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Abstract: Dynamical systems and processes that either exhibit non-smooth behaviors (e.g.
through logic control or natural phenomena) or work in different modes of operation are usually
represented using hybrid systems models, i.e. mathematical models that combine continuous
dynamics with discrete-event dynamics. Identification of a hybrid system includes finding
switching patterns and identification of model parameters to obtain a data-driven model. This
survey paper provides a systematic review of models (how to parameterize the system) and
methods (how to identify unknown parameters) proposed for hybrid system identification with
an exposition of recent advances and developments, and further research directions.

Keywords: Hybrid systems; system identification; piecewise-affine systems; switched systems;
jump systems.

1. INTRODUCTION

Intertwined continuous and discrete behaviors can be rep-
resented as hybrid dynamical, which can either model sys-
tems with non-smooth behaviors or approximate systems
with nonlinearities. The discrete behavior can be repre-
sented as a switching pattern (mode) using a finite number
of values as countable state variables that orchestrates
over corresponding continuous subsystems (submodels).
Hybrid system identification is a twofold problem: 1) es-
timating the parameters of submodels and 2) determining
the switching patterns. While estimation of parameters of
the model is the objective in classical system identification,
hybrid system identification also requires the estimation
of switching patterns. In other words, the hybrid system
identification problem, where the switching mechanisms
are known, reduces to the conventional system identifica-
tion.

The first step is the determination of the modeling struc-
ture, i.e. model parameterization. The structure of sub-
models and switching mechanisms can be parameterized
based on: 1) identifying what model structure is well-
fitted to capture the dynamical behavior of the system,
and 2) whether the main purpose of system identification
is prediction or model-based control. These decisions de-
lineate the arena of hybrid system identification and once
a parameterization has been chosen, a methodology can
be chosen to solve the identification problem.

⋆ The research was conducted under the project SARASWATI2.0,
WP4 (automation and control), which is funded by the European
Horizon 2020 Framework Programme (grant agreement number
821427).

Parameterized submodels can be classified into three main
groups: input-output (Piga et al. (2020b)), state space
(Du et al. (2021b)), and probabilistic models (Breschi
et al. (2019)). The input-output model complexity ranges
from Auto-Regressive exogenous (ARX) models (Du et al.
(2018)) to the more complex Box-Jenkins (BJ) models
(Piga et al. (2020b)) and nonlinear models (Bianchi et al.
(2020b)). Complexity in the structure of a parameterized
model to include dynamical noises and disturbances, and
delay is a trend in recent years. State-space models, which
are a more control-oriented model structure, have been
widely discussed for linear (Sefidmazgi et al. (2016)), affine
(Du et al. (2021b)) or nonlinear (Du et al. (2021a)) rep-
resentations. Furthermore, hybrid model representations
in a probabilistic setting have recently drawn attention,
since they can describe parametric uncertainties and ex-
ternal disturbances, and the number of parameters can be
adapted as more data is collected (Piga et al. (2020a)).

Similarly, the switching mechanism can be represented dif-
ferently, depending on the system dynamics, switching be-
haviors, and purpose of modeling. Switching logics can be
generally classified in three groups: polyhedral partitions
(linearly or affinely partitioned) (Breschi et al. (2016b)),
random switching (Liu et al. (2021)), and event-driven
(deterministic (Basiri et al. (2018))). For hybrid system
identification, the switching logic is mostly modeled either
randomly (state-independent) or piecewise affinely (state-
dependent). In the first part of this survey, a systematic
discussion on parameterization of hybrid systems will be
made, and various classes of hybrid systems for identifica-
tion will be reviewed.



As a second aspect, besides system description, new
recently-developed identification methods are reviewed
and categorized into four groups. Taking into account
the groups discussed in the previous survey by Garulli
et al. (2012), most identification approaches fit in the
so-called optimization-based framework. Clustering-based
(Du et al. (2020)) and probabilistic (Chen et al. (2020a,b))
methods are the other identification methods that are
widely discussed in recent publications. The other meth-
ods that cannot be covered by the aforementioned classes
are algebraic, bounded-error-based, continuous-time, and
neural network approaches. An innovative trend is either
combination or generalization of the approaches (Tang
and Dong (2020); Liu et al. (2022); Piga et al. (2020b))
for either dealing with new forms of parameterization or
improving efficiency of computational burden and accu-
racy of the methods. The theory and mathematics of vari-
ous well-established hybrid system identification methods
have been discussed by Lauer and Bloch (2018), which
was an inspiration for systematically modifying and ex-
panding the categorization in this survey in comparison
with Garulli et al. (2012) and Lauer and Bloch (2018).
Moreover, discussing the probabilistic parametrization and
the associated likelihood-based methods are two additions
to the aforementioned reviews. Furthermore, the detailed
specification of switching patterns, specifically piecewise
affine is reviewed in both the sections on parameterization
and solution method of this survey.

The paper is organized as follows. Models of hybrid
systems are presented in Section 2. We discuss input-
output models (Section 2.1), state-space models (Section
2.2), switching mechanisms (Section 2.3), and probabilistic
models (Section 2.4), and a comparison in Section 2.5.
A review of methods is given in Section 3. This sec-
tion consists of optimization-based methods (Section 3.1),
clustering-based methods (Section 3.2), likelihood-based
methods (Section 3.3), other methods (Section 3.4), and a
comparison of important papers (Section 3.5). In the last
section, conclusions are drawn to show current and future
research directions.

2. MODELS OF HYBRID SYSTEMS:
PARAMETERIZATION

2.1 Input-output models

A quite wide spectrum of hybrid systems can be repre-
sented in input-output (I/O) form as

yk = fqk(xk) + εk, (1)

where xk ∈ R
nx is the regressor or input, yk ∈ R

ny is
the output, and εk ∈ R

ny is a noise vector, in which k
denotes the index (e.g. time step) of the sequence, and
qk ∈ {1, ..., N} is the switching signal that determines
which vector field, fqk , is active at time step k. The vector
field fqk can be either linear or nonlinear. In case of linear
functionality of hybrid systems, the vector field can be
represented by fi(xk) = xT

k θi, in which qk = i (i-th mode).

The Switched Auto-Regressive eXogenous (SARX) model
is the simplest and widely-used parameterization of hybrid
systems for the identification problem. SARX models are
a combination of several different ARX models defined

as submodels. Discrete-time Single-Input Single-Output
(SISO) SARX dynamical system can be expressed as

yk = xT
k θqk + εk, (2)

where x̃k = [yk−1, ..., yk−na
, uk−1, ..., uk−nb

]T ∈ R
na+nb

and xk = [x̃T
k , 1]

T ∈ R
na+nb+1 are the regressor and the

extended regressor vectors, respectively, in which na and
nb are the orders of the system, the constant “one” is to
account for different offsets of the modes, and yk and uk

are the output and input at time step k, respectively.
qk ∈ S = {1, ..., N} denotes the active mode at time
step k and θi = [ai1, ..., aina

, bi1, ..., binb
, ci]

T ∈ R
na+nb+1

represents the parameter vector for the i-th mode, in which
i ∈ S.

Jump Box-Jenkins (JBJ) models have a more general
and flexible structure for representing hybrid systems
in comparison with the mentioned auto-regressive (AR)
models, since they include both the moving average and
auto-regressive terms to model dynamics of disturbances
and noises. For this class of systems, the output is noise-
corrupted, while the noise term is a dynamical noise. The
noise-corrupted output, yk, can be written with respect to
the noise-free output, ŷk, and the noise term, vk as follows:

yk = ŷk + εk, (3)

where the noise-free output, ŷk, is modeled based on the
input uk as follows:

ŷk = G(q−1, θi)uk, (4)

and noise term, vk, is written as follows:

εk = H(q−1, θi)vk, (5)

where G(q−1, θi) and H(q−1, θi) are the linear filters in
which θi denotes the i-th mode at time step k. These linear
filters are rational functions of the time shift operator q−1

(i.e. q−dxk = xk−d for d ∈ Z) as written below

G(q−1, θi) =
B(q−1, θi)

A(q−1, θi)
=

bi1q
−1 + ...+ binb

q−nb

1 + ai1q−1 + ...+ aina
q−na

,

(6a)

H(q−1, θi) =
C(q−1, θi)

D(q−1, θi)
=

1 + ci1q
−1 + ...+ cinc

q−nc

1 + di1q−1 + ...+ dind
q−nd

,

(6b)

where na, nb, nc, and nd are the orders of the system. The
parameters vector that should be identified for the i-th
submodel in a compact form is as follows:

θi = [ai1, ..., aina
, bi1, ..., binb

, ci1, ..., cinc
, di1, ..., dind

]T .
(7)

Substituting (6a) and (6b) into (4) and (5) results in

ŷk = (1−A(q−1, θi))ŷk +B(q−1, θi)uk = xT
k1θi1, (8a)

εk = (1− C(q−1, θi))εk +D(q−1, θi)vk = xT
k2θi2 + vk,

(8b)

where xk1 and xk2 are the regressor vector defined as
follows:

xk1 = [−ŷk−1, ...,−ŷk−na
, uk−1, ..., uk−nb

]T ∈ R
na+nb ,

(9a)

xk2 = [−εk−1, ...,−εk−nc
, vk−1, ..., vk−nd

]T ∈ R
nc+nd ,

(9b)

xk = [xT
k1, x

T
k2]

T ∈ R
na+nb+nc+nd , (9c)

and the parameters vector can be expressed as



Table 1. Switching input-output linear models.

Name G(q−1, θi) H(q−1, θi) Reference

SFIR B(q−1, θi) 1 Liu et al. (2021)

SOE
B(q−1,θi)

A(q−1,θi)
1 Goudjil et al. (2017b)

SARX
B(q−1,θi)

A(q−1,θi)
1

A(q−1,θi)
Du et al. (2018)

Delay-SARX
B(q−1−τi ,θi)

A(q−1,θi)
1

A(q−1,θi)
Chen et al. (2017)

EIV-SARX
B(q−1,θi)

A(q−1,θi)
1

A(q−1,θi)
Ozbay et al. (2019)

SARMAX
B(q−1,θi)

A(q−1,θi)

C(q−1,θi)

A(q−1,θi)
Hojjatinia et al. (2020)

SBJ
B(q−1,θi)

A(q−1,θi)

C(q−1,θi)

D(q−1,θi)
Piga et al. (2020b)

θi1 = [ai1, ..., aina
, bi1, ..., binb

]T ∈ R
na+nb , (10a)

θi2 = [ci1, ..., cinc
, di1, ..., dind

]T ∈ R
nc+nd , (10b)

θi = [θTi1, θ
T
i2]

T ∈ R
na+nb+nc+nd , (10c)

Therefore, according to (3), the model can be parame-
terized for the identification problem considering (2) as
follows:

yk = xT
k1θi1 + xT

k2θi2 + vk

= xT
k θi + vk.

(11)

According to the definitions of G(q−1, θi), H(q−1, θi),
A(q−1, θi), B(q−1, θi), C(q−1, θi), and D(q−1, θi) in (6a)
and (6b), other classes of hybrid systems can also be
defined. The switched Finite Impulse Response (SFIR)
model is the simpler than SARX. The switched Auto-
Regressive Moving-Average with eXogenous input (SAR-
MAX) model is a well-structured model representing
hybrid systems subject to disturbances. The switched
Output-Error (SOE) model is a suitable hybrid model
structure for systems subject to output measurement
noise. The Error-in-Variable SARX (EIV-SARX) model is
a class of hybrid systems, where input measurements are
also corrupted with noise. Moreover, time-delayed models
have drawn attention, since several real-world applications
are subject to delays. The parameterization of the these
submodels are presented in Table 1.

Besides the switching linear I/O systems, identification of
switched nonlinear I/O systems has also been addressed
in the literature. The switched nonlinear ARX (SNARX)
model is a type of switched I/O nonlinear system that
is represented by a finite set of nonlinear maps of ARX
model. Considering (1), the nonlinear map, i.e. fqk , can be
expressed as either polynomial expansion of all monomials
of xk up to a given order or any other (nonlinear) basis
function as follows:

fqk(xk) =

n
∑

j=1

ϑijϕj(xk), (12)

where ϕj(xk), j = 1, . . . , n, is a nonlinear regressor, and
ϑi ∈ R

n is the parameter vector of the i-th submodel.
The vector field, fqk , can also be expressed by a Takagi-
Sugeno (TS) model or a Neural Network (NN). TS models
and NNs, however, are not nonlinear in principle and
the nonlinearities come from membership and activation
functions in TS models and NNs, respectively. Considering
weighted Gaussian membership function and element-wise
sigmoid with hyperbolic tangent activation functions, TS-
SARX and NN-SARX are nonlinear models. The block-
oriented model is represented by Wiener and Hammerstein

Table 2. Switching input-output nonlinear
models.

Name Basis Nonlinearity Reference

SNARX SARX basis function Bianchi et al. (2020b)
TS-SARX SARX membership function Wagner and Kroll (2014)
NN-SARX SARX activation function Brusaferri et al. (2020)

WH-SARX SARX Wiener, Hammerstein
Wang et al. (2019)
Zhang et al. (2016)

structure, that consists of a Hammerstein block and a
Wiener block in series with a linear block in between. The
switched nonlinear system in this form is formulated based
on SARX as a middle linear block. These input-output
nonlinear switching models are summarized in Table 2.

2.2 State-space models

Switched State-Space (SS) models provide a more mean-
ingful representation for physical applications in compar-
ison with switched I/O models. Moreover, most control
approaches and dynamical analysis rely on SS models as
simple and compact form for theoretical developments. A
general form of hybrid model in SS structure is described
by

{

xk+1 = Fqk(xk, uk) + wk

yk = Gqk(xk, uk) + vk
(13)

where xk ∈ R
n, uk ∈ R

p, and yk ∈ R
l are the continuous

state, input and output of the system, respectively, wk ∈
R

n and vk ∈ R
l are noise terms, qk ∈ {1, ..., N} is the

switching signal that determines which vector fields, Fqk

and Gqk , are active at time step k. The vector fields,
Fq : R

n+p → R
n and Gq : R

n+p → R
l can be either

linear (and affine) or nonlinear.

Linearization of nonlinear form of (13) around operat-
ing points yields affine models. “Affine” systems can be
represented in “linear” forms (i.e. without affine or bias
constant), if the equilibrium points are known. The more
accurate the approximation of a complex system, the
higher the number of submodels required, which hinders
the identification problem due to the increasing number of
modes. Switched nonlinear systems in SS form can also be
rewritten as a linear combination of the basis functions. A
SS forms represent a more informative model for a system
in comparison with input-output models. Table 3 provides
an overview of state-space models.

2.3 Switching mechanisms

It is also worth to discuss switching mechanisms to review
one of the important model group, i.e. piecewise affine
models. Switching behavior is determined by the switching
mechanism. The switching signal is defined as discrete
state, i.e. qk ∈ S = {1, ..., N} that determines which
submodel is active at time step k. There are a variety
of switching mechanisms: exogenous, deterministic, state-
driven, event-driven, time-driven, and completely random.
In terms of hybrid system identification, according to
what has been discussed in the literature, the switching
mechanism can be considered as either continuous-state-
dependent or -independent. The behavior of an application
(i.e. the source of switching) determines the mechanism of
the switching signal.



Table 3. Switching state-space models.

Name type of Fi type of Gi Reference

Switched affine input-to-state affine - Du et al. (2021b)
Switched linear state-space linear linear Sefidmazgi et al. (2016)
Switched affine state-space affine linear Rui et al. (2016)
Switched nonlinear input-to-state basis function - Du et al. (2021a)

The PieceWise Affine (PWA) model is a class of hybrid
systems where in the discrete state depends on the con-
tinuous state. The simple and flexible structure as well as
the universal properties of PWA model for approximation
of any nonlinear functions with any accuracy has drawn
researchers’ attention to develop identification methods
based on this model. In principle, the switching space in
PWA model is partitioned into some regions based on the
continuous states. According to (2), the mode of qk for the
i-th active mode is written based on the regressor vector,
xk, belonging to i-th set, χχχi, of a polyhedral partition
{χχχi}i∈S of the regressor space χχχ as

qk = i ⇐⇒ xk ∈ χχχi. (14)

In other words, a PWA function, f : χχχ → R
nb , approxi-

mates a nonlinear function with sufficient number of modes
defined by a set of polyhedra, χχχi. The partition region χχχi,
can be defined based on linear classifiers as follows, which
is commonly-used formulation for the partition domain.
The bounded polyhedron χχχi, can be represented by a
hyperplane matrix Hi ∈ R

npi
×(nx+1), in which npi

is the
number of hyperplanes of the corresponding partition:

χχχi = {x ∈ R
nx : Hi

[

x
1

]

≤ 0} (15)

A few types of model have been used for hybrid sys-
tems with polyhedral partition as switching mechanism,
which is given in Table 4. Voronoi-type partition (seeds
generators), scheduling-variable space (Linear Parameter
Varying (LPV)), time-partitioned region, , and input-to-
state form of partition are the models of the switching
mechanism. Therefore, different classes of hybrid systems
such as PWFIR, PWARX (Breschi and Mejari (2020)),
PWAOE (Mejari et al. (2020b)), PWA LPV-ARX (Mejari
et al. (2018)), PWNL (Mazzoleni et al. (2021)), and state-
space PWA (Rui et al. (2016)) models can be derived
according to the switching pattern parameterization.

Besides the deterministic representation of PWA parti-
tions, the random probability distribution can be repre-
sented over the discrete state model as a switching sig-
nal using the Dirichlet process. Moreover, for the state-
independent domain, Markov switching is the other class of
switching mechanism widely used. The orderly-switching
pattern, in the form of a Markovian jump model, deter-
mines the switching between the submodels independent
of the past (except the immediate one) information. The
modes of a hybrid system can also be expressed as an
event-based model, then the model is so-called event-
driven. In this way, hybrid systems can mathematically
model the physical “environment”. The summary of mode-
switching models is given in Table 4.

2.4 Probabilistic models

Probabilistic models (also so-called non-parametric model)
are models that take a probability distribution into ac-
count to describe the process. This kind of the model
representation, that can be expressed in various settings,
is suited for the systems with available priori physical
knowledge. Generally, the distribution of the output in the
discrete-time form can be expressed as follows:

yk | (xk, θIk , σ
2
Ik
, vIk : Ik = i) ∼ D(θTi xk, σ

2
i , vi) (16)

where vi and σ2
i denote degree of freedom and the vari-

ance of the distribution, respectively. Moreover, Ik is the
Markov chain and D can be any form of distribution
like Gaussian distribution and t-distribution to represent
the distribution of the parameters (θIk) based on given
regressor vector (xk). Other parameterization are derived
to include some features such as delays and missing data.
Various classes of hybrid systems that can be parameter-
ized in this way range from SFIR and SARX to PWARX.

Moreover, the stable spline kernel is a way of stochastic
modeling of hybrid systems via a Bayesian network. The
stable spline kernel modeling can be used for PWFIR and
PWARXmodels. The distribution of the model in the form
of linear stable spline kernel can be expressed as follows:

yk | ({θi}
M
i=1, λ, α, σ

2, {ωk}
N
k=1) ∼ N (Φkθk,

1

σ−2
I) (17)

where λ and α are the scalar factor and the stability
parameter, respectively as the stable spline hyperparam-
eters, ωk denotes other hyperparameters associated with
the classification, Φk is the matrix with rows selected by
the input regressor vector with respect to the type of the
input regressor chosen based on the type of the model, and
σ−2 and I are the noise precision and the identity matrix
with the appropriate dimension, respectively.

Furthermore, the submodels also can be formulated in the
stochastic setting with the deterministic derivations. In
this way, the a priori prediction error, ǫk|k−1 and the a
posteriori prediction error, ǫk|k can be expressed as

ǫk|k−1 = Yk − Ŷk|k−1 (18a)

ǫk|k = Yk − Ŷk|k (18b)

where Yk ∈ R
N×1 is the collection of outputs for all sub-

models at time step k, Ŷk|k−1 and Ŷk|k are the a priori and
the a posteriori estimations, respectively. The partitions
can also be represented deterministically. The representa-
tions of different model structure in the literature based
on the above discussion have been summarized in Table 5.

2.5 Applications of models

The advantage of the more complex models in terms of
structure complexity like SBJ and EIV-SARX models
is the accuracy in prediction due to consideration of



Table 4. Mode-switching models.

Switching mechanism Model Reference

Polyhedral
partition

Linear classifier Regressor-vector dependent Breschi et al. (2016b)
Center generator Voroini-type Bako and Yahya (2019)
Scheduling-variable space Soft function Mejari et al. (2020c)
Batch time-based Time-partitioned Xu et al. (2018)
State-space State-input-vector dependent Du et al. (2021b)
Dirichlet Probabilistic Wågberg et al. (2015)

Random
Arbitrary Non-modeled Liu et al. (2021)
Markov Probabilistic Chen et al. (2020a)

Event-driven Inferred mathematical Basiri et al. (2018)

Table 5. Representation of hybrid systems in probabilistic settings.

Model structure Representation feature Reference(s)

SFIR Missing measurement included Liu et al. (2021)

SARX

Hammerstein nonlinearity included Ma et al. (2019)
Delay included Chen et al. (2020b)
Based on t-distribution Fan et al. (2017)
Missing measurement included Chen et al. (2020a)
Error-based posteriori prediction Goudjil et al. (2016)

SOE Error-based posteriori prediction Goudjil et al. (2017a)

PWFIR Based on kernel hyperparameters Pillonetto (2016)

PWARX
Hierarchical Bayesian Wågberg et al. (2015)
Based on kernel hyperparameters Scampicchio and Pillonetto (2018)
Error-based posteriori prediction Yahya et al. (2020)

PWA Bayesian inference Piga et al. (2020a)

SBJ Posterior distribution Breschi et al. (2019)

either dynamical disturbances and noises or errors in the
parameters.

Moreover, an advantage of switching patterns represented
by polyhedron is regressor-dependent switching that can
project physical behaviors of the process such as different
metabolic stages (Wang et al. (2020)), different operating
modes (Song et al. (2020)), and different phases of a batch
process (Xu et al. (2018)). Various forms of polyhedral
partition may not have a specific advantage unless a
specific problem for classification is defined, e.g. Bako and
Yahya (2019) in which the centers of the partition map
are intuitively interpreted as operating points. Arbitrary
patterns can also be used for a system that has no
information on switching instants (Zhang et al. (2018)).

In addition, for control-orientated purposes, state-space
representation of the submodels and the partition region
(Du et al. (2021b)) has the advantage over others because
of its structure for observer and controller design.

For applications with no prior knowledge on their struc-
tures, non-parametric models have an advantage because
of probability distribution over parameters and noises to
probabilistic model uncertainties (Fan et al. (2017)). The
range of complexity in probabilistic structures is the same
as input-output models (Liu et al. (2021); Breschi et al.
(2019)). Different advantages of model representation in
probabilistic settings are based on including system re-
strictions in practice, such as missing measurement (Chen
et al. (2020a)) and time delay (Chen et al. (2020b)).
Probabilistic models in stable spline kernel also have ad-
vantage as they mitigate the difficulty of the model order
selection based on defining hyperparameters (Scampicchio
and Pillonetto (2018)).

In case of existing time-varying relation between input
and output measurements, scheduling variable can be
introduced to extend linear time-invariant models to linear
time-varying models (Mejari et al. (2020c)).

Nonlinear models have the ability of representing a non-
linear system with fewer number of parameters in a
wider range. Polynomial nonlinear models are discussed
by Bianchi et al. (2021) and non-parametric piecewise
nonlinear models are addressed by Mazzoleni et al. (2021).
These kinds of hybrid systems are a new trend in the field
of system identification.

3. METHODS OF HYBRID SYSTEM
IDENTIFICATION

The method used to solve the identification problem de-
pends on the parameterization used to model the hy-
brid system. Subsystem identification and switching rule
detection can be performed either separately, or jointly.
Identification of hybrid systems, therefore, needs classifi-
cation of dataset into some clusters, and estimation of the
parameters of submodels for each cluster. The systematic
classification of the methods has been reviewed below.

3.1 Optimization-based methods

The generic identification problem can be formulated in
an optimization framework as follows:

minimize
Xi,k,θi

∑

k

∑

i

Xi,k(yk − xT
k θi)

2, (19a)

s.t.
∑

i

Xi,k = 1, ∀k (19b)

where yk is the actual system output, xk and θi are the
regressor and parameter vectors, respectively, which can



be constructed based on the model parameterization dis-
cussed in Section 2, and Xi,k ∈ {0, 1} denotes the submodel
activation for all time steps. The goal of the optimization
problem is to minimize the error of the identified output
and actual output based on the available measurements i.e.
the measured outputs {yk}

n
k=1, and the measured inputs,

{uk}nk=1, where n is the number of measurement. It is,
however, an NP-hard optimization problem, a reformula-
tion can be made for different classes of model parameter-
ization to make the problem computationally feasible.

Wang et al. (2019) have solved the optimization problem
based on the least squares criterion for switched Ham-
merstein ARX models with a long-horizon and a different
horizon iteration to detect the process rapid changes. Hu
et al. (2015) have proposed a reformulation of the cost
function in order to identify the subsystem parameters of
a SARX model based on the least geometric mean squares
algorithm, which is followed by a neural network classifier
to label the training data.

A sum-of-norm regularized convex optimization problem
for SARX models has been discussed by Hartmann et al.
(2015), which is combined with Expectation-Maximization
(EM) approach to cluster preliminary estimates and for-
mulate a quadratic program to complete switching de-
tection and parameter identification procedure. The ap-
plication of EM has been also used by Tang and Dong
(2020) as a first step of the two-step approach to solve
a convex optimization problem for simultaneous cluster-
ing and identification. The proposed approach has been
compared with a non-convex optimization algorithm pro-
posed by Lauer (2013) and a recently-developed general
optimization-based approach addressed by Yuan et al.
(2019). Moreover, Xiujun et al. (2020) have developed
a weighted multi-innovation the least squares algorithm
for Hammerstein SARX models, which is based on EM
approach for clustering.

An optimization problem has been formulated for a class
of nonlinear switched ARX (SNARX) models and solved
in an iterative way by Bianchi et al. (2020b). While the
structure of the nonlinear model is characterized in a
probability setting, a randomized method is employed to
address the formulated combinatorial optimization. Since
prior sample-mode assignment is required, Bianchi et al.
(2021) have addressed this problem based on a two-stage
randomized approach in a general framework with no a
priori limit on the number of switching time instants by
using a cost function that alternates between parameter
and mode identification. The other heuristic approach
for solving a typical heterogeneous optimization problem
efficiently is similar to the discussed two-stage iterative
approaches for both SARX and PWARX models proposed
by Bianchi et al. (2020a).

Combining the prediction error method with a coordi-
nate descent approach has been taken into account to
address the identification problem of SARMAX by Breschi
et al. (2018) in both batch and recursive ways. A close-
to-optimal four-step solution has been also proposed by
Amaldi et al. (2016) for the mixed-integer linear program-
ming to fit a k-piecewise affine model with a piecewise
linear separability problem. Domain partitioning based on
multi-category linear classification and submodel fitting

have been addressed simultaneously to guarantee solutions
of the k-hyperplane clustering problem.

Paoletti et al. (2019) have formulated the identification
problem of PWA models in the framework of bi-level
programming, in which data classification and partition
estimation are addressed in the upper level and subsystem
parameters are identified in the lower level based on a
prediction error criterion. An optimization-based method
has been formulated by Breschi and Mejari (2020) for
structure selection and identification of PWARX models,
using regularization-based shrinking strategies within a
coordinate-descent identification method to determine the
parameters of the submodels along with their structures.

If the partition of the PWA model is considered as a
Voronoi type, the least harmonic mean approach can be
employed that has been discussed by Bako and Yahya
(2019). Moreover, identification of time-partitioned PWA-
OE models has been tackled by Xu et al. (2018) for batch
processes in the framework of optimization-based algo-
rithms. Similarly, identification of PWA-OE models has
been also discussed by Mejari et al. (2020a), that a recur-
sive bias-correction scheme to correct the bias in the ordi-
nary least square method has been presented. While simul-
taneous clustering and parameter estimation are achieved
within the first stage by applying bias-corrected the least
squares, partitioning the regressor space is obtained via
a convex optimization problem known as multi-category
discrimination.

Recursive multiple least squares for simultaneous clus-
tering and parameter estimation has been proposed by
Breschi et al. (2016b) for PWA models. A linear multi-
category discrimination algorithm has been considered
via a Newton-like approach and an averaged stochastic
gradient descent for solving the unconstrained optimiza-
tion problem for batch and recursive ways. The proposed
method has been extended for LPV-ARX models with
linear partitioning by Breschi et al. (2016a). The convex
optimization problem has been solved using a sparse es-
timation approach as a likelihood-based methodology in
stochastic framework by Mattsson et al. (2016).

Another two-stage optimization-based method has been
discussed with an iterative regularized moving-horizon ap-
proach by Naik et al. (2017) for PWARX models, and
Mejari et al. (2020c) for switched LPV-ARX models. Ac-
tive modes and the parameters of the submodels are op-
timally and recursively found by solving small-size mixed-
integer quadratic-programming problems and polyhedral
partitions are identified using linear multi-category dis-
crimination.

A quite general jump model, which is PWA models
with hidden Markov jumps, has been formulated in an
optimization-based framework by Bemporad et al. (2018)
and solved by alternating between minimizing a loss func-
tion of fitting submodel parameters with a generalized
k-means algorithm and minimizing a discrete objective
function for determining active modes.

3.2 Clustering-based methods

Clustering aims to divide a dataset into different subsets
based on how similar they are to one another. This idea



Table 6. Optimization-based approaches.

Method Switching mechanism Hybrid model Reference(s)

Different horizons least squares Arbitrary (slow switching) Hamm-SARX Wang et al. (2019)

Combinatorial optimization Arbitrary SNARX
Bianchi et al. (2020b)
Bianchi et al. (2021)

Constrained optimization Arbitrary SARX/PWARX Bianchi et al. (2020a)

Prediction error method Arbitrary/Markov SARMAX Breschi et al. (2018)

Discrete optimization Linear classifier PWA Amaldi et al. (2016)

Nested optimization Linear classifier PWA Paoletti et al. (2019)

Regularization-based optimization Linear classifier PWARX Breschi and Mejari (2020)

Least harmonic mean approach Center generator (Voronoi) PWA Bako and Yahya (2019)

Separable nonlinear least-squares Time-based PWA-OE Xu et al. (2018)

Bias-correction approach Linear classifier PWA-OE Mejari et al. (2020a)

Multiple least squares
Linear classifier PWA Breschi et al. (2016b)
Scheduling-variable space LPV-ARX Breschi et al. (2016a)

Sparse estimation approach Linear classifier PWARX Mattsson et al. (2016)

Regularized moving-horizon approach
Linear classifier PWARX Naik et al. (2017)
Scheduling-variable space LPV-ARX Mejari et al. (2020c)

Fitting algorithm
Regression models (PWA)

Bemporad et al. (2018)
Statistical models (Markov jump)

Sum-of-norm regularized optimization Arbitrary SARX Hartmann et al. (2015)

EM-based sparse method Linear classifier PWARX Tang and Dong (2020)

Weighted multi-innovation least squares Arbitrary Hamm-SARX Xiujun et al. (2020)

is very close to the hybrid system identification problem.
Papers of this section have contributions to clustering,
even they are combined with other methods.

A hierarchical clustering method based on the gap metric
has been proposed by Wang et al. (2020). Similarly, simul-
taneous submodel and optimal operation region partition
estimation have been addressed based on output-error
minimization in order to improve accuracy by Song et al.
(2020). In this approach, local models are initially found
with the least squares and clustering of local models and
parameters identification are done based on the initializa-
tion using the feature vectors and weighted least squares,
respectively.

Bounded-switching clustering has been discussed by Se-
fidmazgi et al. (2015) for SARX systems and Sefidmazgi
et al. (2016) for switched state-space systems to convert
the non-convex optimization problem into a binary inte-
ger programming problem using an innovative clustering
method. However, the problem still includes optimization,
by using bounded-switching technique, it has been easily
formulated and solved by least squares and subspace iden-
tification by Sefidmazgi et al. (2015) and Sefidmazgi et al.
(2016), respectively.

For PWA models, a semi-supervised clustering approach
has been proposed by Du et al. (2020) to obtain the
number of submodels, the initial clustered dataset, and
the corresponding parameters of each submodels. The
output of the clustering stage is used for a modified self-
training Support Vector Machine (SVM) algorithm to
identify the polyhedral partitions and the parameters of
submodels. Moreover, a self-adaptive clustering algorithm
has been addressed by Sellami et al. (2016). The sequential
estimation procedure of the switching signal is based on
an unsupervised self-adaptive classification algorithm. The
core of the proposed approach is clustering based on
three steps consisting of cluster creation, online cluster
adaptation, and cluster fusion. Hure and Vasak (2017)
developed a clustering-based identification algorithm for
PWA models based on feature vectors and clustering

them in which the k-mean++ algorithm is adapted for
initialization. Feature vector transformation is introduced
to reduce and in some cases omit partitioning in some
dimensions.

Li et al. (2016) have proposed a subspace clustering ap-
proach that removes the requirement on convex regions
in the conventional k-mean clustering. A block-diagonal
matrix permutation algorithm is the proposed subspace
algorithm to reduce the computational complexity in han-
dling arbitrarily shaped regions. Another subspace clus-
tering approach has been proposed by Li and Liu (2017),
who employ a spectral clustering algorithm with a relaxed-
permutation structure. The spectral clustering method has
also been addressed by Zhang et al. (2018) for EIV-SARX
models. Based on the proposed method, data points are
partitioned into subsets and a manifold distance between
the dynamics of each segment is computed via a Rieman-
nian distance-like function to assign segments to clusters,
and finally a common identification method is used to
identify parameters of each cluster. Another subspace clus-
tering algorithm for identification of EIV-SARX models
has been presented by Ozbay et al. (2019), using sum-of-
squares polynomial with Christoffel’s functions to perform
singular value decomposition independently of the number
of data points.A subspace clustering algorithm for state-
space switched systems has been proposed by Lopes et al.
(2016). The hybrid Kalman filter as an interacting multiple
model algorithm is used for reclassification to assign the
original dataset to a specific mode and to refine model
estimation at the end of the procedure.

A prototype-shaped clustering-based algorithm has been
proposed by Wagner and Kroll (2014) for partitioning non-
linear Takagi-Sugeno systems. The identification process
includes fuzzy c-means and Gustafson-Kessel algorithms
for clustering and identification.Another application of
fuzzy c-means clustering as an efficient unsupervised parti-
tioned technique has been discussed by Shah and Adhyaru
(2014) for PWARX models. The number of submodels
is estimated by the proposed fuzzy clustering approach
and submodel parameters are identified by weighted least



squares approach based on a fuzzy distance weight ma-
trix. Likewise, an incremental c-regression approach has
been addressed by Blazic and Skrjanc (2020) as an online
identification procedure. Furthermore, while PCA-guided
k-Means clustering approach is a conventional clustering
approach in which clusters are derived in a PCA-guided
process, a fuzzy PCA-guided clustering technique has been
proposed by Khanmirza et al. (2016) as a modified robust
clustering method.

Classification and clustering with evolutionary algorithms
for estimating switching patterns modeled by a Gaussian
mixture before parameter identification with weighted and
extended least squares algorithms is one of the inno-
vative methods to address the identification problem of
PWARX and PWARMAX models proposed by Barbosa
et al. (2019). Classical first-order algorithms such as mirror
descent algorithm or Nesterov’s optimal scheme can be
employed to solve the reformulated determination prob-
lem of the regions as a multi-class classification, which is
discussed by Jianwang and Ramirez-Mendoza (2020). In
this work, parameter estimation has been addressed via
zonotope parameter identification.

A constrained clustering approach for time-partitioned
PWARX model has been developed by Liu et al. (2022).
The clustering optimization problem has been formulated
by imposing the complete and non-overlapping partition
constraints and it has been efficiently solved by employing
a greedy iterative approach.

For PWNL models, a semi-supervised clustering setting
has been proposed by Mazzoleni et al. (2021), which
is based on a data augmentation strategy to deal with
a situation when unsupervised data are not basically
provided. This work is a pioneer of piecewise nonlinear
regression in the domain of hybrid system identification.

3.3 Likelihood-based methods

Likelihood-based methods are formulated based on the
models represented in the probabilistic form. Expectation-
maximization is one of the well-and-widely-studied algo-
rithms, which not only can be used for clustering (as
reviewed before), but also for the maximum-likelihood
estimation. The EM algorithm consists of two steps: E-step
and M-step. Considering the unknown parameter vector,
Θ, defined based on the model structure, and observed and
unobserved dataset, Cobs and Cuno, the E-step calculates
the conditional expectation of the log-likelihood function
(known as Q-function) formulated as follows:

Q(Θ | Θold) = ECuno|(Cobs,Θold) (logP (Cuno, Cobs | Θold))
(20)

where Θold is the parameter set calculated in the previous
iteration. Besides the E-step, the M-step maximizes the Q-
function with respect to parameter set written as follows:

Θ = argmax
Θ

Q(Θ | Θold) (21)

Rui, Ardeshiri, and Bazanella (2016) have proposed a
framework based on the EM algorithm to identify the
parameters of the model represented in PWA state-space
form. A cumulative distribution function is employed to
compute the probability of each submodel based on the
measured samples at that time step, and then the latent

discrete state is estimated using a Kalman smoother for
the computed submodel, and finally parameters are identi-
fied based on the maximization of a surrogate function for
the likelihood. Fan et al. (2017) have addressed a robust
identification problem of the model parameterized by a
hidden Markov ARX model using EM algorithm in which
student’s t-distribution is imposed to the noise model for
more accurate estimation. The extension from a batch to
a recursive EM algorithm has been proposed by Chen
et al. (2020b) for delayed SARX models to identify the
parameters of the submodels, the Markov chain transition,
and the time delays simultaneously.

Variational Bayesian (VB) method is another Bayesian
optimization-based strategy that is used to approximate
high dimensional posterior distributions instead of point-
wise estimations of the parameters. The VB scheme is
a more general approach in comparison with the EM
approach because of approximation of parameter densities.

The identification problem of Markov-switching Hammer-
stein ARXmodels has been addressed via the VB approach
by Ma et al. (2019). Estimating the unknown number of
submodels and switching signals as well as approximating
the distributions of the unknown submodels parameters
have been tackled for SFIR models by Liu et al. (2021). Es-
timation of parameters distributions and point-estimation
of the transition probabilities of switched Markov ARX
models and construction of missing measurements have
been discussed by Chen et al. (2020a) under the VB frame-
work. Similarly, a robust VB approach for SARX models
with a combination of an adjusted-tail t-distribution to
deal with contaminated data with outliers has been pro-
posed by Lu et al. (2016). Furthermore, the application
of a VB approach for Markov SARX models with slowly
varying time delay has been extended to identify the pa-
rameter distributions of submodels besides the transition
probability matrix and unknown delays by Chen and Liu
(2019).

Kernel-based stable spline is another algorithm for non-
parametric models in Bayesian framework. The hybrid sys-
tems in the form of stable spline kernel can be identified by
optimizing marginal likelihood via a stochastic simulation
scheme. Pillonetto (2016) has proposed this approach for
identification of hybrid systems. The two-step kernel-based
stable spline procedure consists of data classification and
distribution in the marginal likelihood optimization by ex-
ploiting the Bayesian interpretation of regularization, and
reconstruction of subsystems. While the performance of
the proposed method has been assessed through a Markov
chain Monet Carlo approach by Pillonetto (2016), the
Gibbs sampling scheme has been employed by Scampicchio
and Pillonetto (2018). Scampicchio et al. (2018) have also
extended it for nonlinear hybrid systems, which is capable
of automatic discrimination among linear and nonlinear
submodels.

In addition, non-parametric representation of hierarchical
PWARX models in the Bayesian framework with respect
to Dirichlet clustering properties provides probabilistic
predictions with confidence intervals, which has been ad-
dressed by Wågberg et al. (2015) within a Gibbs sampling
process. Furthermore, two Rao-Blackwillized sampling al-
gorithms in batch and recursive manners for PWA models



Table 7. Clustering-based approaches.

Method Switching mechanism Hybrid model Reference(s)

Hierarchical clustering Scheduling-variable space PWARX
Song et al. (2020)
Wang et al. (2020)

Bounded-switching clustering Arbitrary
SARX Sefidmazgi et al. (2015)
Switched SS Sefidmazgi et al. (2016)

Semi-supervised clustering Linear classifier PWARX Du et al. (2020)

Unsupervised clustering Arbitrary SARX Sellami et al. (2016)

Enhanced k-means++ Center generator PWARX Hure and Vasak (2017)

Subspace clustering Arbitrary

bi-model PWL Li et al. (2016)
Switched affine Li and Liu (2017)

EIV-SARX
Zhang et al. (2018)
Ozbay et al. (2019)

Switched SS Lopes et al. (2016)

Fuzzy clustering
Linear classifier PWA Takagi-Sugeno Wagner and Kroll (2014)
Linear classifier PWARX Shah and Adhyaru (2014)

Fuzzy PCA-guided clustering Linear classifier PWARX Khanmirza et al. (2016)

Genetic-based clustering Linear classifier PWARX/PWARMAX Barbosa et al. (2019)

Multi-class classification Arbitrary PWARX Jianwang and Ramirez-Mendoza (2020)

Constrained K-means clustering Batch time-based PWARX Liu et al. (2022)

Greedy semi-supervised Linear classifier PWNL Mazzoleni et al. (2021)

represented in a Bayesian setting have been addressed
by Piga et al. (2020a). The parameters of regressor-space
partition formulated based on marginal posterior are ap-
proximated via Markov chain Monte Carlo sampling for
offline learning and particle filters for online learning in
batch and recursive ways. The identification problem of
SBJ models has been tackled by Breschi et al. (2019); Piga
et al. (2020b) using a maximum-a-posterior estimation
approach. Embedding the prediction error algorithm in
the likelihood framework tailored by stochastic Markov
chains within a coordinate ascent method enables the
identification procedure to iteratively and computationally
effective (due to a suboptimal moving-horizon approach)
alternate between local parameter identification and mode
sequence reconstruction.

3.4 Other methods

Algebraic methods: Recent trends show a combination
of algebraic methods with clustering (e.g. subspace cluster-
ing) and optimization-based algorithms. The set member-
ship identification problem has been addressed for SARX
models with prior information on the number of submodels
by Ozay et al. (2015), using an algebraic procedure and
combining it with a polynomial function of the unknown
noise to recast the problem into constrained rank min-
imization form, which is a convex optimization problem.
Likewise, matrix rank minimization along with an iterative
partial matrix shrinkage algorithm has been presented by
Konishi (2015) for identification of SRAX models. Hojja-
tinia et al. (2020) have proposed a similar approach but
for cases with a very large number of samples affected
by large levels of noise for both SARX and SARMAX
models. Similarly, a non-convex optimization problem has
been computational efficiently solved using an algebraic
procedure and a polynomial optimization approach with
sparse reformulation of the problem to jointly identify a
kernel-based mapping and the corresponding continuous-
state evolution of Wiener SARX models by Zhang et al.
(2016).

Furthermore, an iterative algebraic geometric approach
has been proposed by Nazari et al. (2016), which is built
upon stochastic hybrid decoupling polynomial construc-
tion and it is shown that the problem of the linear re-

gression can be transferred into stochastic hybrid decou-
pling polynomial. An algebraic procedure by constructing
Hankel-like matrices and performing singular value de-
composition of the Hankel matrices results in parameter
estimates, which has been discussed by Sarkar et al. (2019)
for switched state-space models.

Outer Bounding Ellipsoid (OBE) methods: OBE
type algorithms are set membership real-time identi-
fication algorithms under assumption of unknown-but-
bounded noises or disturbances. The OBE algorithm has
been presented for SARX models by Goudjil et al. (2016)
PWARX models by Yahya et al. (2020), and SOE models
by Goudjil et al. (2017b).A two-step algorithm that pro-
posed by Du et al. (2018) for SRAX models is another
method similar to OBE. Data assignment is carried out
based on incorporating both the residual error and an
upper bound of the subsystem estimation error, which is
followed by a randomized algorithm to update simultane-
ously the parameters of the submodels.

Continuous-time identification methods: The liter-
ature reviewed above is for hybrid systems represented
in discretized form, while there can be found some lit-
erature on continuous-time hybrid system identification
methods. The concurrent learning technique, which has
been developed in a recursive manner for PWA state space
models by Kersting and Buss (2017), has been proposed
to identify online continuous-time system dynamics, using
the recorded and current data concurrently for adaption.

Due to necessity of state derivatives for the concurrent
learning technique, extended integral concurrent learning
identifier has been presented by Du et al. (2021a). The two-
stage online identification of switched state space models
consists of recognition of the active modes based on the
projection matrix inspired by a recursive projection sub-
space method followed by an integral concurrent learn-
ing technique for identification of the system dynamics.
Likewise, using an integral concurrent learning method
for continuous-time PWA state space models has been
addressed by Du et al. (2021b). Polyhedral regions are
estimated by solving an optimization problem based on
the parameter identification and mode recognition steps.



Table 8. Likelihood-based approaches.

Method Switching mechanism Hybrid model Reference(s)

Expectation-Maximization
Linear classifier PWA-SS Rui et al. (2016)
Markov SARX Fan et al. (2017)
Markov Delay-SARX Chen et al. (2020b)

Variational Bayesian

Markov Hamm-SARX Ma et al. (2019)
Arbitrary SFIR Liu et al. (2021)
Markov SARX Chen et al. (2020a)
Markov Delay-SARX Chen and Liu (2019)

Kernel-based
stable spline

Linear classifier PWFIR/PWARX Pillonetto (2016)
Linear classifier PWFIR/PWARX Scampicchio and Pillonetto (2018)
Arbitrary Nonlinear dynamics Scampicchio et al. (2018)

Bayesian Dirichlet PWARX Wågberg et al. (2015)

Maximum-a-posterori
Linear classifier PWA Piga et al. (2020a)

Markov SBJ
Piga et al. (2020b)
Breschi et al. (2019)

A continuous-time identification method has been pro-
posed by Goudjil et al. (2020) in which consistent sub-
model outputs are constructed based on a sum of si-
nusoids as an appropriate input signal and then pa-
rameter vector estimation is carried out by conventional
continuous-time identification methods under assumption
of a given number of submodels. Furthermore, Keshvari-
Khor et al. (2018) have proposed an identification method
for continuous-time switched state space models. The ad-
vantage of this approach is detection of switching time
between two sampling instants even with low-rate sampled
data.

Neural network (NN) methods: Due to the capabil-
ity of NNs to represent nonlinear systems in a simpler
structure with precision in approximation, Yang et al.
(2017) have proposed a way to use and train NNs in
modeling of nonlinear ARMA models in the form of hybrid
systems, which is called multiple NARMA-L2 model. In
addition, Brusaferri et al. (2020) have proposed Mixture
of Expert (MoE) NN architecture that can represent the
feature of hybrid systems in a NN structure for one-step-
ahead identification of SARX models. MoE layer along
with a gated recurrent units with softmax output plays a
role as neural switching machine, while feed-forward NNs
have been chosen as a structure to represent continuous
dynamics. Moreover, a method to decompose an NN into a
PWA model by using weight pruning to reduce the number
of linear classifier has been discussed by Robinson (2021).

3.5 Research trends in methods

Recently, heuristic approaches combine different methods.
For instance, Mejari et al. (2020b) have discussed a re-
cursive manner of the least squares method with bias
correction to deal with unknown noises based on the clus-
tering method. However, this online method estimates the
submodel parameters and the switching signal as well as
unknown noise variance with high accuracy, but clustering
leads to misclassification that should be dealt with. Wang
et al. (2020) have also addressed weighted least squares
method, but with improvement on accuracy of clustering
by introducing gap metric to find similar measurement and
minimize the number of the submodels. Moreover, a com-
bination of cluster-based algorithm and self-training SVM
algorithm has been proposed by Du et al. (2020). In this
method, the clustering outputs initialize the modified SVM

algorithm that reduces the computational complexity and
increases the precision of partitioning. Furthermore, using
algebraic procedure as a starting point and combing it
with a polynomial optimization is another example of a
heuristic combined method to address high dimensional
dataset affected by large level of noise by Hojjatinia et al.
(2020).

Generalization is the other important trend. Using a
maximum-a-posteriori algorithm by Piga et al. (2020b) in
a general way in terms of fitting SBJ models with time
varying coefficients and equivalent state space models is a
pioneer, and relaxation of user-dependent regularization of
hyperparameters and the derivation of confidence intervals
are for further extension and generalization. Similarly, the
proposed method by Piga et al. (2020a) has been derived
for PWA models, and it can be extended for polynomial
nonlinear models in this trend. The priority of these papers
is using a maximum-a-posteriori method that also obtains
the distribution of the model parameters and the predicted
output.

Moreover, VB methods have drawn attention since they
also provide the distribution of the parameters and solve
the optimization problem effectively. With less generality
but taking missing measurements and delays into account
for two simple model classes, i.e. SFIR and SARX, Liu
et al. (2021) and Chen and Liu (2019) have discussed the
application of VB methods, which should be extended for
other types of hybrid systems to complete this chain of
trends.

4. CONCLUSIONS

As discussed, hybrid system identification is an active
research field, and it can be used for a wide range of
real-world applications for modeling and control. In this
survey a systematic review on models and methods has
been proposed to show the state-of-the-art in hybrid sys-
tem identification. Current and future research directions
include the following objectives to:

• increase and generalize model complexity in terms
of parameterization and find a method to solve its
identification problem in a computationally efficient
way,



Table 9. Other approaches.

Method category Hybrid model Algorithm Reference(s)

Algebraic

SARX
Set membership Ozay et al. (2015)
Matrix rank minimization with partial matrix shrinkage Konishi (2015)
Geometric approach with stochastic hybrid decoupling polynomial Nazari et al. (2016)

SARX/SARMAX Veronese-map-embedded GPCA with polynomial optimization Hojjatinia et al. (2020)
Wiener SARX Kernel-based mapping with polynomial optimization Zhang et al. (2016)
Switched SS SVD based on Hankel-like matrices Sarkar et al. (2019)

OBE
SARX

Real-time set membership algorithm
based on unknown-but-bounded noises

Goudjil et al. (2016)
PWARX Yahya et al. (2020)
SOE Goudjil et al. (2017b)

Continuous-time

PWA-SS
Concurrent learning Kersting and Buss (2017)
Integral concurrent learning Du et al. (2021b)

Switched SS Integral concurrent learning Du et al. (2021a)
Continuous input-output Conventional continuous-time identification Goudjil et al. (2020)
Switched SS Conversion of discrete-time to continuous-time Keshvari-Khor et al. (2018)

NN
Multiple NARMA-L2 One-step-ahead Yang et al. (2017)
SARX Mixture of expert with softmax output Brusaferri et al. (2020)
PWA Neural network decomposition Robinson (2021)

• extend the probabilistic model parameterization for
other classes of hybrid systems and find a solving
algorithm for it,

• parameterize the switching domain in a nonlinear
form,

• take practical problems such as delay and missing
measurement into account for other types of hybrid
systems,

• solve the mis-classification problem with innovative
clustering approaches, and

• explore nonlinear hybrid system identification to in-
crease accuracy, while decrease the number of modes
for nonlinear processes with a wide range of opera-
tion.

In summary, this survey has highlighted that the method-
ological focus has slightly changed from the use of innova-
tive optimization and novel clustering approaches towards
problem generalization, multi-method combination, and
the use of novel probabilistic methods. Moreover, other im-
portant issues related to hybrid system identification such
as experiment design and identifiability can be reviewed
in future research.
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