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Abstract: Traffic control is essential to reduce congestion in both urban and freeway traffic
networks. These control measures include ramp metering and variable speed limits for freeways,
and traffic signal control for urban traffic. However, current traffic control methods are
either too simple to respond to complex traffic environment, or too sophisticated for real-
life implementation. In this paper, we propose an adaptive parameterized control method for
traffic management by using reinforcement learning algorithms. This method takes advantage
of the simple structure of parameterized state-feedback controllers for traffic; meanwhile, a
reinforcement learning agent is employed to adjust the parameters of the controllers on-line to
react to the varying environment. Therefore, the proposed method requires limited real-time
computational efforts, and is adaptive to external disturbances. Furthermore, the reinforcement
learning agent can coordinate multiple local traffic controllers when adjusting their parameters.
The method is validated by a numerical case study on a freeway network. Results show that
the proposed method outperforms conventional controllers when the system is exposed to a
changing environment.

Keywords: Parameterized control, adaptive control, reinforcement learning, coordinated
control, traffic network system.

1. INTRODUCTION

1.1 Background

The ever-increasing traffic demand is bringing more and
more burden to existing traffic systems, both urban and
freeway networks. When the demand exceeds the road ca-
pacity, traffic congestion can occur easily, which results in
negative impacts on environmental, economic, and societal
aspects. Individuals also suffer from severe traffic conges-
tion, since they could be exposed to harmful emissions
and their daily commute becomes inefficient. To relieve
heavy traffic jams, many traffic control measures have been
proposed and achieved significant success in field appli-
cations (Papageorgiou et al., 2003). For example, traffic
signal control for intersections in urban networks is proved
to be effective in reducing the total time spent (TTS)
of all the vehicles. For freeway networks, ramp metering
and variable speed limits are the most widely used control
measures (Papageorgiou and Kotsialos, 2002).

⋆ This research has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (Grant agreement No. 101018826 - ERC
Advanced Grant CLariNet). This work is also sponsored by China
Scholarship Council, Grant No. 201806230254.

1.2 Parameterized Traffic Control

Many studies have been carried out to improve the per-
formance of traffic control measures (see e.g. (Kotsialos
and Papageorgiou, 2004)). Traditional control methods,
such as fixed-time traffic signal control, calculate the signal
cycle settings off-line to minimize the total delay time
for a certain pattern of traffic demand. These strategies
are easy to implement and need low maintenance costs.
However, they rely on historical data and cannot adapt
to changing conditions of the network (e.g., varying de-
mands). Traffic responsive strategies were proposed to ad-
dress this issue. A well-known state-feedback controller is
ALINEA (Papageorgiou et al., 1991), which was designed
to regulate the downstream density of the freeway on-
ramps using ramp metering. At every control time step,
the current downstream density is measured and fed to
the controller. Then the ramp metering rate is adjusted to
reduce the error between the desired density and actual
density. A similar strategy can be deployed for variable
speed limit control and urban traffic signal control. Zegeye
et al. (2012) proposed parameterized variable speed limits
controllers that have a simple structure to minimize the
differences in speed and density between the segments. van
Kooten et al. (2017) utilized a similar idea for the green
time split in urban traffic signal control. The green times
are distributed to different phases according to several



indices, including the queue length, the waiting time of
the first vehicle, and the total number of vehicles on the
corresponding lanes.

The methods discussed above are state-feedback and can
react to the changing states of traffic networks efficiently.
However, they all need fine-tuned parameters to work
properly, especially when considering uncertainties and
unknown disturbances. Moreover, the controllers of a traf-
fic network in general work independently and do not
coordinate with each other.

1.3 Reinforcement Learning for Traffic Control

Reinforcement learning (RL) is one the most important
control methods for traffic management. RL is basically
a training method that interacts with the environment to
find the best action according to the feedback rewards or
penalties. From traditional Q-learning (Abdulhai et al.,
2003; Li et al., 2017) to recently emerging deep RL
algorithms (Chu et al., 2019; Wang et al., 2022), RL has
achieved significant success in both urban and freeway
networks control, due to its adaptive nature to deal with
uncertainties. Moreover, it is reported by Wang et al.
(2022) that a single deep RL agent can handle a large scale
traffic network by coordinating multiple local controllers.
Nonetheless, RL methods still struggle with low sample
efficiency (i.e., a prolonged training process is needed
before implementation), as well as the lack of performance
and safety guarantees.

1.4 Proposed RL-based Adaptive Parameterized Control

To overcome the shortcomings of current traffic control
methods, this paper for the first time proposes a RL-based
adaptive parameterized traffic controller. Specifically, RL
is trained to tune the parameters of the controllers, such
that they can adapt to the changing environment, and
multiple local controllers can be coordinated by a cen-
tral RL agent. The proposed method inherits the simple
structure of the state-feedback controllers; so it is cheap to
implement. Compared with standalone RL-based control,
the proposed method is more robust since it is used to
tune the parameters, instead of directly determining the
control inputs.

The remainder of this paper is organized as follows. Section
2 introduces related work about adaptive parameterized
traffic controllers. The newly proposed RL-based adaptive
parameterized traffic control method is presented in Sec-
tion 3. The method is evaluated with a freeway network
considering ramp metering control in Section 4. Conclu-
sions and future work in Section 5 end this paper.

2. RELATED WORK

2.1 Parameterized MPC for Traffic Control

Model predictive control (MPC) (Camacho and Alba,
2013) is one major research direction in the field of traffic
management. MPC is basically a model-based optimal
control method that optimize an objective function every
control time step based on the prediction of future states.
Gartner et al. (1976) first applied optimal control method

in traffic signal control, and De Schutter and De Moor
(1998) formally suggested to use MPC in this field. Similar
work was done by Kotsialos et al. (2002b). After that,
MPC had been applied in freeway network by Hegyi et al.
(2005), in which ramp metering and variable speed limit
control are coordinated. But the real-time implementation
of MPC is not always feasible, due to the significant
computational efforts required to solve the non-linear and
non-convex optimization problems caused by the complex
mathematical model of traffic networks. Parameterized
MPC (Zegeye et al., 2012) is one of the approaches that
address the computational issue of MPC.

Parameterized MPC has been applied in both urban and
freeway networks to combine MPC and parameterized
traffic controllers. Zegeye et al. (2012) used MPC to opti-
mize the parameters of ramp metering controllers and vari-
able speed limits controllers simultaneously at every con-
trol time step. van de Weg et al. (2018) further extended
this method by considering adjusting the parameters of
ALINEA for ramp metering control, as well as the switch-
ing times of the controller. Jeschke et al. (2023) applied
parameterized MPC in an urban traffic network. Similar
to van Kooten et al. (2017), they used a parameterized
state-feedback function to distribute the green time length
for each phase, based on the queue length and number of
vehicles on the corresponding lanes. The parameters in
the function are then taken as the optimization variables
for MPC. Parameterized MPC can significantly reduce
the computational complexity compared to conventional
MPC, since the optimization variables are the param-
eters which are independent of the prediction horizon.
However, parameterized MPC still suffers from the model
mismatch between the mathematical model and the real
traffic system. In addition, external disturbances (e.g.,
weather change or incidents) also limit the performance
of MPC methods.

2.2 Adaptive Parameterized Traffic Control

Only few studies can be found that focus on improving the
adaptivity of the parameterized traffic controllers. Ghods
et al. (2009) proposed a genetic-based fuzzy approach for
adaptive freeway ramp metering and variable speed limit
control. A genetic algorithm is running in real time to
adjust the parameters of the baseline fuzzy controller every
5 min, trying to minimize the TTS of the network for a
prediction horizon. However, a model is still needed in
the genetic algorithm block for prediction, and it is not
explained how the genetic block tunes the parameters of
the fuzzy controller. In addition, external disturbances
and uncertainties are not considered in the paper. Chen
et al. (2019) used big data to analyze the weather patterns
and the congestion evolution patterns that influence the
ramp metering control of freeway networks. The weather
is clustered into two conditions: normal weather and
heavy weather, each of which corresponds to a set of
parameters for ALINEA. The congestion evolution has
three patterns, and it also determines another parameter
to be adjusted. All the analysis are done off-line, and
the parameters are prepared in advance. During real
implementation, the controller just needs to switch among
the preset parameters according to the traffic condition.
However, this method needs a large amount of historical



data for off-line analysis before it can be applied, which
limits its adaptivity to an unknown scenario. In addition,
coordinated control is not considered in this method.

An on-line model-free adaptive traffic controller was re-
ported by Smaragdis et al. (2004). Based on the original
ALINEA controller, Smaragdis et al. (2004) proposed an
adaptive ALINEA (AD-ALINEA) method, in which the
real-time measurements of traffic states are used to tune
the set-point occupancy of downstream segment, in order
to maximize the traffic flow. This method was shown
to track the varying critical occupancy levels effectively.
However, this method can work only when the states are
around the critical point, which is difficult to satisfy in
practice. Besides, this is a local ramp metering strategy
that does not consider coordinated control. To our best
knowledge, no work that uses RL in adaptive parameter-
ized control has been studied yet. As mentioned in Section
1.4, RL-based adaptive parameterized control merges the
advantages of current controllers, and it is introduced in
the next section.

3. THE PROPOSED RL-BASED ADAPTIVE
PARAMETERIZED CONTROL METHOD

In this section, the framework of the proposed algorithm
is presented for an intuitive illustration. Then more details
are given for the definition of the RL component.

3.1 Framework of the Method

Assume a traffic network is described as a discrete system

x(k + 1) = F (x(k),u(k),d(k)), (1)

where x denotes the state vector of the traffic system,
which can include the number of vehicles on the roads, the
queue lengths, or the density of traffic flow; F denotes the
unknown traffic dynamics, u is the control input vector
to the system (e.g., ramp metering rates, variable speed
limits, or traffic signal settings), and d is the external
disturbances that influence the traffic condition (e.g.,
weather change or incidents); k is the time step, which
is usually taken from 10 s to 1 min according to the traffic
system.

For parameterized traffic control, the control input can be
written as

u(k) = f(x(k),θ), (2)

in which f is the vector-valued function that maps the
state to the control input, and θ contains the parameters
of the state-feedback controllers. Considering there are
multiple local controllers in a traffic network, u(k) is a
combination of multiple control inputs u = [u1, . . . , uN ]⊤,
where N is the number of local controllers and ui is the
corresponding control input for i = 1, . . . , N .

In the traditional parameterized controller, the parameters
θ are fixed. The control input can vary with the state
evolution, but it can then not react to a changing environ-
ment. For example, when the weather turns from sunny to
rainy, which would significantly influence the driver behav-
ior, the controllers that perform well under sunny weather
may not suitable for a rainy traffic condition. Therefore, it
is necessary to adjust the parameters of the state-feedback
controllers during the real-time implementation.

Fig. 1. The diagram of the proposed RL-based adaptive
parameterized controller

In our method, a reinforcement learning agent is used
to adjust the parameters θ. As shown in Figure 1, the
parameterized controllers work at the lower level and with
a fast time step (e.g., every 10 s), while the RL agent works
at a higher level and with a slower time step (e.g., every
30 min). All the relevant states of the network are given
as the input to the RL agent, as well as all the external
disturbances. Note that the external disturbances refer to
the factors that can be measured, such as the humidity
of the surface, a lane close due to an accident, or the
light intensity. At every operation time step of the RL
agent, all the parameters of the local controllers would be
updated in a coordinated way, according to the output of
the RL agent. In order to make RL react to the changing
environment properly, a training process is necessary and
the states, actions, and rewards of RL should be well-
defined. In next subsection, several suggestions are given
about how to define the RL agent.

3.2 Definition of the RL Agent

All the components connected to the RL agent can be
regarded as the environment, and the RL agent interacts
with the environment to learn how to perform the best
control input by trail and error. The environment can
be described as a Markov decision process (MDP), which
can be represented by a five-tuple ⟨S,A, P,R, γ⟩. The
state space S, action space A, and reward function R are
defined in this section. Moreover, P = S × A× S denotes
the transmission probability among the states, which is
unknown and included implicitly in the environment (e.g.,
the traffic dynamics F ). In addition, γ ∈ [0, 1) is the
discount factor on future rewards and user-defined during
implementation.

State space All the measurable states related to the local
controllers could be given to the RL agent. In addition,
the disturbance measurements d and current control input
u(k) are also included in the state space.



Action space The dimension of the action space is equal
to dim(θ), and the actions are used to modify θ values of
all the local controllers. Since the actions do not determine
the control input u directly, and modify the parameters
instead, the performance of the proposed method is in
general more stable even during the exploration process.

Reward function The reward function represents the
goal of learning. In this method, we consider coordinated
control, so the global performance of the traffic network
is included in the reward function. A popular choice is
the TTS of all the vehicles on the network during a given
period of time (i.e., the control sampling time of RL).

Remark 1. Note that the definitions can be adjusted ac-
cording to the application and the control aim. When
choosing the specific RL algorithm, it may be necessary
to consider the scale of the target traffic network, and
the dimension of the state and action space. For example,
the state and action space can either be continuous or
discrete. In a simple case, all the states and actions can
be discretized as a set of values, each of which represents
a traffic condition, such as the degree of congestion or
the weather indicator. In this case, the simple Q-learning
algorithm (Watkins and Dayan, 1992) may be enough to
learn the mapping from action to state. If the states and
actions are continuous, then it is recommended to use an
actor-critic RL algorithm (Grondman et al., 2012).

The proposed method can be applied to any parameterized
controller, including the ones mentioned in Section 1
and 2. Next, a case on RL-based adaptive ALINEA for
coordinated ramp metering control is presented.

4. A CASE STUDY: RL-BASED ADAPTIVE ALINEA

In this section, our method is illustrated by a case of ramp
metering control for a freeway network using ALINEA.
First, the basic equations of ALINEA are introduced. Then
the target freeway network and the simulation settings
are presented, and the state and action spaces of RL are
defined. Finally, the training results and evaluation results
of our method and the comparison methods (no-control,
standalone RL, ALINEA) are analyzed.

4.1 RL-based Adaptive ALINEA

In original ALINEA method (Papageorgiou et al., 1991),
traffic occupancy is used as the state for control. Here we
use the traffic density instead, because this state reflects
the same traffic condition and is easier to measure in the
traffic simulator. The basic equation of ALINEA reads

r(k) = r(k − 1) +KR(ρ̄− ρd(k − 1)), (3)

where k = 1, 2, . . . is the discrete time step; r(k) is the
ramp metering rate to be implemented during the next
time step k; KR is a positive gain parameter; ρ̄ is the
desired downstream density, which is usually taken as the
critical density ρcr; ρd(k− 1) is the measured downstream
density at last time step k−1. In the traditional ALINEA
method, the parameters KR and ρ̄ are fixed. Therefore,
the actions of the RL agent consist of the values of these
two parameters, which is denoted as Krl and ρ̄rl to replace
the original KR and ρ̄.

Fig. 2. The freeway network for the case study
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Fig. 3. The rush hour demands for the case study

4.2 Network Settings and RL Definitions

In this case study, we consider a freeway network from Liu
et al. (2022), as shown in Figure 2. This freeway network
is divided into 18 segments, each of which has a length of
1 km. There are 3 on-ramps (O1, O2, O3) that are under
control (N = 3), 3 off-ramps (D1, D2, D3) that are unre-
stricted, one mainstream origin (O0), and one unrestricted
mainstream destination (D0). The mainstream stretch has
two lanes, while the on-ramps have one lane. For the
sake of simplicity, queue constraints are not considered.
METANET is used to formulate the freeway network. We
refer the reader to Kotsialos et al. (2002a) for more details
on METANET. The parameters of METANET for this
freeway network are taken from Liu et al. (2022), as shown
in Table. 1.

Table 1. METANET parameters for the free-
way network

Cmain Conramp τ κ
2000 veh/h/lane 2000 veh/h/lane 18 s 40 veh/h/lane

η am σ vfree
60 km2/h 1.867 0.0122 102 km/h

ρcr ρmax α T
37.5 veh/km/lane 180 veh/km/lane 0.1 10 s

The typical rush hour traffic demands are considered for
a 2.5 hours simulation time interval, as shown in Figure
3. The turning rates of all the three off-ramps are fixed as
5% of the mainstream flow. To reproduce the stochastic
phenomena of the traffic network, a random noise ev with
Gaussian distribution is added to the velocity update
equation of the three on-ramp downstream segments.
When the density of the downstream segment is below 30
veh/km/lane, the noise is ev ∼ N (−1, 1); when the density
is between 30-40 veh/km/lane, ev ∼ N (−3, 2); when the
density is above 40 veh/km/lane, ev ∼ N (−5, 3). This
means that the drivers tend to decrease their speed when
the traffic is crowded. In addition, the weather condition



Table 2. METANET parameters under differ-
ent weather conditions

Parameter Good Bad Extreme

ρcr (veh/km/lane) 37.5 29.5 21.5
vfree (km/h) 102 91.8 81.6

τ (s) 18 19.8 21.6

is also considered explicitly, which is divided into three
levels: good weather, bad weather, and extreme weather.
Each weather condition corresponds to a set of parameters
that influence the traffic system, as shown in Table 2.

In this case study, we choose continuous state space
and discrete action space. Therefore, deep Q-network
(DQN) (Mnih et al., 2013) is a suitable RL algo-
rithm for this case. The state space is defined as s =
[W,dO0

, dOi
, ρOi

, qO0
, qOi

, rOi
, i = 1, 2, 3]⊤, where W ∈

{good,bad, extreme} is a discrete indicator of the weather
condition, dO1

is the demand of mainstream and dOi
is

the demand of on-ramp Oi, ρOi
is the downstream density

of on-ramp Oi, qOi
is the queue length of on-ramp Oi,

and rOi
is the previous ramp metering rate of on-ramp

Oi. Therefore, the dimension of the state space is 15.
For simplicity and a better learning process, the action
space is reduced as much as possible. The three on-ramp
metering installations share the same parameters Krl and
ρ̄rl, and Krl ∈ {0.01, 0.001} (high gain and low gain) while
ρ̄rl ∈ {23.5, 31.5, 39.5, 47.5}. These parameter values are
chosen based on experience. The dimension of action space
is then 8, and the RL update the parameters every 15 min.

We consider three weather scenarios in total, in which
the weather is fixed as bad for the first simulation hour.
After one hour, the weather can change to good or extreme
weather or keep as bad weather. So the weather scenarios
are bad-good weather (scenario 1), bad-bad weather (sce-
nario 2), and bad-extreme weather (scenario 3). The pro-
posed RL-based adaptive ALINEA method (or for short:
RL-based ALINEA) is trained for these three scenarios,
as well as a RL-based ramp metering control method (RL-
based RM). For the latter method, the RL algorithm and
parameters are the RL-based ALINEA, except for the
action space. The RL-based RM directly output the ramp
metering rates. For simplicity, the actions for all the three
ramp metering installations are the same, and the ramp
metering rates are discretized into 11 values distributed
equidistantly between 0 and 1. The control sampling time
is 1 min.

4.3 Simulation Results and Discussion

To show the learning process better, the episode rewards
of RL-based ALINEA and RL-based RM for three weather
scenarios are presented separately, as shown in Figures 4
to 6. Note that the episode reward is the negative value
of the TTS for each run of simulation. Obviously, the RL-
based ALINEA method has a better sample efficiency than
RL-based ramp metering (i.e., the RL-based ALINEA
method converges faster). In addition, RL-based ALINEA
has a higher initial episode reward, which means the
proposed method can even provide control performance
during exploration. The episode rewards variation of RL-
based ALINEA during training is also smaller than that
of RL-based RM.
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Fig. 4. Learning process for weather scenario 1
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Fig. 5. Learning process for weather scenario 2
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Fig. 6. Learning process for weather scenario 3

The TTS simulation results are presented in Table 3,
including the no-control case, ALINEA (with ρ̄ = 37.5
veh/km/lane), trained RL-based RM, and the trained
RL-based ALINEA. All the methods are evaluated for
the three weather scenarios, and the TTS values are
averaged over 10 independent runs for each scenario. The
results show that RL-based ALINEA can achieve the
best performance in terms of TTS among all the control
methods.



Table 3. TTS simulation results of all the
comparison control methods

Scenario 1 Scenario 2 Scenario 3

No control 6793.9 8496.4 9848.9
ALINEA 5505.7 7120.2 8797.2

RL-based RM 5408.1 7005.4 8495.2
RL-based ALINEA 5379.1 6987.6 8267.3

5. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed a reinforcement learning
(RL)-based adaptive parameterized control method for
coordinated traffic management. The proposed method is
cheap to implement without requiring significant online
computational efforts. Compared with traditional param-
eterized control, our method can adapt to various un-
known traffic conditions. In contrast to standalone RL-
based control, our method has a better sample efficiency
and can learn faster. Results of the case study show the
effectiveness of the method.

For future work, an extensive case study can be conducted
by considering more complex environments and scenarios.
In addition, multi-agent RL can be employed to handle a
larger network by coordinating several local RL agents.
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