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Abstract

Controlling the operation of HVAC (Heating, Ventilation, and Air-Conditioning) systems is arguably
the most effective way to reach desired indoor conditions in buildings. Nevertheless, such control may
involve complex dynamics when dealing with passive energy technologies. In this paper, we focus on
maximizing the passive operation of HVAC in a novel low-energy building design by means of Model
Predictive Control (MPC). The low-energy building design, located in The Green Village, consists of a
thermal chimney and solar shades over all-glass facades to provide the required indoor air conditioning
as passively as possible. The MPC controller is based on a transient grey box model and a hierarchical
control architecture to satisfy thermal comfort while minimizing the active energy requirements. Using
sensor data collected from the actual building in April and May 2021, the grey box model shows a good
agreement with the measurements, since the variance accounted for is 90% in most cases. Moreover, via
a comparative study among different MPC architectures we show that managing the distinct transient
response of each component (shades and chimney) is the best for successful overall performance —
e.g., considering linear agents for shading and nonlinear agents for ventilation. The hierarchical MPC
architecture established outperforms the standard ones by 22.7% in terms of control performance. We
also compare the proposed MPC approach against the rule-based control method currently implemented
in the actual building, which indicates that MPC demands about 78% less active energy, highlighting
the proposed optimization-based control approach.

Keywords: MPC (Model Predictive Control), HVAC (Heating, Ventilation, and Air-Conditioning), passive energy,
solar shading, thermal chimney, all-glass facades.
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Nomenclature Greek letters
@ Solar absorptance [-]
A Matrix of linear coefficients [-] € Emissivity [-]
A Heat transfer area [m?] K Conduction coefficient [W/(mK)]
B Matrix of linear coefficients [-] A Linear irradiation coefficient [W/(m2K*)]
c Specific heat at constant pressure [J/(kgK)] 19 Parameter for floor shading [-]
C Heat capacity [J/K] p Specific mass [kg/m?]
C Output matrix [-] T Solar transmittance [-]
Cq  Friction coefficient [-] “ Chimney cross-sectional area [m?]
d Vector of disturbances [-]
& Matrix of linear coefficients [-] Subscripts
F View factor [-] a Indoor air
g Gravitational constant [m/s?] c1, C2 Ceiling layers
h Convection coefficient [W/(m?K)] e East
H Distance between tower inlet and outlet [m] e Electric backup
I Solar irradiance [W/m?] est Estimated
K Kalman filter matrix [-] f1, fa Floor layers
L Thickness of insulation g Outside ground
m Mass [kg] hp Heat pump
N Time horizon [s] mod Model
P Penalization coefficients [-] n North
q Heat [J] o Outside air
Q Penalization coefficients [-] People
R Penalization coefficients [-] ref Reference
t Time [s] s Solid surfaces
T Temperature [K] s South
u Control inputs [-] s Shades
v Sensor disturbances [-] sky Sky
w White noise [-] v Ventilation
x Linearized temperature states [K] w West
X Length [m] W1, W2, W3 Glass layers
Y  Width [m]
Yp System output [K] Superscripts
4 Depth [m] k Time step

1 Introduction

Passive energy technologies have been encouraged for different applications, including HVAC (Heating,
Ventilation, and Air-Conditioning) in low-energy buildings [1]. The positive impact of such technologies
is particularly relevant for office buildings, where the stricter working period and high occupancy require
significant energy consumption to meet the indoor thermal comfort [2]. Additionally, the recent COVID-19
outbreak urges for higher ventilation in public buildings, and therefore, higher energy demand [3]. The
use of passive energy technologies, however, calls for the integration of such technologies with an effective
control scheme for reducing the requirements of active energy. Reaching this integration has stimulated
investigations on optimal passive design parameters in different climates [4].

Among different options, shading systems have been widely suggested as passive energy technologies since
the solar heat load plays a role in indoor air temperature profile and HVAC demand [5]. The shading of
facades has shown to be a promising technology for heating, cooling, and day-lighting control [6]: in fact,
the operation of shadings can be calibrated dynamically according to the targeted purpose, e.g., using solar-
tracked surfaces to enhance heat gains [7] or to prioritize daylighting [8]. Although some software considers
shadings in its library of components [9], the literature suggests further efforts to optimize the shadings
operation [10]. Natural ventilation systems represent another popular class of passive energy technologies.
They have been studied via a variety of components such as thermal chimneys and wind towers [11]. Thermal
chimneys are the most notorious, while more studies combining other natural ventilation sources are still
required for effective applicability in buildings [12], and further studies for the optimization and control of
thermal chimneys are recommended in the literature [13].

Many control methods have been considered putting emphasis on the optimal operation of dynamic low-
energy systems, which includes MPC (Model Predictive Control) as a state-of-the-art approach [14]. MPC
relies on optimization algorithms and on the knowledge of the system behavior to predict and select the best
control inputs at each time step [15]. In this sense, MPC has been suggested for the real-time optimization of
radiant floors [16], natural ventilation [17], shading systems [18], thermal energy storage [19], energy use in
smart buildings [20], and integration of multiple HVAC systems [21]. Furthermore, MPC has been studied in
the integration of electricity and heat systems [22], and demand response in residential air-conditioning [23].



The MPC methodology is flexible and allows considering constraints, deterministic models [24], stochastic
scenarios, nonlinear models [25], and can incorporate deep learning [26]. Demonstrations in functional
buildings have also been reported, e.g., a cloud-based, white-box MPC for a ground-sourced heat pump in
offices [27], fuzzy nonlinear MPC [28], and zone-based MPC to supply heating and electricity in an academic
building [29].

The literature on MPC is vast since the method encompasses the optimization of a wide range of sys-
tems. Generally, HVAC systems exhibit improved thermo-economic performance when controlled by MPC
as compared to rule-based or state-of-the-art control methods [30]. However, there is no ultimate consensus
in the literature about the most effective way to implement MPC in each specific system, especially when
considering the optimization of complex fully passive heating and ventilation systems: a set of questions
arises concerning the benefits in system performance, the most proper control architecture configuration, the
most proper cost function to maintain comfort while saving energy, the effects of the models’ nonlinearities,
etc. Finding answers to these questions may facilitate the practical application of MPC in novel low-energy
building designs [31].

This article explores MPC to optimally integrate passive heating and ventilation while drawing on a
unique all-glass facade building with steerable solar shadings and a thermal chimney. Such design relies on
an actual building located in The Green Village as a research facility [32, 33]. The system configuration
involves a case study about maximizing the use of passive energy technologies in meeting centers, relying
on architectural designs such as natural ventilation, structural glasses, and dynamic solar shadings. To
promote the viability of such passive technologies on a larger scale, we suggest an optimized model-based
control approach to maximize the use of passive energy and, consequently, the feasibility of the technologies
studied, since the system performance is enhanced. The optimized control aspect arises because, differently
from standard MPC architectures (either linear or nonlinear), in this paper we develop a novel grey-box
hierarchical MPC architecture that manages the passive heating and ventilation processes accordingly to
their distinct heat capacities and passivity — for instance, considering linear agents for shadings and non-
linear agents for ventilation. Furthermore, we compare the proposed MPC controller to the rule-based PID
controller operating in the real building. The novelties of this work can be outlined as follows:

e Providing an appropriate modeling approach for a real-life fully passive heating and ventilation system.
The system is located in The Green Village and the models were validated with 35 temperature sensors.

e The optimization problem must be designed to fit the need of the fully passive system. For this purpose,
we provide a study of the objective functions for maximizing passive energy use while meeting thermal
comfort, studying the combination of optimized parameters, studying the Pareto curves, and studying
the constraints.

e (Clearly, the control must be applied in the real system: for this purpose, we perform an extensive
comparison of 3 MPC architectures in terms of computation time and accuracy for optimal control of
passive energy systems for the real-life application under consideration.

e Analogously, we provide a comparison of MPC and PID controllers in terms of energy savings and
control profiles for optimal strategy.

e We show reduced energy consumption of a novel system configuration toward zero-energy buildings
using hierarchical MPC.

The rest of the paper presents the system description and modeling in Section 2, followed by the control
design and proposed MPC structures in Section 3. The experiment results and discussions are in Section 4,
followed by the conclusions in Section 5.

2 Thermal system description and modeling

The thermal system under consideration deploys passive energy through the combination of two subcompo-
nents: a thermal chimney for buoyancy-driven ventilation, and transparent all-glass facades for solar heating.
Such configuration is based on the actual building installed in The Green Village [32, 33], at Delft University
of Technology, in the Netherlands. As shown in Figure 1, in this system external steerable shades cover the
vertical facades for controlling the solar irradiance hitting the building. The thermal chimney is assisted by
backup fans and a heat pump to supply the airflow rates and temperatures desired. The drilled deck floor
plays a crucial role in this configuration, since it drags the air flowing into the building, and may absorb



Figure 1: System installed at The Green Village: (a) blinds open, (b) blinds closed, (c¢) the basement floor,
and (d) the design of the tiles.

part of the solar irradiance. Therefore, the materials and dimensions considered in the design directly affect
the system’s performance. To model the system dynamics, we rely on the law of conservation of energy
while considering a nonlinear and a linear formulation for control purposes, as shown in the two following
subsections.

2.1 Nonlinear modeling

By the Bernoulli’s principle [34], the flow rate produced by the chimney depends on the difference between
indoor (7%) and outdoor (7¥) air temperatures at that time, as shown:

: T - T¥

" = ppCa 29H% (1)

o

where the superscript k refers to the time step, such that k = kAt and At is the time interval. Furthermore,
@ is the chimney cross-sectional flow area, Cq the pressure loss coefficient, H the distance between the
air inlet and outlet, p the specific mass of air, and g the gravitational constant. Note that we assume
incompressible flow and no infiltration in (1). Also, for the given setup, Cq = 0.57, according to preliminary
CFED simulations.

To determine the time-dependent indoor air temperature (7¥), we consider a single fully mixed volume
while balancing the heat rates through the zone. Therefore,

7
At
T = T8 + | N*G +ubgny, + ubimles (T8 —TF) + Y hbA,; (TF, - TF) - (2)

Jj=1

where N* is the number of people, dp is the heat generation per person (100 W), ¢n, the nominal heat pump
power (10000 W), u¥ the control fraction for auxiliary heating, u* the control fraction for ventilation, ¢, the
specific heat of air, C, the heat capacity of air, h* the convection coefficient, Ay the heat transfer area, and



TF the temperature of the indoor surfaces. Note that u* and u* assume normalized values, between 0 and
1. Moreover, T* refers to the indoor layer of the four vertical walls (Tvlf,l’n, T@LS Tv’f,l’e, and TV’\“,LW), ceiling
(Th), and two floor layers (TE, TE).

Each wall consists of three layers. To illustrate the calculation of the temperature of the three layers, let
us refer to the North facade, indicated with the subscript n:

T = Thia + [dhatbardan + o (Th)' = (1)) + 1 (T~ Th.)

s (1 - ) | B (3
T = Thy o [T e+ oF ((Th1) 4 (T ) —2 (1))

o (T T — 2T, ) [P (3b)
T = Ty 4 [0 s+ 0F (1) = (Th)") 4 s (T~ T5,)

e ((T5)" — (") + 1 (1~ Th) | e (30)

where u! is the control signal for the shading, I¥ the solar incidence, 7, the glass transmittance, o, the
absorptance, ¢,, the emissivity, o the Stefan-Boltzmann constant, and F the view factor. Similar to u¥
and u¥, also u¥ is normalized between 0 and 1. One should note that equations (3a)—(3c) refer to a single
orientation (i.e., North). A similar formulation is considered for the remaining facades (South, West, and
East) but is here omitted to avoid redundancy.

The ceiling disposes of an external layer (roof), which is separated from the internal ceiling by thermal
insulation. The temperature of the ceiling and roof are expressed as:

A At
Ccl

Re
L.

ThH = T +[ (Th — TH) + B, (T Tm} (4a)

A At
CC2

ThH = Tk | [us762152a62 + héy (TS = T) + eca0 ((Ts’iy)4 _ (Tc’g)‘l) + 2 (T —Th) (4b)

L.
where k is the conduction coefficient and L. the thickness of insulation between the surfaces. In addition,
Ug c2 refers to the fraction of solar radiation over the roof. However, note that us .o = 1, since there is no
shading over the roof. Regarding the bottom of the building, the floor consists of indoor drilled tiles and
the basement floor. Therefore,

k Ap At
T4 = T + [ Tnan, + bl (T8 - TH) | =5 (5a)
Kf Af At
TEN =T + {Lf (TF —T5) + hiy (T — Tf’;)] 027& (5b)

where £¥ indicates the fraction of solar radiation that reaches the floor due to the aperture of the shadings
(&% = f(uF)). Moreover, T} indicates the ground temperature, and L refers to the thickness of insulation
between the basement floor and ground. For the thermal insulation, we consider the conductivities k. =
0.167 and x¢ = 0.0313 W/(mK).

This modeling requires expressions for the heat transfer coefficients, which depend on the temperatures,
air velocities, and characteristic length [35]. We draw on the correlations presented in Appendix 1 [36].
Additionally, we calculate the solar incidence at the tilted surfaces according to the Perez model [37]. Table
1 summarizes the system dimensions and thermal-physical properties corresponding to the components
regarded.

2.2 Linear modeling

The system model considered in Section 2.1 includes nonlinearities such as the radiative heat rates and
temperature-based properties. Nevertheless, for the purpose of controlling the system, one can obtain good
performance and fast calculation time if considering a proper linearization approach. In this sense, we



Table 1: System zones, corresponding dimensions (X, Y and Z) and properties.

Zone X [m] Y [m] Z [m] p lkg/m’] ¢ [J/(kgK)] o [] ™[] €[]
Chimney 2 2 5 - - - - -
Indoor air 13.5 22.5 5.2 1.2 1000 - - -
Roof 13.5 22.5 0.004 1050 1800 0.870 0.93
Ceiling 13.5 22.5 0.003 7850 500 - - -
N-S wall 13.5 5.2 0.010 2470 900 0.085 0.83 0.82
E-W wall 22.5 5.2 0.010 2470 900 0.085 0.83 0.82
Floor 13.5 22.5 0.038 1550 800 0.200 - -
Basement 13.5 22.5 0.225 2000 840 - - -

Table 2: Vectors for the linearized model.

Vector Meaning Components
k k k k k k k k k k k k k k
z Temperatures Ta Twl,n Tw2,n Tw3,n Twl,s Tw2,s Tw3,s Twl,c Tw2,c Tw3,c Twl,w Tw2,w Tw3,w
k k k k
Tcl Tc2 Tfl Tf2
uk Control inputs ub uk ufyn ufb ui?’e UI:,W Us,c2
k : k k k k
d Disturbances N® T} Tsky Tg

*The subscripts n, s, e, and w, refer to the geographic direction of each facade (North, South, East, and West).

consider curve fitting for the heat transfer coefficients, a linearized radiation coefficient (\), and airflow rates
decoupled from the temperatures, such that:

Zh L = AFak 4 BRuk 4 gk (6)

where ¥, u*, and d* are vectors referring to the temperature states, control inputs, and disturbances, while

AF, B* and £F are matrices for the linear dynamics. Table 2 describes the vectors in (6), while the matrices
are provided in Appendix 2.

3 Control design

The controller is designed to maximize the passive energy utilization while satisfying the thermal comfort
condition. Such condition is pursued by minimizing the difference between the indoor temperature and a
reference temperature for comfort (7%;). The desired system performance, therefore, consists of minimizing
the demand for energy (i.e., active energy). Therefore, a multi-objective optimization approach is needed
to establish trade-off limits. Depending on the nature of the system dynamics (linear or nonlinear) we have
implemented two standard centralized structures, named nonlinear model predictive control (NLMPC) and
linear model predictive control (LMPC). In addition, in an effort to improve the performance of the afore-
mentioned standard architecture, a hierarchical model predictive control (HMPC) structure that combines
nonlinear and linear agents is also considered. Each architecture has its own model, objective function, and
optimization strategy, as further presented in the three following sections.

3.1 Linear Model Predictive Control (LMPC)

LMPC considers a quadratic programming optimization problem in which the linearized system (6) is com-
bined with a quadratic objective function with penalizing matrices, as follows:
Np—1
. ; ; 2 T
muln Z Qk+l (Tzf:+l - Trcf) + (uk+1 - urcf) R (uk+1 - Urcf) + P (T;CJFN - Trcf)
i=0

2

(7)

where uer is the reference state (upr = 1 for shadings, and u,er = 0 for ventilation), and QF R, and P are
penalizing matrices for the time-dependent temperature, control inputs, and terminal temperature state. In
this case, QF is time-varying since it depends on the people occupancy (QF = 4000 for occupied periods and
QF = 0 for the non-occupied periods), R = diag(3,0.1,0.1,0.1,0.1), and P is determined by the Riccati
equation: P = idare(A*, B, QF R). The convexity of LMPC is tested via the Hexian method [38], i.e.,
by checking at each time step if the eigenvalues of the Hessian matrix are nonnegative.



3.2 Nonlinear Model Predictive Control (NLMPC)

NLMPC is the benchmark for the current analysis since it is based on the most detailed model (the non-
linear model of Section 2.1), which includes most of the system nonlinearities encountered in the physical
system. The optimization uses the active-set algorithm for nonlinear constrained optimization in the fmincon
function from the MATLAB optimization toolbox [39]. The active-set algorithm was selected because of its
satisfactory performance, and faster processing time compared to the other algorithms. The optimization
problem considers the following objective function for time step k:

NP
min 3 (TH — Tr)? (8)
i=1

where the index ¢ refers to the prediction step and IV}, to the control horizon. For the nonlinear system, the
stability is verified in the sense of the Lyapunov equilibrium state, where the cost function of the optimization
problem is taken as the Lyapunov function [38].

3.3 Hierarchical Model Predictive Control (HMPC)

NLMPC and LMPC are both centralized architectures, which means that a unique control agent is in charge
of all the outputs and the inputs. However, this centralized approach may not properly exploit the different
time constants of the thermal chimney and of the solar shadings. Therefore, a hierarchical configuration
is proposed to improve the control scalability and computation time while combining both NLMPC and
LMPC in a master-slave relation. The HMPC structure is illustrated in Figure 2. HMPC operates with
two controllers (two agents), in which the first agent applies LMPC with the role of providing the optimal
temperature trajectory (Tt’iaj) over long time horizons, and the second agent uses NLMPC with the role
of tracking this optimal temperature over short-term horizons. The objective function in the nonlinear
controller takes the following form:

N,
s , N2 )
min Y Q (T8 — T ) +R (T du,)” (9)
u
=1

The matrices @ and R in (9) have a different meaning as compared to (8), as hereby they are defined
to satisfy a maximum deviation, such that Q = 0.8 and R = 7.5 x 1079, Tracking the optimal references,
though, it is only relevant for non-occupied hours, as for occupied hours the reference temperature (i.e.,
21 °C) is assumed. In the linear controller, the optimization uses the following objective function:

Np—1
min Z (ukH — Uref)TR (ukH - uref) (10)
i=0

where R = diag(3,0.1,0.1,0.1,0.1,100). Note that only the inputs are penalized in (10), while the system
outputs are constrained to meet the reference temperature condition.

While defining the temperature trajectory, the HMPC requires a re-optimization strategy in which the
control inputs optimized in the LMPC layer are provided as initial guesses to the NLMPC optimization.
However, this re-optimization only considers the inputs for ventilation, while the previous inputs for heating
are kept. Also, a Kalman filter [40] is considered for updating unmeasurable temperature states (Zest) in the
system, as follows:
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Figure 2: Hierarchical Model Predictive Control (HMPC) structure developed.

Algorithm 1: Kalman filter MATLAB

Input: Fpmoa (klk — 1), yp(k), wlk — 1), v(k), Ag_1, By_1, C
Output: Zest(k|k)
Procedure:
r < obsv(Ag_1,C)
Rank < rank(r)
States <+ length(Z,0q(klk — 1))
If Rank < States then
“System not fully observable”
end if
Qp—1 + (w(k — 1))
R = (v(k))?
Prjk—1 < Bu—1Qu—1BF_,
Kg 'Pk“c,lCT (C'Pk”v,lCT + Rk)71
Zest (k|k) < Zmoa (klk — 1) + Ky (yp (k) — CZmoa (k|k — 1))

return Test (k|k)

where T4 is the temperature state calculated in the model, w and v are white-noise and sensor disturbances,
respectively, and y;, is the system output, such that y5 = Cz* and C = [1,0,...,0]. The vector C describes
the sensor position for system observability and Iy is the Kalman filter matrix [40].



Table 3: Parameters calibrated for the grey-box model.

Parameter Initial value Calibrated value
Zc2 0.0030 0.0026

Zs1 0.038 0.036

agy 0.200 0.156

Zto 0.225 0.228

Kf 0.313 0.344

Cw 900 792

Qyy 0.085 0.078

Tw 0.83 0.78

Ew 0.82, 0.16 0.77, 0.13

4 Performance evaluation

To evaluate the performance of the controlled system, we first assess the model’s accordance with the
measurements collected on site. Next, simulations for the MPC architectures provide key performance
indicators such as control accuracy and time response for real-time applications. Finally, we consider a
case study to assess the energy savings achieved while comparing HMPC to the rule-based PID controller
operating in the actual building.

4.1 Verification of the models

The data collected to verify the accuracy of the models include the temperature states for indoor air and
building surfaces, according to the output variables given in Section 3. The airflow induced by the chimney,
however, is not verified experimentally, as the actual building is not currently providing such measurements.
The airflow rates have, therefore, been verified theoretically by CFD simulations, as previously mentioned.
Two testing periods range from April 2 until April 11, 2021; and from May 22 until May 24, 2021. During
this period, we established the following operational conditions:

e Solar blinds were fully open.

e No ventilation, windows and doors were closed.
e No occupants and lights were turned off.

e The heat pump was turned off.

The data measured at The Green Village were obtained with a 5-minute sampling time by means of
35 sensors applied to 8 components: 3 for the indoor air, 4 on the ceiling, 2 on each of the north, east,
and west-facing interior glazed walls, 4 on the south-facing interior glazed wall, 9 on the deck floor, and 9
on the basement floor. These sensors are strategically distributed over the space, so averaged values are
taken to represent the lumped temperature of each component. Moreover, 6 sensors assess the local weather
conditions, which include the outside temperature, wind speed, air pressure, relative humidity, and global
irradiance. The global irradiance is split in direct beam and diffused horizontal irradiances using the Reindl
correlation in TRNSYS 17 [41].

Grey-box identification has been performed to improve the model accuracy, in which 10 model parameters
were selected to be calibrated (see Table 3). The outputs from the grey-box model (calibrated values) shown
in Table 3 better reflect the system behavior as the model parameters are identified for the current building,
while the initial values were obtained for general material descriptions and technical drawings.

The data from the 10-day measurement period in April were selected as training data, while the 3-day
measurement period in May 2021 is used to validate the corresponding prediction. Figure 3 presents the
comparison between the temperature measurements and the nonlinear model outputs, using the optimized
parameters. The verification relies on the VAF (Variance Accounted For) and the NRMSE (Normalized
Root-Mean-Square Error), which are presented in Table 4 for all the temperatures assessed. As one can see
from Table 4, the model provides a satisfactory prediction.
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Figure 3: Temperature profile obtained by experimental and numerical evaluation: (a) training data and (b)
training verification.

Table 4: Accordance between temperatures predicted by the model and experimental measurements.

Training data Validating data
Temperature VAF NRMSE VAF NRMSE
Ta 95.8 0.05 93.8 0.10
Te1 94.7 0.05 87.2 0.10
Th 81.1 0.15 76.9 0.16
Tto 95.9 0.07 89.4 0.09
Twin 95.7 0.07 95.8 0.16
Twi,s 96.3 0.05 95.6 0.12
Twi,w 89.5 0.07 89.3 0.10
Twi,e 91.6 0.06 83.5 0.11

4.2 Architecture analysis

To assess the best structure in terms of control performance and computation time, a single objective function
is considered by assuming that only passive energy sources are available (u¥ = 0). Therefore, the squared
and absolute errors (e) between the reference temperature (7%;) and the model’s output (7) indicate
the control performance, while the computation time of one optimization step (fop) is evaluated for each

10
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architecture (LMPC, NLMPC, and HMPC). If these steps take too long, online control becomes impractical.
All simulations were performed on an HP ZBook Studio x360 G5, Intel Core i7-8750H processor, with 16
GB of RAM.

The building occupancy is predetermined in Figure 4, where eight occupied hours are selected and applied
in each of the MPC structures presented in Section 3. As the occupancy indicates when thermal comfort
should be achieved, the periods with occupancy are indicated in the figures as between two black dashed
lines. Knowledge of the weather climate data is considered by using the Typical Meteorological Year (TMY)
data from EnergyPlus [42]. This data set contains the annual period of historic weather data per hour in
Amsterdam, the Netherlands. Weather data from forty consecutive days in Spring (from day 90 to day
130) are selected for the assessment. Such period is chosen because of the varying environmental conditions
during spring. In contrast, the summer or winter seasons are predominantly warm or cold. These seasons
are likely to result in consistently similar control actions. The disturbance data has an hourly sampling time.
We set the MPC time step At to one hour as well, analyzing the effects of lowering At to 30 minutes since
this results in less time available to optimize the inputs.

The analysis starts by plotting the objective function in Figure 5. The circle markers refer to 400 start
points, and the color spots refer to the resulting errors, considering a prediction horizon of 2, 4, and 8
days. Moreover, the cross markers indicate the corresponding 400 optimal points. As shown in Figure 5,
the indoor temperature variance suggests a minimum and it is, therefore, feasible to optimize. Additionally,
the analysis shows that the optima found settles in a single region, which indicates the absence of multiple
local optima. Approximately, there is a unique global optimum, and a multi-start procedure is not required
which significantly reduces the computation time.

When comparing the NLMPC and LMPC centralized structures, it seems that applying a linearized
model with large prediction horizons is beneficial. Such result is shown in Table 5, where % expresses in-
crease/decrease with relation to the centralized structure. In contrast to LMPC, no preparatory decision is
considered in NLMPC since the control horizon is limited to 8 hours for feasible computation times. There-
fore, the squared error is significantly reduced with LMPC, indicating that making preparatory decisions is
effective for future occupied hours. Also, the absolute error remains similar as the LMPC produces a high
accuracy when compared to the NLMPC. Additionally, Figure 6 illustrates the indoor temperature profiles
obtained by the controllers above.

The hierarchical structure (HMPC) clearly solves this problem as both the squared and absolute errors
are reduced significantly. This happens because the NLMPC controller prefers ventilation over shading to
affect the air temperature since the indoor temperature response via ventilation is faster. However, the
shades have significant effects over the long period due to their influence on the thermal mass, which can be
beneficial in future situations. The indoor temperature profile by HMPC is illustrated in Figure 7.

For example, HMPC may prioritize opening the blinds and fully ventilating to cool the inner zone during
a semi-warm day, even though a better solution might be to close the blinds and decrease the ventilation

11
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Figure 5: Effects of control inputs on the objective function minimization.

Table 5: MPC architectures assessed and the corresponding performance metrics, where % expresses in-
crease/decrease with relation to the centralized NLMPC.

Architecture Np S e? K2 Se K] top [s]
NLMPC 8 1736 882 30.6

LMPC 24 1373 (—20.9%) 915 (+3.7%) 0.18 (—99.4%)
HMPC 4 1341 (—22.7%) 773 (—12.4%) 2.3 (—92.5%)
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when a period with a warm climate follows. This is a typical scenario that may occur when the blind control
inputs are re-optimized on a short horizon, using little knowledge of future disturbances. HMPC solves
this problem by assuming that the building’s thermal response due to solar irradiance is relatively slow
and, therefore, less sensitive to linearizations. Hence, the blind control signals can be optimized on a large
horizon by the LMPC agent, using sufficient knowledge of future disturbances. In addition, the re-optimized
ventilation control signal can compensate for uncertainties in the short-term predictions. The preservation
of high control performance in the short-term is then ensured, while the re-optimization is done faster when
only one input type is optimized.

At last, we consider the heat pump demand aiming to make the thermal comfort always achieved. In this
case, a multi-objective optimization problem arises, as a conflict occurs between thermal comfort and energy
consumption. This is illustrated by constructing the Pareto front of the optimization problem in Figure 8,
in which the points contain information of a simulation period of 20 days. In this Pareto front, the standard
deviation in relation to the reference temperature and the required auxiliary energy of each simulation
period are analyzed. A maximum standard deviation of 0.25 °C is selected, such that 95% of all errors are
within 0.5 °C, assuming the error to be a normal distribution. The optimal point chosen is determined by
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considering both the Pareto front and corresponding computation times. Hence, the corresponding Q and
R weighting values presented in Section 3.3 are the selected values.

4.3 HMPC versus rule-based PID controller

As the HVAC system installed at The Green Village is currently operated by a rule-based PID controller, we
draw on such measurements to evaluate the potential of the developed HMPC architecture for reducing the
building’s energy consumption while maintaining thermal comfort. The control performance is evaluated
keeping the same MPC framework shown in Figure 2. The indoor temperature variance indicates how well
thermal comfort is achieved. The system performance is also expressed in terms of the required auxiliary
energy, where the energy demanded by the HMPC structure is evaluated considering a maximum deviation
of 0.25 °C. The optimized properties in Table 4 are considered.

We evaluate the system performance during the 13-day field experiment, from May 3 to May 15, 2021,
in which the measured data have a 5-minute sampling time. During the experimental period, the occupancy
in the building is mimicked by 6 electric heaters of 500 W each as, for the simulation, 30 occupants were
considered between 9 a.m. and 5 p.m. on weekdays only. Moreover, the direct beam irradiation is omitted
after 5 p.m. because of incontrollable shadowing from trees. The reference temperature is set to 21 °C, as
this value is also considered by the rule-based controller.

Along with computational complexity considerations, the selection of the control time step and prediction
horizon of HMPC should be done based on the control performance, evaluated in terms of absolute and
squared errors between the indoor and reference temperature, and based on the total energy demand required
to operate the system. The effect of the control time step and the prediction horizon is therefore shown in
Figure 10. The results show that lower time steps reduce the errors and energy consumption but increase
the computational effort, which presents a more accentuated response. Increasing the prediction horizon
also reduces the errors while increasing the computation time but it does not seem to significantly affect
the auxiliary energy demand. Therefore, a control time step of 20 minutes and a prediction horizon of
9 hours seem to provide the best control and energy performance. Notably, the performance in terms of
errors and energy consumption is quite consistent and it is the computation time that is most sensitive to
such parameters. Note that the prediction horizon depends on the time step, such that N, #1 = 4h for
At = 1800 s, 6h for At = 1200 s , and 8h for At =900 s. Similarly, N, #2 = 6, 9, 12 hours and N, #3 = §,
12, 16 hours, for time steps of 1800, 1200, and 900 seconds, respectively.

Figure 9a illustrates the indoor temperature profile achieved by the HMPC structure, which indicates
that thermal comfort is well satisfied along the time. In addition, Figure 9b shows the optimal flow rates
required to meet the target temperature profile. Note that the same airflow requirement could be supplied
with active energy (e.g., mechanical fans), even though such demand is here considered supplied by passive
ventilation.
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Figure 8: Pareto front for the multi-objective optimization problem including as trade-off thermal comfort
and auxiliary backup use.

The shades operation is illustrated in Figure 11. As one can see, the shades are closed during warmer
days, as expected. The auxiliary energy is mainly supplied during the night shift (see Figure 12). This
occurs because the HMPC structure prepares the building for meeting the constraints applied on occupied
hours. In the morning, an auxiliary energy peak is required to achieve this constraint. In later hours, the
energy gain due to occupancy and the solar incidence is often sufficient. Furthermore, natural ventilation
is often applied to cool the building down during the day. Note, however, that the air supply only aims for
thermal comfort and not indoor air quality.

For simplicity, a full elaboration on the rule-based PID controller is not provided in this work, but the
control objectives considered in this comparison are the same. Figure 13 shows the temperature profile
(Figure 13a) and the flow rates (Figure 13b). As shown in Figure 13, the temperature profile in the case of
PID control floats around the reference temperature (21 °C) sharper than in the case of HMPC. To reach
these temperatures, the heat pump consumed 90 kWh over the 13-day period, while HMPC spent 112 kWh.

As the minimum flow rates for keeping the air quality have not been considered in both control methods,
we assume as a reference that a minimum airflow of 0.19 kg/s must be supplied during occupied hours
[43]. Next, the energy demand to meet the thermal comfort reference condition (gr¢) and the air quality
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Figure 9: System operation determined by the HMPC: (a) indoor temperatures and (b) passive ventilation
flow rates, where the vertical dashed lines stand for the occupied period.

minimum flow rate (gaq) is determined as follows:

N

qro = Y _mFe|21 - TF| At (11a)
k=1
N

gaq =Y (019 —m*)c|21 = TF| At if " < 0.19 (11Db)
k=1

Equation (11a) determines the required energy to reach the temperature of 21 °C under the ventilation
profiles of Figures 9b and 13b. Additionally, (11b) calculates the thermal energy when the required ventilation
of 0.19 kg/s is not satisfied. Table 6 provides the results for the energy demands evaluated. The difference
between the values shown in Table 6 loosely indicates the control performance, where the HMPC structure
appears to achieve better performance than the rule-based controller. For instance, 112 kWh is initially
required to achieve the current T, profile of Figure 9a, as opposed to the 90-kWh consumption of the rule-
based controller (Figure 13a). However, in the MPC we do not consider the air heat recovery unit lately
installed at the building. When considering energy savings, the energy demand decreases to 28 kWh, as
shown in the brackets of Table 6. More energy is also required by the PID controller to correct the latter’s
temperature profile, regardless of the HMPC structure’s energy demand for correcting air quality. Therefore,
the HMPC structure clearly outperforms the rule-based controller in terms of energy consumption.

Additionally, we assess the energy demand reduction by comparing the yearly energy demand per square
meter to the benchmark values of the Almost Energy Neutral Buildings (BENG)-requirements [44]. The
HMPC structure and the occupancy scheme of Figure 4 are simulated over the yearly period of TMY data.
The building’s energy consumption resulted to be 9000 kWh with a standard deviation of 0.27 °C from
the reference temperature. Hence, the whole system has a theoretical energy demand of approximately 30
kWh/m? per year for thermal control. This energy demand is below the 100-150 kWh/m? benchmark and
within the 90 kWh/ m? maximum requirements.
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Table 6: Energy demand of the HPMC and rule-based PID for 13 days.

Controller qup [kWh] grc [kWHh] qaq [kWh] qup + qrc + qaq [kWh]
HMPC 112 (28) 4.4 45.6 (11.47) 162 (43.8%)
PID 90 102.6 4.6 197

*Considering the energy recovery process used by the PID controller.

5 Summary and conclusions

This work has explored predictive control schemes to maximize passive heating and ventilation in indoor
spaces, regarding all-glass facades assisted by a thermal chimney and solar shadings. The uniqueness of this
configuration calls for optimization-based control methods to realize its best performance, as the proposed
controller is shown to address this issue. The analyses have elaborated on the design of predictive models and
hierarchical architecture. It has been shown that the resulting controller is suitable for real-time operations,
as it shows feasible action times and superior performance when compared to the rule-based PID control
operating on site.

We have elaborated on how a set of monitoring sensors could be used to experimentally adjust the sim-
ulation models. In fact, it was shown that the adjusted simulation models and the sensor data have a high
agreement, i.e., the modeling is appropriate for indoor temperature and HVAC control. The experimen-
tal measurements allowed to calibrate the model by optimizing some key parameters, such as the ground
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closure of shades at the required times.
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Figure 12: Power profile required by the backup system to reach thermal comfort.

properties, which assures the precision of the models (variance accounted for is superior to 90% in most
cases).

As fast processing times are desired, the hierarchical model predictive control (HMPC) structure was
considered to handle the transient behavior of each actuator to take the best decision while satisfying the
objective of supply thermal comfort. HMPC includes a linear, short-term agent for ventilation control and
nonlinear, long-term agents for heating control, resulting in an effective strategy for real-time applications
(optimal inputs decision can be easily provided every 30 minutes). When compared to conventional control
methods to save energy, the simulations show that the HMPC structure surpasses the PID controller currently
operating in the building. Universal applicability is certainly possible in terms of the technologies, system
configuration, and methods considered, as the materials were provided by companies in the sector of high-tech
sustainable indoor climate. Its universal feasibility, however, depends on trade-offs between costs and energy
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Figure 13: System operation determined by the rule-based PID control: (a) indoor temperatures and (b)
active ventilation flow rates.

performance, which vary on each local condition and require specific studies. Therefore, further studies
have been planned to assess the economic features and the consumer market of the sustainable technologies
considered. Moreover, future work includes developing control algorithms using real-time computational
tools, such as IPOP and C++, for practical implementation. Furthermore, the dynamic prediction of
occupancy and the development of data-driven models will be investigated.
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Appendix 1

Table 7: Nusselt correlations for the convective heat transfer coefficients.

Nusselt number (Nu) Author Condition Region
0.037(Re)?-8(Pr)0-33 Zhukauskas - Outside Air
Horizontal surface
Vertical surface
0.54(Ra)0-25 Mc Adams Ts < Ta A Ra <107 Indoor Air
Horizontal surface
0.15(Ra)?-33 Mc Adams Ts < Ta A Ra > 107 Indoor Air
Horizontal surface
0.27(Ra)0'25 Mc Adams Ts > Tn Indoor Air
Horizontal surface
—0.3
0.42(Ra)0-25(Pr)0-012 <g> MacGregor - Wall’s cavity
d ; §
Vertical surface
0.44
0.670Ra0-2
0.68 4 | ——— 2 Churchill & Chu Ra < 10° Indoor Air
14+ (0,492) Vertical surface
Pr
0.372
0.387Ra-17
0.825 + 4 Churchill & Chu Ra > 107 Indoor Air

- (0'492)0.56
Pr

Vertical surface
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Appendix 2

Matrices of coefficients for the linear model
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