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Max-Min-Plus-Scaling Systems in a Discrete-Event Framework with

an Application in Urban Railway

Ton van den Boom Abhimanyu Gupta Bart De Schutter Ruby Beek

Delft Center for Systems and Control (DCSC), TU Delft, The Netherlands

(e-mail: {a.j.j.vandenboom,a.gupta-3,b.deschutter}@tudelft.nl)

Abstract

In this paper we discuss modeling and control of discrete-event systems using max-min-plus-scaling systems.
We analyze how the basic operations max, min, plus, and scaling occur in the modeling phase and we discuss
some general forms for the system. Because of the different/deviating character of the signals in a discrete-
event MMPS model, we will discuss concepts such as time-invariance and steady-state behavior. In the design
of a model predictive controller for MMPS systems we have to revisit the cost functions in light of the discrete-
event nature of the signals. We finalize this paper with the an intuitive case study on an urban railway line,
performing both modeling and control.

Keywords: Discrete event system, max-min-plus-scaling systems, modeling and control

1 Introduction

Discrete-event systems form a large class of dynamic
systems in which the evolution of the system is driven
by the occurrence of certain discrete events. This in
contrast to discrete-time systems where the evolution
depends on a clock.

Discrete-event systems with only synchronization
and no concurrency can be modeled by a max-plus-
linear model (Baccelli et al., 1992; Heidergott et al.,
2006). This is a model in which the system equa-
tions consist of max and plus operations (e.g. paper
flow in a printer or scheduling for container terminals).
When competition plays a role (e.g. first-come-first-
serve mechanisms) we obtain a max-min-plus system
(Olsder, 1994; Gunawardena, 1994; Jean-Marie and
Olsder, 1996). This is a model in which the system
equations consist of max, min, and plus operations
(e.g. product flow in a production system with com-
petition). In some occasions a scaling operation will
occur. It can happen when the processing times in the
system will depend on external parameters or on pre-
vious values of the state and input. Such a system can
be written as a max-min-plus-scaling (MMPS) system
(e.g. traffic management on an urban railway line, see
Section 7). MMPS systems also occur when we con-
sider the closed-loop configuration of a max-plus linear
systems with a residuation controller or a model pre-
dictive controller (Necoara et al., 2008b; Bemporad et
al., 2002). Finally, perturbed max-plus linear systems
can often be written as max-plus-scaling systems (van
den Boom and De Schutter, 2002, 2004).

In Section 2 and 3 of the paper we introduce sig-
nals operations and max-min-plus-scaling systems in

a discrete-event framework. Because of the deviated
nature of the signals we will study time-invariance in
Section 4 and steady-state behavior in Section 5. In
Section 6 we elaborate on the cost-function in model
predictive control. Finally in Section 7 we consider
the modeling and model predictive control of a urban
railway line.

2 Signal operations

A dynamic MMPS system in a discrete-event frame-
work will always have states that represent the start-
ing and ending times of the operations for the event
cycle k. In the general framework of discrete-event
MMPS systems the state may also represent to quan-
tities, such as the number of goods in a production
system or the number of people in a train. Also in
this case the basic operations will be maximization,
minimization, addition, and scaling. In this paper the
state of the MMPS system will be

x(k) =

[
xt(k)

xq(k)

]

where [xt(k)]i gives the time instant at which event
i will occur for the kth time, and [xq]j (k) will rep-
resent the value of the jth quantity at event step
k. We will now discuss how the basic four oper-
ations (max,min,plus,scaling) appear in the system
equations.
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Addition I: Processing

Let the arrow in the figure represent an operation with
processing time τ and let x1(k) and x2(k) be the start-
ing and finishing time, respectively, for event cycle k.
The relation between x1(k) and x2(k) can be repre-
sented by the plus-operation x2(k) = x1(k) + τ .

Maximization I: Sequential processing (No con-
currency)

Consider two subsequent operations on the same re-
source in which operation k needs to be finished before
operation k + 1 can take place (no concurrency).
Let u1(k + 1) be the earliest possible starting

time of x1 for cycle k + 1, then the starting time
x1(k + 1) is given by the max-operation x1(k + 1) =
max (x1(k) + τ, u1(k + 1)).

Maximization II: Synchronization

Consider an operation 3 with starting time x3(k) that
will start when both operations 1 and 2 are finished.
The starting time x3(k) is now given by the max-
operation: x3(k) = max (x1(k) + τ1, x2(k) + τ2).

Minimization: Competition

Consider an operation 3 with starting time x3(k) that
will start as soon as either operations A or operation B
is finished. The starting time x3(k) is now given by a
min-operation: x3(k) = min (x1(k) + τ1, x2(k) + τ2).

Scaling I: State-dependent processing time

Consider an operation where the processing time τ is
an affine function of the state x, so τ(k) = α+βTx(k)
where α ∈ R+ and β ∈ Rn

+ where n is the dimension
of the state. The relation between starting time x1(k)
and x2(k) is now include a scaling-operation: x2(k) =
x1(k) + α+ βTx(k).

Scaling II: Splitting quantities

Consider an operation that splits the quantity state
x1(k) into two new quantity states x2(k) and x3(k)
with ratio η and (1 − η) respectively, then the quan-
tities are given by a scaling-operation: x2(k) =
ηx1(k), x3(k) = (1− η)x1(k).

3 Max-min-plus-scaling systems

Define ⊤ = ∞, ε = −∞, R⊤ = R ∪ {∞}, Rε =
R ∪ {−∞}, and Rc = R ∪ {∞} ∪ {−∞}. Further
we introduce the conventions 0 · ε = 0 and 0 · ⊤ = 0
and ⊤+ ε = 0. Often we use the set R, which can be
either R, Rε, R⊤, or Rc.

Definition 1 (De Schutter and van den Boom, 2004).
Max-min-plus-scaling functions. A max-min-
plus-scaling (MMPS) function f : Rm → R of the
variables p1, . . . , pm ∈ R is defined by the grammar
for i ∈ m

f := pi|α|max(fk, fl)|min(fk, fl)|fk + fl|β · fk,

with α ∈ R, β ∈ R, and where fk, fl are again MMPS
functions over the set R. The symbol | stands for
“or”. The definition is recursive. For vector-valued
MMPS functions the above statements hold componen-
twise.

Definition 2. A max-min-plus-scaling function f :
Rm → Rn is well-defined if the following holds:

p ∈ Rm =⇒ f(p) ∈ Rn

for R is R, Rε, R⊤, or Rc.

Definition 3. Max-min-plus-scaling sys-
tem. Consider the vector p(k) =[
xT (k), xT (k − 1), uT (k)

]T
, where p ∈ P ⊆ Rnp ,

x ∈ Rn is the state, u ∈ Rp is the control input, and
w ∈ Rz is an external signal. A max-min-plus-scaling
(MMPS) system is described by a state-space model
of the form

x(k) = f(p(k))

where f is a vector-valued MMPS function in the vari-
ables p.

If the MMPS function f depends on the present state
x(k) the system is an implicit MMPS system.

Definition 4 (Bemporad et al., 2002). Piecewise
affine function. A piecewise affine function fPWA :
P → R is defined by

fPWA(p) = aTi p+ ci, p ∈ Ωi
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where Ωi, i = 1, . . . , nΩ are convex polyhedra (i.e.
given by a finite number of linear inequalities in p),
with nonoverlapping interiors and

⋃nΩ

i=1 Ωi = P and
ai ∈ Rnp , ci ∈ R, i = 1, . . . , nΩ. For a vector-valued
or matrix-valued piecewise affine function the above
statements hold componentwise.

A continuous piecewise affine (C-PWA) system is de-
scribed by a state-space model of the form

x(k) = fPWA(p(k))

where fPWA is a continuous vector-valued PWA func-
tion in the variables p.

Lemma 5 (De Schutter and van den Boom, 2004). A
CPWA system is equivalent to an MMPS system.

We already discussed that we can divide the state x(k)
in two substates, namely xt denoting states related to
the timing of discrete events, and xq denoting quanti-
ties. In a similar way we can split p(k) into pt(k) and
pq(k), so we obtain

x(k) =

[
xt(k)

xq(k)

]
and p(k) =

[
pt(k)

pq(k)

]
with

pt(k) =
[
xT
t (k), x

T
t (k − 1), uT

t (k)
]T

pq(k) =
[
xT
q (k), x

T
q (k − 1), uT

q (k)
]T

with pt ∈ Pt and pq ∈ Pq. With these definitions we
can rewrite the MMPS system as

xt(k) = ft(pt(k), pq(k))

xq(k) = fq(pt(k), pq(k))
(1)

4 Time invariance

Consider an MMPS system

x(k) = f(p(k))

To discuss time invariance we start with introducing
the property of partly homogeneous systems:

Definition 6. Partly additive homogeneous sys-
tem. Consider an MMPS system with time signal pt
and quantity signal pq such that the system is given
by (1). The MMPS system is partly additive homoge-
neous if

ft(pt + λ, pq) = ft(pt, pq) + λ

fq(pt + λ, pq) = fq(pt, pq)
(2)

for any λ ∈ R.

The intuition of the additive homogeneity can be
found in the concept of time invariance. Consider a
MMPS system with only time-signals xt(k), given by

xt(k) = ft(pt(k))

Time invariance for the system ft means that if
we shift the signal pt in time (pt(k) −→ pt(k) + τ)
then the state xt will shift in time as well
(xt(k) −→ xt(k) + τ). This means that system ft will
be time-invariant if it is additive homogeneous.

Time invariance for an MMPS system (1)
with both time-signals and quantity signals
means that if (xt(k), xq(k), pt(k), pq(k)) will be
a valid trajectory of the MMPS system f , then
(xt(k) + τ, xq(k), pt(k) + τ, pq(k)) will also be a
valid trajectory of f . In other words the system is
time-invariant if it is partly additive homogeneous.

5 Steady-state behavior

Consider the time-invariant MMPS system

xt(k) = ft(pt(k), pq(k))

xq(k) = fq(pt(k), pq(k))
(3)

A first observation is that the two signals xt and xq

have different nature, and that their steady-state be-
havior will therefore be different. The time signal
will usually be nondecreasing and so in general the
time signal will not reach an equilibrium. Instead we
consider steady-state behavior for the time signal and
study stationary regimes which means that the growth
of xt becomes constant.
For (xt, pt) a steady state is reached if for a certain

kss the growth of xt and pt becomes constant, so

pt(k) = pt(k − 1) + τt,ss, for k ≥ kss

where τt,ss is a scalar constant. For the quantity vari-
ables an steady-state or equilibrium means that pq be-
comes constant, so

pt(k) = pq(k − 1), for k ≥ kss

We obtain the steady-state conditions[
pt(k)

pq(k)

]
=

[
pss,t + kτss,t

pss,q

]
, for k ≥ kss

Since (3) is a time-invariant system we have[
ft(pt + λ, pq)

fq(pt + λ, pq)

]
=

[
ft(pt, pq) + λ

fq(pt, pq)

]
(4)

Note that ft and fq are MMPS functions and also
be written as C-PWA functions. This means we can
find matrices Ei,tt, Ei,tq, Ei,qt, Ei,qq, and vectors
ei (all with the appropriate dimensions), and non-
overlapping convex polyhedra Si, i = 1, . . . , nS such
that for p(k) ∈ Si we have[

ft(pt, pq)

fq(pt, pq)

]
=

[
Ei,tt

Ei,qt

]
pt+

[
Ei,tq

Ei,qq

]
pq+

[
ei,t

ei,q

]
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We assume the system to be time-invariant, so it
must satisfy condition (4). Therefore we derive for all
i = 1, . . . , nS :∑

ℓ,j

[Ei,tt]ℓ,j = 1,∀ℓ,
∑
ℓ,j

[Ei,qt]ℓ,j = 0,∀ℓ

This means that if there exist values
(xss,t, xss,q, pss,t, pss,q, τss,t) such that

xss,t = ft(pss,t, pss,q)

xss,q = fq(pss,t, pss,q)

then (xs,t, xss,q, pss,t, pss,q, τss,t) is a steady state with

xss,t + kτss,t = ft(pss,t + kτss,t, pss,q)

xss,q = fq(pss,t + kτss,t, pss,q)

This result can be summarized in the following
proposition:

Proposition 7. Consider a time-invariant MMPS
system. If there is an index i ∈ {1, . . . , ns} such that
there are values (xss,t, xss,q, pss,t, pss,q, τss,t) satisfying[

xss,t + τss,t

xss,q

]
=

[
Ei,tt

Ei,qt

]
pss,t +

[
Ei,tq

Ei,qq

]
pss,q

+

[
ei,t

ei,q

]

for

[
pss,t

pss,q

]
∈ Si, then (xss,t, xss,q, pss,t, pss,q, τss) is a

steady state.

6 Model predictive control

This section shortly discusses the Model Predictive
Control (MPC) technique for MMPS systems in a
discrete-event framework. MPC is a control strategy
that makes use of a receding horizon N (De Schutter
and van den Boom, 2004; Necoara et al., 2008a). At
each event step k the controller predicts the optimal
control inputs by minimizing a cost function over the
finite horizon N : ū(k) = {u(k), u(k+1), . . . , u(k+N−
1)}. The inputs related to the time signals will be de-
noted by ut and inputs related to the quantity signals
will be denoted by uq.
Similar to the observation we made in the compu-

tation of a steady-state we have to take into account
that the two state signals xt and xq and their input
signals ut and uq have different natures, and so we use
different measures in the cost-function. The measure
in the cost function related to the time signals xt and
ut are usually associated with the buffer levels, which
are defined as the time delay between the occurrences
of different events in either the same event cycle k or

the consecutive ones (De Schutter and van den Boom,
2001). Examples of state cost functions are

Regime: Jx,1(k, ũ) =

N∑
j=1

∥xt(k + j)∥P

Makespan: Jx,2(k, ũ) = ∥xt,i(k +N)∥∞

Tracking: Jx,3(k, ũ) =

N∑
j=1

∥xq(k + j)− rq(k + j)∥1

Tardiness: Jx,4(k, ũ) =

N∑
j

nt∑
i=1

max (xt,i(k + j)

−rt,i(k + j), 0)

where ∥z∥P = maxi∈{1,...,n} zi −minj∈{1,...,n} zj is the
max-plus Hilbert projective norm (Heidergott et al.,
2006). In tardiness criterion Jx,1 the state xt(k) is
to follow a due date reference signal rt(k), in Jx,2 the
makespan is minimized, and in Jx,3 we aim for a steady
regime. The last criterion Jx,4 aims at the quantity
state xq to track a reference quantity rq. Likewise we
can define input cost functions:

Regime: Ju,2(k) =

N∑
j=1

∥uq∥1

Just-in-time: Ju,1(k) =

N∑
j=1

nt∑
i=1

rt,i(k + j)

− ut,i(k + j)

The input criterion Ju,1 maximizes the input ut lead-
ing to just-in-time operation. The last input criterion
measures the cost of the quantity input.

The final cost function in MPC is chosen as follows:

Jtot(k, ũ) =

4∑
j=1

λjJx,j +

2∑
ℓ=1

µℓJu,ℓ (5)

where λj ∈ [0, 1] and µℓ ∈ [0, 1] are trade-off parame-
ters. This total cost function Jtot represents a trade-
off between the different cost. distance of the state
from the origin and the cost of the control input. By
choosing the parameters λi and µi, we can balance the
rate of performance with the cost of the control.

The optimization problem now becomes

min
ū(k)

Jtot (k, ũ)

subj. to

Atxt(k) +Aqxq(k) +Btut(k) +Bquq(k) ≤ M

where Atxt(k)+Aqxq(k)+Btut(k)+Bquq(k) ≤ M re-
flect general linear inequality constraints on the inputs
and states of the system. We now apply the first in-
put u(k) to the system and shift the horizon one event
step, such that it now runs from k + 1 to k +N + 1.
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Figure 1: Urban railway line

7 Application: An urban rail-
way line

Consider an urban railway line as given in Figure 1
with J station and K trains. We assume there is no
timetable, but trains k = 1, . . . ,K depart from sta-
tion 1 with a headway interval τ0, they stop at each
station j = 1, . . . , J , and they depart if all passengers
have disembarked and boarded the train. We denote
the arrival and departure time of train k at station j
by aj(k) and dj(k), respectively. Denote the number
of passengers in the train k when leaving station j by
ρj(k), and denote the number of passengers at station
j when train k is leaving the station by σj(k). In the
example we assume every train has a limited capacity
of ρmax passengers. Consider the running times τr,j
from station j − 1 to station j to be fixed. Let ej de-
note the number of passengers entering the platform
at station j per second. Let b be the number of passen-
gers that can board the train per time unit and let f
denote the number of passengers that can disembark
the train per time unit. (We assume b > ej for all
j.) We assume that the number of passengers leaving
train k at a particular station j is a fixed fraction βj of
the number of the passengers in train k when entering
station j. The arrival time of train k at station j is the
maximum of the departure time of train k at station
j−1 plus the running time, and the departure time of
train k − 1 at station j plus the headway time, so

aj(k) = max (dj−1(k) + τr,j , dj(k − 1) + τH)

The dwell time at each station is the sum of the
time for disembarking (τd,j(k)) and boarding the train
(τb,j(k)). If we assume there is no additional waiting
time the train will depart at

dj(k) = aj(k) + τd,j(k) + τb,j(k)

The number of passengers in train k when leaving
station j is equal to the number of passengers in the
train when leaving station j − 1 minus the passengers
disembarking the train at station j plus the passengers
boarding the train at station j, so

ρj(k) = ρj−1(k)− fτd,j(k) + bτb,j(k)

The number of passengers that are still on the plat-
form when train k leaves station j is equal to the num-
ber of passengers that were still on the platform when
train k−1 left station j plus the number of passengers
that enter the station between the departures of train

j − 1 and train j minus the passengers boarding the
train at station j, so

σj(k) = σj(k − 1) + ej (dj(k)− dj(k − 1))− ejτb,j(k)

(We assume that the passengers that disembark the
train immediately leave the station).

The disembark time τd,j(k) is proportional to the
number of passengers that disembark, or

τd,j(k) =
βj

f
ρj−1(k)

Next we consider the boarding time τb,j(k) =

dj(k)−aj(k)−τd,j(k) = dj(k)−aj(k)− βj

f ρj−1(k). The

departure time dj(k) depends on the number of pas-
sengers who want to board the train. However if the
number of passengers in the train reaches its maximum
ρmax, some passengers will be left on the platform.

Now we consider two cases. In the first case the
number of passengers that want to board the train fits
in the train (so ρj(k) ≤ ρmax). In the second case
there are too many passengers who want to enter the
train and we get ρj(k) = ρmax .
In the first case the number of passengers that

actually board train k at station j (so b
(
dj(k) −

aj(k) − βj

f ρj−1(k)
)
) is equal to the number of pas-

sengers that want to board train k at station j (so
σj(k − 1) + ej

(
dj(k)− dj(k − 1)

)
), or

b

(
dj(k)− aj(k)−

βj

f
ρj−1(k)

)
= σj(k − 1) + ej (dj(k)− dj(k − 1))

So in case 1 we derive departure time

dj(k) =µ1aj(k) + µ2ρj−1(k)

+ µ3σj(k − 1) + (1− µ1) dj(k − 1)

where µ1 =
b

b− ej
, µ2 =

b

b− ej

βj

f
, and µ3 =

1

b− ej
.

In the second case the train leaves station k as soon
as the train is full, so the number of passengers in train
k after disembarking at station j plus the number of
passengers boarding train k at station j is equal to the
maximum capacity of the train:

(1− βj) ρj−1(k) + b

(
dj(k)− aj(k)−

βj

f
ρj−1(k)

)
= ρmax

So in case 2 we derive the departure time

dj(k) = γ1 + aj(k) + γ2ρj−1(k)

where γ1 =
1

b
ρmax and γ2 =

βj

f
− 1− βj

b
.

Combining case 1 and case 2 gives actual departure
time dj(k) which is the minimum of the values com-
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puted in case 1 and case 2:

dj(k) =min
(
µ1aj(k) + µ2ρj−1(k) + µ3σj(k − 1)

+ (1− µ1) dj(k − 1), γ1 + aj(k) + γ2ρj−1(k)
)

Now the final system equations can be derived. For
j > 1 and k > 0 we obtain the following MMPS model:

aj(k) =max
(
dj−1(k) + τr,j , dj(k − 1) + τH

)
dj(k) =min

(
µ1aj(k) + µ2ρj−1(k) + µ3σj(k − 1)

+ (1− µ1)dj(k − 1),

γ1 + aj(k) + γ2ρj−1(k)
)

ρj(k) =(1− βj)ρj−1(k)

+ b

(
dj(k)− aj(k)−

βj

f
ρj(k − 1)

)
σj(k) =σj(k − 1) + ej

(
dj(k)− dj(k − 1)

)
− b

(
dj(k)− aj(k)−

βj

f
ρj−1(k)

)

(6)

We initialize

For k = 0: ρj(0) = ρ̄j , σj(0) = 0, dj(0) = d̄j , ∀j
For j = 1: d1(k) = d̄1 + kτ̄ , ρ1(k) = ρ̄1, ∀k

(7)

Time-invariance in the urban railway line
model The states of the system are now recognized
as

x(k) =


x1(k)

...

xJ(k)

 , xt,j(k) =

[
aj(k)

dj(k)

]
,

xq,j(k) =

[
ρj(k)

σj(k)

]
, pt(k) =

[
xt(k)

xt(k − 1)

]
,

pq(k) =

[
xq(k)

xq(k − 1)

]
To check time-invariance we compute ft,j(pt + λ, pq)
for all j and find:

[ft,j(pt + λ, pq)]1 =

= max (dj−1(k) + λ+ τr,j , dj(k − 1) + λ+ τH)

= max (dj−1(k) + τr,j , dj(k − 1) + τH) + λ

= [ft,j(pt, pq)]1 + λ

= [ft,j(pt, pq)]2 + λ

Similarly we compute

[ft,j(pt + λ, pq)]2 = [ft,j(pt, pq)]2 + λ

[fq,j(pt + λ, pq)]1 = [fq,j(pt, pq)]1
[fq,j(pt + λ, pq)]2 = [fq,j(pt, pq)]2

We see that the system equations satisfy the time-
invariance condition, and therefore the urban railway
line model is time-invariant.

Steady state for the urban railway line model
Now we want a steady state for the model such that
the trains are never completely full (so no people are
left on the platform, or σj(k) = 0), and that there is
always enough headway between the trains, so de,j−1+
τr,j ≥ de,j+τH. This leads to the piecewise-linear train
equations in the equilibrium (for σj(k) = 0):

aj(k) = dj−1(k) + τr,j

dj(k) = µ1aj(k) + µ2ρj−1(k)

ρj(k) = (1− βj) ρj−1(k)

+ b

(
dj(k)− aj(k)−

βj

f
ρj(k − 1)

)
σj(k) = 0

Consider the steady-state (ae,j , de,j , ρe,j , σe,j , τe) with

ae,j + τe = de,j−1 + τe + τr,j

de,j + τe = µ1(ae,j + τe) + µ2ρe,j−1

ρe,j = (1− βj)ρe,j−1

+ b

(
de,j + τe − (ae,j + τe)−

βj

f
ρe,j−1

)
σj(k) = σe,j = 0

Starting with the initial conditions (7) we derive

ae,j = de,j−1 + τr,j

de,j + τe = µ1(de,j−1 + τr,j + τe) + µ2ρe,j−1

ρe,j = (1− βj)ρe,j−1

+ b

(
de,j + τe − (ae,j + τe)−

βj

f
ρe,j−1

)
σj(k) = σe,j = 0

Consider the model of (6) with the following pa-
rameters: τr = 180 s, τH = 30 s, ρmax = 150 pas-
sengers, b = fj = 2 passengers/s, ej = 0.5 pas-
sengers/s, βj = 0.5, ∀j. The initial conditions are
given by (7) with τ̄ = 120 s, ρ̄j = 120 passengers,
d̄j = (j−1)120 s, ∀j. From Proposition 7 we find that
(ae,j , de,j , ρe,j , σe,j , τe) is indeed a steady state.

Model predictive control of the urban rail-
way line (Beek, 2022). A control input uj(k), j =
2, . . . , N is introduced to increase or decrease the run-
ning time (additional to the nominal running time) of
a train running from station j − 1 to station j and so

aj(k) = max (dj−1(k) + τr,j + uj(k), dj(k − 1) + τH)

We define the performance signal pwait
j (k) =

ej (aj(k)− dj(k − 1))+σj(k−1), which represents the
number of people waiting on train k at station j at the
moment of arrival of train k and define the cost func-
tion

J(k) =

N−1∑
i=0

M∑
i=1

∣∣pwait
j (k + i)− pwait

ref

∣∣+ λ |uj(k + i)|

6



Figure 2: Number of passengers waiting of the dis-
turbed urban railway line

where λ = 0.1 is a trade-off weight and pwait
ref = 30 is

a reference value. We introduce the constraint

−20 ≤ uj(k) ≤ 70

If there is no disturbance or model error in the system
the trains will all run with a perfect interval of 120
seconds. The number of passengers on the platform
at the time of a train arriving is constant at 30. If
we introduce a disturbance in the form of a decrease
in the number of people entering the station, i.e. the
parameter e changes from 0.5 passengers/s to 0.3 pas-
sengers/s for the fifth train at station 5. The boarding
time of fifth train is decreased and so it will slowly
catch with the fourth train, while the sixth train will
be delayed. The number of passengers on the plat-
forms will increase for later trains, see Figure 2. If we
use MPC we see that the trains run regular again and
the disturbance in the number of passengers on the
platforms is limited to the fifth train on station 5, as
can been seen in Figure 3.

8 Discussion

In this paper max-min-plus-scaling systems are dis-
cussed in a discrete-event framework for the first time.
We observed that the state will consist of time signals
and possibly also of quantity signals. We studied time-
invariance for the discrete-event MMPS systems, and
derived an expression for an equilibrium. An urban
railway line has been studied and we derived a model
predictive controller that can stabilize this system in
the case of disturbances.
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