − 0.5)3 = 0.125,

pG1,2 =
(
2
2

)
· 0.12 = 0.01, pG2,1 =

(
3
1

)
· 0.5 · (1− 0.5)2 = 0.375,

and pG2,2 =
(
2
1

)
· 0.9 · 0.1 = 0.18.

Step V: The probabilities of three possibilities are pP1 =
0.125 · 0.01 = 0.00125, pP2 = 0.375 · 0.18 = 0.0675, and
pP3 = 0.375 · 0.81 = 0.30375.

Step VI: The probability of having two failed submodules
can be obtained by µ2

i = 0.00125 + 0.0675 + 0.30375 =
0.3725.

In the C&A approach, the failure probabilities of submod-
ules in one group are approximated by the mean failure proba-
bility of submodules in this group. Thus, the calculation of the
probabilities of groups is simplified significantly (see Step IV).
Then, in theory, the computational burden for calculating the
probability of having a certain number of failed submodules
can be reduced. The computation time reduction and the gap
of the failure probabilities using the C&A approach and the
accurate approach will be studied in Section VII.

VI. PREDICTIVE MAINTENANCE SCHEDULING PROBLEM
OF A CONVERTER

Recall that when there is a failed converter-level compo-
nent or a failed arm, the operation of the MMC should be
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interrupted. Then, the failure probability of an MMC is:

λcv = 1−
∏
i∈I

(1− λar
i ) ·

∏
ω∈Ω

(1− λcn
ω (1− δcnω )− λcn0

ω δcnω )

(7)
where Ω represents the set of converter-level components, the
binary variable δcnω represents whether to maintain converter-
level component ω (where δcnω = 1 represents to maintain the
component), λcv is the failure probability of the converter,
λcn
ω and λcn0

ω are the failure probability and the initial failure
probability after maintenance of converter-level component ω,
respectively.

The predictive maintenance scheduling problem (P) can now
be formulated, as follows:

min
zi,x,δcnω

∑
i∈I

∑
x∈Xi

x · zi,x · Csm +
∑
ω∈Ω

δcnω · Ccn
ω + λcv · Cpen

s.t. λcv ≤ λset and (6)− (7)
(P)

where Csm is the cost for replacing one submodule, Ccn
ω

is the maintenance cost of the converter-level component ω,
Cpen is the break-down penalty fee of the converter, and λset

is the tolerable failure probability. In predictive maintenance
scheduling, the tolerable failure probabilities of the converters,
i.e., λset, can be set by the operators of MMCs and the
power system operators. The value of λset should consider
how reliable the MMC should or must be. If the reliability
of the MMC significantly impacts the reliability of the power
system, λset should be set higher, and vice versa. The goal of
(P) is to schedule the predictive maintenance actions so as to
minimize the maintenance costs over the prediction horizon
and to ensure that the failure probability of the converter
will not exceed the tolerable failure probability. According
to the solution of (P), the submodules to be replaced can be
determined. For example, if the solution shows that z3,2 = 1,
the submodules with the first two highest failure rates on Arm
3 will be replaced.

VII. NUMERICAL ANALYSIS

In this section, a case study is presented to test the proposed
FPM for MMCs in transmission networks integrated with
renewable energy generation. More specifically, two tests are
performed to assess for the proposed C&A approach and T-
form. Both tests are performed on the Matlab platform on a
laptop with an Intel Core i5-8250U CPU and 8 GB of RAM.
The computation times of both tests are collected by the “tic
& toc” functions in Matlab.

The first test is to compare the proposed C&A approx-
imation approach with the conventional approach (accurate
approach) that directly calculates the failure probability by
summing up all the possibilities in J as shown in (3). The
computation time and the gap between the results obtained
using C&A and the conventional approach will be studied.

The second test is to compare the CPU times for solving the
predictive maintenance scheduling problems with the proposed
T-form and the binomial probability form.

Table I: Parameters of converters for the tests of C&A

Arm A1 A2 A3 A4 A5
Nr +Nc (Total) 60 70 80 90 100

Nr (10% redundancy) 6 7 8 9 10
Nr (8% redundancy) 5 6 6 7 8
Nr (6% redundancy) 4 4 5 5 6

A. Test for the proposed C&A approach

In this test, the proposed C&A approach and the con-
ventional approach are compared by calculating the failure
probabilities of arms. This test studies five arms, named A1 to
A5, with different total numbers of submodules and different
percentages of redundant submodules on the arms. In Table I,
the parameters of the arms for the test are listed. Furthermore,
this test studies five cases with different failure probabilities of
the submodules, as shown in Fig. 4. The failure probabilities
of submodules in this test are obtained by (2), where the
failure probabilities of the components in submodules are
sampled from the Weibull distributions as is also done in
[32]. Furthermore, in Fig. 4 failure probabilities for the 100
submodules for converter A5 are shown. Regarding the failure
probabilities of the submodules of A4 to A1, the first 90
to 60 failure probabilities in Fig. 4 are adopted. Ten groups
are clustered in the proposed C&A approach via the k-means
approach.

The comparison results of the conventional approach and
the proposed C&A approach are shown in Tables II and III.
In Table II, column “Conven” represents the conventional
approach. In Table III, the gaps of failure rates are expressed
as values rather than percentages. For all five tested arms with
different percentages of redundancy in five cases, the CPU
time reductions for using C&A are significant, and the gaps
of failure rates between the conventional approach and C&A
are minor. Fig. 5 further illustrates the numerical analysis
of these results. Fig. 5a to 5c and Fig. 5d to 5f show the
CPU time ratios and accuracy ratios with different redundant
submodule percentages, respectively. The CPU time ratios are
the CPU times calculated by the C&A approach divided by the
CPU times calculated by the conventional (accurate) approach.
Moreover, the accuracy ratios are obtained by |φ− ϕ| /φ,
where φ and ϕ are the failure probabilities obtained for the
conventional approach and C&A, respectively.

From Fig. 5a to 5c, it can be observed that the CPU time
reductions using C&A are very large compared to those using
the conventional approach. From the simulation results, the
worst CPU time ratio is 0.13, which implies that the CPU time
reduction can be at least 87%. The average CPU time reduction
for all the arms of all the cases with different redundancy
percentages is 95.85%. Furthermore, from Fig. 5d to 5f, it can
be observed that the gap between the failure probabilities using
the proposed C&A approach and the conventional approach
(accurate approach) is low. The accuracy ratio is always less
than 1.6%. Thus, the relative difference in accuracy between
the proposed C&A approach and the conventional approach is
less than 1.6%.

From the analysis of the CPU time reductions and the
accuracy, we can conclude that for this case study, the failure
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Fig. 4. Failure probability parameters of submodules for the proposed C&A and conventional approaches.

Table II: Comparison of CPU times between the conventional approach and the proposed C&A approach

Arm
(10% redundancy)

A1 A2 A3 A4 A5
Conven C&A Conven C&A Conven C&A Conven C&A Conven C&A

Case 1 3.74 s 0.27 s 40.85 s 1.34 s 135.23 s 6.57 s 539.35 s 42.36 s 3715.07 s 241.69 s
Case 2 10.31 s 0.26 s 34.95 s 1.21 s 127.80 s 5.38 s 385.83 s 26.41 s 1956.78 s 233.80 s
Case 3 9.17 s 0.26 s 25.66 s 1.15 s 129.24 s 5.89 s 465.91 s 40.98 s 6902.14 s 243.92 s
Case 4 4.64 s 0.29 s 36.17 s 1.26 s 164.73 s 5.72 s 734.10 s 40.23 s 6413.10 s 237.45 s
Case 5 5.88 s 0.29 s 97.09 s 1.23 s 184.74 s 5.32 s 2113.13 s 51.08 s 2746.51 s 246.65 s
Arm

(8% redundancy)
A1 A2 A3 A4 A5

Conven C&A Conven C&A Conven C&A Conven C&A Conven C&A
Case 1 1.34 s 0.06 s 11.92 s 0.31 s 20.80 s 0.27 s 60.89 s 1.18 s 431.46 s 12.82 s
Case 2 1.36 s 0.07 s 5.75 s 0.29 s 23.99 s 0.27 s 81.80 s 1.20 s 384.26 s 8.34 s
Case 3 1.13 s 0.07 s 5.28 s 0.26 s 61.56 s 0.27 s 72.70 s 1.21 s 308.46 s 5.57 s
Case 4 1.07 s 0.07 s 7.93 s 0.30 s 22.85 s 0.27 s 55.25 s 1.19 s 243.55 s 5.63 s
Case 5 1.38 s 0.07 s 20.56 s 0.25 s 21.34 s 0.27 s 77.96 s 1.21 s 260.62 s 5.66 s
Arm

(6% redundancy)
A1 A2 A3 A4 A5

Conven C&A Conven C&A Conven C&A Conven C&A Conven C&A
Case 1 0.61 s 0.03 s 0.48 s 0.03 s 5.53 s 0.08 s 4.54 s 0.08 s 28.02 s 0.28 s
Case 2 0.46 s 0.03 s 0.55 s 0.03 s 3.36 s 0.07 s 4.21 s 0.08 s 38.98 s 0.30 s
Case 3 0.36 s 0.03 s 0.54 s 0.04 s 3.50 s 0.09 s 4.24 s 0.08 s 31.18 s 0.28 s
Case 4 0.32 s 0.04 s 0.37 s 0.03 s 2.61 s 0.08 s 5.13 s 0.08 s 44.61 s 0.27 s
Case 5 0.37 s 0.03 s 0.54 s 0.03 s 3.24 s 0.09 s 5.31 s 0.07 s 21.72 s 0.28 s

Table III: Gaps of failure rates between the conventional approach and the proposed C&A approach

Arm (10% redundancy) A1 A2 A3 A4 A5
Case 1 1.12× 10−5 1.05× 10−5 9.04× 10−5 1.98× 10−5 1.28× 10−5

Case 2 0.78× 10−5 0.63× 10−5 0.63× 10−5 1.87× 10−5 0.83× 10−5

Case 3 0.75× 10−5 0.60× 10−5 0.37× 10−5 3.12× 10−5 3.89× 10−5

Case 4 0.61× 10−5 0.34× 10−5 0.39× 10−5 2.36× 10−5 0.62× 10−5

Case 5 0.41× 10−5 0.26× 10−5 0.47× 10−5 0.41× 10−5 3.87× 10−5

Arm (8% redundancy) A1 A2 A3 A4 A5
Case 1 1.86× 10−5 1.79× 10−5 1.92× 10−5 2.34× 10−5 1.55× 10−5

Case 2 1.41× 10−5 1.12× 10−5 1.79× 10−5 1.31× 10−5 1.32× 10−5

Case 3 1.13× 10−5 0.91× 10−5 1.43× 10−5 1.22× 10−5 0.94× 10−5

Case 4 2.80× 10−5 0.75× 10−5 1.37× 10−5 1.88× 10−5 1.14× 10−5

Case 5 1.28× 10−5 0.98× 10−5 1.81× 10−5 1.48× 10−5 1.35× 10−5

Arm (6% redundancy) A1 A2 A3 A4 A5
Case 1 0.66× 10−5 0.92× 10−5 1.27× 10−5 0.74× 10−5 1.35× 10−5

Case 2 1.39× 10−5 1.41× 10−5 1.89× 10−5 2.01× 10−5 1.81× 10−5

Case 3 4.69× 10−5 1.15× 10−5 4.10× 10−5 2.38× 10−5 1.51× 10−5

Case 4 1.88× 10−5 1.35× 10−5 1.75× 10−5 1.82× 10−5 1.77× 10−5

Case 5 1.33× 10−5 1.50× 10−5 1.98× 10−5 1.69× 10−5 1.92× 10−5

probabilities of arms obtained by the proposed C&A approach
are accurate. Furthermore, the CPU time reductions are sig-
nificant for the proposed C&A approach compared with the
conventional approach.

B. Test for the proposed T-form

The second test is based on the direct current transmission
network of [33], as shown in Fig. 6. Wind farms 1 and 2

Table IV: Parameters of wind turbines in the test for the
proposed T-form

Rated power Rated wind speed Cut-in wind speed
4 MW 12 m/s 3 m/s

contain 34 and 28 wind turbines, respectively. The parameters
of the wind turbines are given in Table IV. This case study
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(a) CPU time ratios 10% redundant submodules. (b) CPU time ratios 8% redundant submodules. (c) CPU time ratios 6% redundant submodules.

(d) Accuracy ratios 10% redundant submodules. (e) Accuracy ratios 8% redundant submodules. (f) Accuracy ratios 6% redundant submodules.

Fig. 5. CPU time and accuracy ratios between the conventional approach and the proposed C&A approach.
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Fig. 6. Transmission network topology for tests for the pro-
posed T-form.

Table V: Parameters of Converters C1 to C10 in the test for
the proposed T-form

Converter C1 C2 C3 C4 C5
Nr 1 2 3 4 5

Nr +Nc 5 10 15 20 25
Converter C6 C7 C8 C9 C10

Nr 5 10 15 20 25
Nr +Nc 100 100 100 100 100

adopts mission profiles from [34]. The direct current voltage
of the transmission line is ±200 kV and the generation
powers of wind turbines follow the maximum power point
tracking control strategy [35]. Furthermore, in the tests for
the proposed T-form, ten different converters with different
numbers of redundant submodules are considered. The
parameters of these ten converters are listed in Table V. The
failure probabilities of the arms of the converters C6 to C10

after different numbers of submodules have been replaced are
shown in Fig. 7.

The values in Fig. 7, i.e., γi,x, are obtained offline from
Algorithm 1. These values provide the parameters for the
test for the proposed T-form, i.e., γi,x in (6) of maintenance
scheduling problem (P). Furthermore, in Fig. 7, the point
nearest to but smaller than γ = 0.1 for each arm is labeled.
These points illustrate that, for example, in Fig. 7(a), 82
submodules should be replaced to ensure that the failure
probability of Arm 1 is lower than 0.1. From these labeled
points, it can be observed that with the increase of N r fewer
submodules should be replaced to ensure that the failure
probability of the arms is below 0.1.

For comparison with the predictive maintenance scheduling
problem with the proposed T-form (i.e., (P)), the following
predictive maintenance scheduling problem with the binomial
probability form is considered:

min
δsmi,j ,δ

cn
ω

∑
i∈I

∑
j∈Ji

δsmi,j · Csm +
∑
ω∈Ω

δcnω · Ccn
ω + λcv · Cpen

s.t. λcv ≤ λset, (3), and (7)
(CP)

The problems (P) and (CP) are both solved by the “intlin-
prog” function via Matlab platform. Moreover, in predictive
maintenance scheduling, the tolerable failure probabilities of
the converters, i.e., λset, are set to 0.2 in this case study.

The CPU time results for solving (P) and (CP) for different
converters are shown in Table VI. It can be observed that the
CPU times for solving the predictive maintenance scheduling
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(a) γ values with Nr = 5 (b) γ values with Nr = 10

(c) γ values with Nr = 15 (d) γ values with Nr = 20 (e) γ values with Nr = 25

Fig. 7. Failure probability values (i.e., γ) with different numbers of redundant submodules with N c +N r = 100.

Table VI: CPU times of Cases C1 to C10 in the tests of the
proposed T-form

Converters C1 C2 C3 C4 C5
Binomial

probability 0.293 s 1.085 s 5.69 s 27.1 s 82 s

Proposed
T-form 0.028 s 0.031 s 0.033 s 0.043 s 0.045 s

Converters C6 C7 C8 C9 C10
Binomial

probability 409 s 372 s 466 s 478 s 264 s

Proposed
T-form 0.153 s 0.133 s 0.120 s 0.112 s 0.114 s

problems with the proposed T-form are much smaller than
those with the binomial probability form. The CPU time
reduction for converters C1 to C2 can be more than 90%.
Furthermore, with the increase of N r and N c, the increase
of the CPU times for solving the predictive maintenance
scheduling problems with a binomial probability form is
significant. However, the increase of CPU times for solving
the predictive maintenance scheduling problems with the T-
form is not much less significant.

Furthermore, the numbers of the replaced submodules on
the arms for converters C6 to C10 are shown in Table VII. It
can be observed that when the total number of the submod-
ules is the same and the number of redundant submodules
increases, the number of the replaced submodules on arms
decreases. This implies that when N c/(N r + N c) increases,
fewer submodules are required to be replaced in the predictive
maintenance scheduling of MMCs.

Moreover, this paper compares the optimal solutions and
the optimal objective function values of the maintenance
scheduling problem (P) with the T-form and the C&A and
with T-form and the conventional approach. In maintenance
scheduling problems with T-form, i.e., (P), γi,x values are
parameters. The conventional approach obtains the exact γi,x
values, while the C&A approach obtains the approximations

of γi,x values. Thus, the comparison of T-form+C&A and T-
form+conventional approach is to compare the optimal solu-
tions and the optimal objective function values of two opti-
mization problems, i.e., maintenance scheduling problems (P)
with approximated and exact γi,x parameters. The comparison
results are shown in Table VIII. In Table VIII, the optimal
solutions, i.e., the numbers of the submodules to be replaced
for converters C6 to C10, are shown in the “Number” row.
Furthermore, “Cost” and “Penalty” for T-form+C&A represent
the values of

∑
i∈I

∑
x∈Xi

x · zi,x · Csm +
∑
ω∈Ω

δcnω · Ccn
ω and

λcv ·Cpen regarding the optimal solution, respectively. In addi-
tion, “Cost” and “Penalty” for T-form+Conventional approach
represent the values of

∑
i∈I

∑
j∈Ji

δsmi,j ·Csm +
∑
ω∈Ω

δcnω ·Ccn
ω and

λcv · Cpen regarding the optimal solution, respectively.
From Table VIII, it can be observed that the gaps of

the optimal objective function values between T-form+C&A
and T-form+Conventional approach are caused by the gaps
of “Penalty”. Furthermore, the gaps of the optimal objec-
tive function values between the T-form+C&A and the T-
form+Conventional approach are very small, i.e., 1.26%,
2.13%, 4%, 3.59%, and 3.54%, of the optimal objective
function values using the T-form+Conventional approach for
C6 to C10, respectively. In addition, from Table VIII, it
can be observed that the optimal solutions, i.e., the num-
bers of the submodules to be replaced on arms, of the T-
form+C&A and the T-form+Conventional approach are the
same. So the maintenance schedules of the converters with
the T-form+C&A and the T-form+Conventional approach are
the same. This phenomenon most likely occurs because the
approximated and exact γi,x parameters are nearly the same
(as seen in Fig. 5), so the maintenance scheduling problems
(P) with the T-form+C&A and with the T-form+Conventional
approach are slightly different. Consequently, in this case,
solving two different optimization problems with slightly
different parameters results in the same optimal solutions but
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Table VII: The numbers of the replaced submodules on arms for cases C6 to C10

Converters Arm 1 Arm 2 Arm 3 Arm 4 Arm 5 Arm 6 Total
C6 80 83 76 75 79 79 472
C7 72 74 66 66 68 68 414
C8 65 67 59 60 61 61 373
C9 64 65 57 58 59 59 362

C10 60 61 54 54 55 55 339

Table VIII: Comparison of optimality between T-form+C&A and T-form+Conventional approach

Converter C6 C7 C8 C9 C10

T-form+
C&A

Number 80/83/76
/75/79/79

73/75/67
/67/69/69

66/68/60
/61/62/62

64/65/57
/58/59/59

61/62/55
/55/56/56

Cost 5.49× 106 4.88× 106 4.41× 106 4.21× 106 4.01× 106

Penalty 2.35× 106 2.30× 106 2.34× 106 2.31× 106 2.34× 106

T-form+
Conventional approach

Number 80/83/76
/75/79/79

73/75/67
/67/69/69

66/68/60
/61/62/62

64/65/57
/58/59/59

61/62/55
/55/56/56

Cost 5.49× 106 4.88× 106 4.41× 106 4.21× 106 4.01× 106

Penalty 2.38× 106 2.35× 106 2.25× 106 2.23× 106 2.26× 106

slightly different optimal objective function values. Therefore,
with the T-form+C&A and the T-form+Conventional approach,
the optimal objective function values of the maintenance
scheduling problems are slightly different, while the optimal
maintenance schedules are the same.

VIII. CONCLUSIONS AND FUTURE WORK

This paper has proposed a failure probability prediction
model (FPM) for predictive maintenance scheduling for large-
scale half-bridge MMCs. The uncertainty of the predicted
mission profiles and the maintenance decision variables are
considered in the proposed FPM. The proposed FPM is char-
acterized by tractability. More specifically, a tractable form (T-
form) is proposed to make the relationship between the failure
probability of an arm and the maintenance decision variables
easy to be tackled. In addition, an approximation method, i.e.,
clustering and assignment (C&A), has been proposed to reduce
the computation times for calculating the parameters for the
proposed T-form. The simulation results have shown that
the proposed C&A approach can reduce the CPU time with
95.85% on average compared to the conventional approach.
Furthermore, for the given case study, the gaps between the
failure probabilities of arms obtained by the C&A approach
and the accurate approach are less than 1.6%. Moreover,
predictive maintenance scheduling problems with the proposed
T-form can be solved 90% faster than those with the binomial
probability form.

Regarding the impacts on engineering practice, the proposed
FPM provides a tractable tool for MMC managers or operators
to determine predictive maintenance actions. Although the
period for predictive maintenance scheduling for MMCs may
be as long as several months, there are still necessities for
adopting the proposed tractable tool. First, the computation
times increase prohibitively with the number of submodules
(see Tables II and VI). If the number of submodules increases
to, e.g., 300 or more, the computation times for solving the
maintenance scheduling problems increase drastically. Thus,
the tractable tool is needed to handle the “curse of di-
mensionality”. Second, when solving maintenance scheduling
problems, the energy consumption of computers can be largely

reduced by using the proposed tractable tool because of
the significant computation time reduction. The computation
complexity reduction by using the proposed T-form and C&A
approach may be favored by the large-scale MMC manages
or operators.

In practice, sometimes some high-risk submodules may
be misjudged as low-risk submodules. Then, the misjudged
high-risk submodules may fail during operation. However,
the modular design and the redundant submodules of MMCs
can avoid catastrophic consequences by bypassing the failed
submodules, and in this way the operation of MMCs will not
be interrupted.

Future work will study other non-optimization-based, e.g.,
parametric, maintenance scheduling strategies for MMCs. In
addition, mission-profile-based control strategies for relia-
bility will be developed for large-scale MMCs. Moreover,
experimental analysis in laboratory and actual power system
conditions will help to validate and quantify the contribution
in practice of the proposed methodology. For instance, a
comparison between the accuracy of the proposed FPM and
the conventional methods can be tested in practical power
systems.
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[22] J. Fu, A. Núñez, and B. De Schutter, “A short-term preventive main-
tenance scheduling method for distribution networks with distributed
generators and batteries,” IEEE Trans. Power Syst., vol. 36, no. 3, pp.
2516–2531, 2021.

[23] W. Liao, L. Ge, B. Bak-Jensen, J. R. Pillai, and Z. Yang, “Scenario
prediction for power loads using a pixel convolutional neural network
and an optimization strategy,” Energy Rep., vol. 8, pp. 6659–6671, 2022.

[24] G. Lv, W. Lei, M. Wang, C. Lv, and J. Zhao, “Reliability analysis
and design of MMC based on mission profile for the components
degradation,” IEEE Access, vol. 8, pp. 149 940–149 951, 2020.

[25] L. Gan and S. H. Low, “Optimal power flow in direct current networks,”
IEEE Trans. Power Syst., vol. 29, no. 6, pp. 2892–2904, 2014.

[26] Y. Zhou, X. Li, X. Ye, and G. Zhai, “A remaining useful life prediction
method based on condition monitoring for LED driver,” in Proceedings
of the IEEE 2012 Prognostics and System Health Management Confer-
ence (PHM-2012 Beijing), 2012, pp. 1–5.

[27] A. R. Khandebharad, R. B. Dhumale, S. S. Lokhande, and S. D.
Lokhande, “Real time remaining useful life prediction of the electrolytic
capacitor,” in 2015 International Conference on Information Processing
(ICIP), 2015, pp. 631–636.

[28] J. Xu, P. Zhao, and C. Zhao, “Reliability analysis and redundancy
configuration of MMC with hybrid submodule topologies,” IEEE Trans.
Power Electron., vol. 31, no. 4, pp. 2720–2729, 2015.

[29] H. Wang, M. Liserre, and F. Blaabjerg, “Toward reliable power electron-
ics: Challenges, design tools, and opportunities,” IEEE Ind. Electron.
Mag., vol. 7, no. 2, pp. 17–26, 2013.

[30] K. Ma, U.-M. Choi, and F. Blaabjerg, “Prediction and validation of wear-
out reliability metrics for power semiconductor devices with mission

profiles in motor drive application,” IEEE Trans. Power Electron.,
vol. 33, no. 11, pp. 9843–9853, 2018.

[31] A. Bemporad and M. Morari, “Control of systems integrating logic,
dynamics, and constraints,” Automatica, vol. 35, no. 3, pp. 407–427,
1999.

[32] J. Xu, L. Wang, Y. Li, Z. Zhang, G. Wang, and C. Hong, “A unified
MMC reliability evaluation based on physics-of-failure and SM lifetime
correlation,” Int. J. Electr. Power Energy Syst., vol. 106, pp. 158–168,
2019.

[33] W. Li, M. Zhu, P. Chao, X. Liang, and D. Xu, “Enhanced FRT and
postfault recovery control for MMC-HVDC connected offshore wind
farms,” IEEE Trans. Power Syst., vol. 35, no. 2, pp. 1606–1617, 2020.

[34] D. Zhou, Y. Song, Y. Liu, and F. Blaabjerg, “Mission profile based
reliability evaluation of capacitor banks in wind power converters,” IEEE
Trans. Power Electron., vol. 34, no. 5, pp. 4665–4677, 2018.

[35] J. Fu, G. Song, and Y. Gong, “Exploration of a DC wind farm
integrated by variable-speed squirrel cage induction generator (SCIGs),”
The Journal of Engineering, vol. 2017, no. 13, pp. 1488–1493, 2017.


