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Abstract: Piecewise-affine (PWA) approximations are widely used among hybrid modeling frameworks
as a way to increase computational efficiency in nonlinear control and optimization problems. A variety
of approaches to construct PWA approximations have been proposed, most of which are tailored to
specific application areas by using some prior knowledge of the system in their assumptions and/or
steps. In this paper, a parametric method is proposed to identify PWA approximations of nonlinear
systems, without any prior knowledge of their dynamics or application requirements. The algorithm
defines the regions parametrically using hyperplanes to cut the domain, and increases the number of
regions iteratively until a user-defined error tolerance criterion is met. General remarks are given on the
algorithm’s implementation and a case study is provided to illustrate its application to vehicle dynamics.

Keywords: Hybrid and switched systems modeling, Modeling and control of hybrid systems,
Piecewise-affine systems, Piecewise-affine approximation, Parametric system approximation.

1. INTRODUCTION

The literature on hybrid systems provides analysis and control
synthesis methodology for systems featuring interacting con-
tinuous and discrete dynamics. To do so, a variety of mod-
eling frameworks have been proposed for hybrid systems, as
well as proof of their equivalence (Heemels et al., 2001), such
as PWA, Mixed-Logical-Dynamical (MLD), Max-Min-Plus-
Scaling (MMPS), and linear complementary systems (Lunze
and Lamnabhi-Lagarrigue, 2009). Several of these frameworks
have been extensively studied, including for control (De Schut-
ter et al., 2020) and reachability analysis (Cândido et al.,
2018) of MMPS systems, model predictive control design (Be-
mporad and Morari, 1999) and its explicit solution in some
cases (Oberdieck and Pistikopoulos, 2015) for MLD, as well as
for continuous PWA systems (De Schutter and van den Boom,
2004).

Among all the hybrid modeling frameworks, PWA systems
have received extensive attention due to their simple, yet clear,
formulation of the hybrid nature of the system behavior (i.e. ex-
plicit representation of different dynamics and their activation
criteria). For example, the performance of discrete-time PWA
systems (Ferrari-Trecate et al., 2002), their stability criteria in
presence of uncertainty (Hovd and Olaru, 2018), their periodic
solutions (Sessa et al., 2016), and bifurcation phenomena (Ito
et al., 2016) were analyzed.

The PWA formalism is not only applied in domains where
the hybrid nature of the system is important, but it has also
been extensively utilized in a wide range of problems to in-
crease computational efficiency, such as modeling prostate-
⋆ This research is funded by the Dutch Science Foundation NWO-TTW within
the EVOLVE project (no. 18484). The third author was also partly supported
by the National Key R&D Program of China no.2022YFE0198700, and by the
Natural Science Foundation of China nos. 62150610499, 62073074.

specific antigen levels (Suzuki and Aihara, 2013), water motion
in sewer networks (Joseph-Duran et al., 2014), or cornering
behavior in vehicles (Sun et al., 2020). In some cases, PWA
approximation of a nonlinear model facilitates reduction of the
nonlinear control optimization problem into a mixed-integer
programming one, while still capturing the complexity of the
nonlinear behavior.

There are two main aspects to the problem of finding a PWA
approximation: optimal partitioning of the state space into re-
gions, and finding the optimal affine approximation in each
one. The shape and the number of the regions influence com-
putational complexity, the accuracy, and potential numerical
issues of the final form. A higher number of regions improves
accuracy and reduces the error bound, but leads to computa-
tionally more complex control problems. In addition, the shape
and edge of the regions are of importance as the optimization
problem is most likely to encounter numerical problems, if e.g.
regions have redundant edges or gaps exist between them.

In some applications, a proper partitioning strategy is known
based on heuristics or physics-based knowledge of the sys-
tem (Zheng and Shyrokau, 2019; Jagga et al., 2018). In such
cases, finding local affine approximations is more straight-
forward and can be achieved using least-squares or other re-
gression methods. However, a generic PWA-approximation op-
timization problem is combined, i.e. both regions and local
approximations are decision variables. Some techniques have
been proposed to tackle challenges due to the combined nature
of the problem, like partitioning the domain based on the vari-
ations of the nonlinear function (Azuma et al., 2010), learning-
based PWA system identification using recursive adaptive con-
trol laws (Kersting and Buss, 2019) and online observer-
based identifiers (Du et al., 2021), or clustering approaches,
either based on convex relaxation of sparse optimization prob-



lems (Bako, 2014) or incorporating fuzzy-based outlier rejec-
tion and k-means method (Khanmirza et al., 2016).

To date, many of the developed techniques, either explicitly or
implicitly, limit the application to low dimensions or a bound
on the number of local dynamics/modes (Thuan et al., 2016),
and many require some prior knowledge of the PWA approxi-
mation to be found. e.g. by employing some heuristic clustering
steps (Hartmann et al., 2015). Evidently, the effectiveness of the
method depends upon the application area and its requirements;
the cited papers have successfully found computationally ef-
ficient PWA models for their respective systems. However, to
the best of our knowledge, no method has been proposed that
addresses generic PWA approximation of a system, without
taking specific dimensions, applications, or assumptions into
account.

In this paper, we propose an iterative algorithm to find PWA
approximations of nonlinear systems satisfying a user-defined
error tolerance. Our proposed approach solves combined op-
timization problems in each iteration where parametric hyper-
planes are used to cut the domain into different regions. This
results in parametric definition of regions, which are then di-
rectly optimized as a subset of the decision variables. As the
algorithm assumes no prior knowledge of the system, it can be
implemented for discrete-time and continuous-time dynamics,
as well as event-driven and time-driven dynamics, in a wide
range of application areas. In any case, the algorithm can still
be simplified, curtailed, or easily modified if any information on
the system is available. Details of the algorithm and parametric
region definition are described in Section 2, accompanied by
general remarks on various steps and considerations. The algo-
rithm is then tested using a nonlinear vehicle model as a case
study in Section 3. Finally, concluding remarks and suggestions
for future work are given in Section 4.

2. PWA APPROXIMATION

2.1 Problem Formulation

Consider a given nonlinear system with its dynamics expressed
in the generic form

ṡ = F(s,u),
where s ∈ Rn and u ∈ Rm respectively represent the state and
input vectors and F : Rm+n→Rn is the nonlinear function to be
approximated. Without loss of generality, the augmented state
vector x = [sT uT ]T is used to define F(x) := F(s,u) since the
approximated function will be selected to be affine in both the
state and the input. The augmented domain is assumed to be
bounded and will be defined as dom(F) = D ⊂ Rm+n.

The proposed approach approximates the nonlinear function F
by a PWA function f defined as

x ∈ Cp =⇒ f (x) = fp(x), fp(x) = Apx+Bp, (1)
with p ∈ {1,2, . . . ,P}, where P is the number of regions, each
defined by polytope Cp ⊆ Rm+n with

Cp ̸= /0, (2)
int(Cp)∩ int(Cq) = /0, (3)

P⋃
p=1

Cp = D , (4)

for
∀p,q ∈ {1,2, . . . ,P}, p ̸= q,

to form a partition of D , with int(Cp) denoting the interior of
region Cp. By defining the border hyperplanes Lp,q ⊂ Rm+n−1

as
Lp,q = Cp∩Cq, ∀p,q ∈ {1,2, . . . ,P}, p ̸= q, (5)

the set of border hyperplanes forming boundaries of the region
Cp are represented by the set

Lp = {Lp,q | q ∈ {1,2, . . . ,P}∧q ̸= p}.

For a fixed P, both the regions Cp and the corresponding local
affine approximations fp are obtained by finding the optimal
values of the matrices Ap and Bp, as well as the set Lp so as to
minimize the squared approximation error. This is implemented
by solving the optimization problem

min
Ap∈A , Bp∈B, Lp∈L

∫
D

∥F(x)− f (x)∥2
2

∥F(x)∥2
2 +1

dx,

s.t. (1)− (4),

(6)

where A , B, and L represent the sets containing Ap, Bp,
and Lp, respectively. The term ∥F(x)∥2

2 in the denominator is
introduced such that the cost values represent the relative error
and the added 1 prevents division be very small values where
∥F(x)∥2 ≈ 0.

2.2 Parametric Definition of Regions

Without loss of generality, m+n is assumed to an even 1 number
as m+n = 2d, and the states are paired in couples as (xi,x j) to
form 2-dimensional subspaces. The corresponding pairs (i, j)
are collected in the set Ω and the local domains Di, j ⊂ R2, are
defined as

x ∈D =⇒ [xi x j]
T ∈Di, j, ∀(i, j) ∈Ω.

After pairing the states, the regions are defined by cutting D
perpendicular to the (xi,x j) planes as shown in Fig. 1. Since
the region boundaries are to be optimized, the place of the cuts
needs to be defined parametrically. To do so, two carrier lines
are introduced on opposite sides of Di, j, on which points αi, j
and βi, j can slide. As an example, Fig. 1 shows three points
(in yellow and orange) sliding on the carriers, where the lines
connecting the pairs 2 of (αi, j,βi, j) are used to cut the domain
D perpendicular to Di, j.
Remark 1. Given lα and lβ , the location of the points αi, j and
βi, j on the carriers can be obtained as

xiα = ximin +Xi sin2
φ + lα cosφ ,

x jα = x jmin +Xi sinφ cosφ + lα sinφ ,

xiβ = ximin +Xi sin2
φ + lβ cosφ ,

x jβ = x jmin +Xi sinφ cosφ + lβ sinφ ,

(7)

where the domain parameters X , φ , and xmin associated with the
i and j axes are shown in Fig. 2.

To cover all possible cutting angles, the two cases 3 in Fig. 1
should be investigated separately with different carriers. For a
rectangular Di, j (e.g. due to bound constraints), or a parallel-
ogram, it is convenient to define the carriers for αi, j and βi, j

1 It should be noted that this assumption will not pose any restrictions on the
method since for an odd (m + n) value, the cutting procedure can be easily
implemented on the unpaired single dimension as an axis.
2 The αi, j values should be increasing and the same holds for the βi, j values,
since otherwise the corresponding cuts collide.
3 Requiring two cases stems from the (xi,x j) plane being 2-dimensional.
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Fig. 1. Parametric definition of cutting the domain; two cases
are proposed to cover all the cutting angles within the local
domain.

Fig. 2. A schematic view of the connection among various
domain parameters and their relation to the decision vari-
ables, i.e. domain cuts.

points parallel to one of the diagonals in each case. Neverthe-
less, this concept can be easily extended for applications with
other Di, j forms by circumscribing a parallelogram to Di, j and
defining the carriers parallel to the diagonals for each case. The
numbers of cuts perpendicular to each (xi,x j) plane, is denoted
by nci, j and it is equal to the number of αi, j and βi, j points
sliding on the carriers.

2.3 Approximation Algorithm

As the optimal number of regions is not known a priori, our
proposed algorithm tackles PWA approximation through an
iterative loop given in Algorithm 1. The vector nc contains the
number of cuts nci, j with indices i and j such that (xi,x j) ∈ Ω.
By getting nc as input and solving (6) for a fixed P as

P = ∏
(i, j)∈Ω

(
nci, j +1

)
,

the function reg optimization finds the optimal affine ap-
proximations and their corresponding regions simultaneously.
During each iteration, reg optimization returns both the
minimum objective J∗ and its corresponding optimal decision
variables

ν
∗ = (A ∗, B∗, L ∗) ,

as output. The asterisk indicates the optimal value of the vari-
able, and the border hyperplanes are defined using the position
of the αi, j and βi, j points as

L =
{
(lαk , lβk

) | κ ∈ {1,2, . . . ,d} , k ∈ {1,2, . . . ,(nc)κ
}
}
.

It should be noted that (6) is a nonlinear optimization problem.
Therefore, reg optimization can either use a global search

solver such as genetic algorithm or particle swarm, or gradient-
based approaches with multiple starting points. In both cases,
the best objective value would be the lowest value among the
minima obtained in each trial.

Algorithm 1 Iterative cut-based PWA approximation
cond← true
nc← 01×d
iter← 0
while cond do

iter← iter +1
ncuts← 1d×1×nc + Id×d
for i ∈ {1,2, . . . ,d} do

nin← d-th row of ncuts
[err(i),sol(i)]← reg optimization(nin)

end for
dbest← arg min

i
(err (i))

nc← dbest-th row of ncuts
if min(err)⩽ tolerr then

cond← false
return nc,sol(dbest)

else if ∏
d
q=1 nc(q)⩾ Nregmax then

cond← false
return print(‘Exceeded Nreg’)

else if iter ⩾ itermax then
cond← false
return print(‘Exceeded itermax’)

end if
end while

However, the number of regions may not be sufficient to
approximate the nonlinear function within a particular error
bound. In that case, more cuts should be introduced to partition
D . To do so, the designed loops runs as follows to investigate
different scenarios: in each iteration, reg optimization is
solved for d cases, in which only one element in nc is increased
by 1, and the nc with the lowest objective is selected as the
best cutting strategy for the next iteration. The algorithm stops
when reaching objective values below the error tolerance tolerr.
To avoid an infinite loop, the procedure can also be stopped by
passing maximum bounds on the number of iterations or the
number of regions.

Example. For D ⊂ R4, d = 2, and Ω = {(1,2),(3,4)}, the
algorithm starts by setting nc = [0 0], which means no cutting.
In the first iteration, reg optimization is called twice, find-
ing the best approximations for nc = [1 0] and nc = [0 1] which
correspond respectively to making only one cut perpendicular
to D1,2, and only one cut perpendicular to D3,4. If nc = [1 0]
gives a lower objective, but fails to satisfy the error tolerance,
the next iteration starts with nc = [1 0], and two cases nc = [2 0]
and nc = [1 1] are investigated. In other words, if one cut on
D1,2 is considered a successful cutting strategy, the next step is
to improve the result by adding more cuts to it as a baseline.

2.4 General Remarks

The power of Algorithm 1 stems from neither posing limits on
system dimensions nor assuming a required number of regions.
Moreover, as the approximation problem (6) can be solved by
gridding the domain, our proposed method can also be applied
in cases where the analytical form of the nonlinear model is not
available. For instance, training measurement data sets can also



be used to find a fitted PWA approximation using Algorithm 1.
In addition, some general notes should be made:

• PWA approximation of F : Rm+n → Rn is done by run-
ning Algorithm 1 independently for each of the n states.
This leads to the cuts and subsequently regions that are
independently defined and evaluated for each component
of ṡ. If this is not convenient for certain applications and it
is desired to have the same regions for all the elements of
ṡ, Algorithm 1 can be used in the same fashion or modified
by changing the objective in (6) as

min
Ap∈A , Bp∈B, Lp∈L

∫
D

∥W (F(x)− f (x))∥2
2 +1

∥F(x)∥2
2

dx,

s.t. (1)− (4),

where W is a weight matrix.
• Implementing the proposed approach is completed by run-

ning Algorithm 1 for cases 1 and 2 in parallel and choos-
ing the best result. However, one of the two cases may
always be showing better results from the first iteration.
To avoid unnecessary computation in such instances, the
cases can be tested and compared by running the first iter-
ation of Algorithm 1, identifying the better case (i.e. with
a lower objective), and then implementing Algorithm 1
only for that case.
• Pairing the states as Ω can be done arbitrarily. Prior

knowledge of the system and/or its application may sug-
gest that specific states should be paired. Nevertheless, the
pairing can be also done by testing different combinations
of Ω through one iteration, as was proposed for evaluating
cases 1 and 2.
• The proposed algorithm assumes the domains (D and sub-

sequently Di, j) to be bounded. In case of an unbounded
domain, a subset of the regions Cp need to be defined
unbounded as well. This will not affect the decision vari-
ables in (6) as the cutting places are optimized, not the
regions’ boundaries. However, the objective in (6) ap-
proaches infinity across an unbounded domain. To avoid
this, a sufficiently large bounded subset of the unbounded
domain D can be used to find the PWA approximation
using our algorithm. The result can then be directly used
to approximate the behavior in the original domain.
• The matrix form of the border hyperplanes obtained from

(5) can be constructed by extending the definition of the
cuts. Using (7), a cut L is defined by

L := x j =

(
x jα − x jβ

xiα − xiβ

)
xi +

(
x jα − xiα

x jα − x jβ

xiα − xiβ

)
.

As each pair of cuts from different Di, j are perpendicular,
the resulting cutting hyperplanes in D can be directly
combined in a generic matrix form

Lp,q := Hx+h = 0.

3. CASE STUDY: VEHICLE DYNAMICS

In this section, Algorithm 1 is used to find a PWA approxi-
mation of a nonlinear model of vehicle dynamics, integrating
the coupled longitudinal and lateral dynamics in a single-track
configuration, and considering linear tire forces. The model and
implementation of the proposed approach are explained in the
following sections.

3.1 Nonlinear Vehicle Model

A single-track representation of the vehicle is shown in Fig. 3.
With the system variables and parameters respectively defined
in Tables 1 and 2, the nonlinear vehicle model is described by
the following equations:

v̇x =
1
m

[
Fxf cosδ −Fyf sinδ +Fxr

]
+ vyr, (8)

v̇y =
1
m

[
Fxf sinδ +Fyf cosδ +Fyr

]
− vxr, (9)

ṙ =
1
Izz

[
Fxf sinδ lf +Fyf cosδ lf−Fyr lr

]
, (10)

and the lateral forces are given by the linear tire model

Fyf =Cαf αf, Fyr =Cαr αr,

where the slip angles are obtained by

αf = δ − tan−1
(

vy + lfr
vx

)
, αr = tan−1

(
vy− lrr

vx

)
.

αf δ

αr
r = ·ψ

ψ
Fyr

Fxr

Fyf
Fxf

vy

vx

lf
lr L

x

y

vf

vr

YGlobal

XGlobal

CoG

Fig. 3. Configuration of the single-track vehicle model

Table 1. System Variables

Var. Definition Unit
vx Longitudinal velocity m/s
vy Lateral velocity m/s
ψ Yaw angle rad
r Yaw rate rad/s
δ Steering angle (road) rad

Fxf Longitudinal force on the front axis N
Fxr Longitudinal force on the rear axis N
Fyf Lateral force on the front axis N
Fyr Lateral force on the rear axis N
Fzf Normal load on the front axis N
Fzr Normal load on the rear axis N
αf Front slip angle rad
αr Rear slip angle rad

Table 2. System Parameters

Par. Definition Value Unit
m Vehicle mass 1970 kg
Izz Inertia moment about z-axis 3498 kg/m2

lf CoG∗ to front axis distance 1.4778 m
lr CoG to rear axis distance 1.4102 m

Cαf Front cornering stiffness 126784 N
Cαr Front cornering stiffness 213983 N
∗Center of Gravity



3.2 Implementation and Results

Considering system dynamics in (8) to (10), Algorithm 1 is
used to find PWA approximation of v̇x, v̇y, and ṙ independently.
MATLAB’s Optimization toolbox is used to implement the
algorithm using lsqnonline for 10 starting points. The system
is simulated during an evasive double lane-change maneuver
and the axes corresponding to the augmented state vector x =

[vx vy r Fxf Fxr δ ]
T are paired as

Ω = {(vx,r),(vy,δ ),(Fxf,Fxr)},
which results from our physics-based knowledge of the system
states, their dimensions, and their order of magnitude. Compar-
ing the first iterations of cases 1 and 2 showed that case 2 gives
lower objectives when cutting D perpendicular to Dvx,r and
Dvy,δ , while case 1 is the better one to define cuts on DFxf,Fxr .

The solution time depends on the number of regions due to
an subsequent increase in the number of decision variables.
The algorithm was run for different error tolerances using
the DelftBlue supercomputer, at the Delft High Performance
Computing Centre (DHPC) with every iteration for the number
of regions between 2 to 10 taking on average 435 minutes.

The approximations obtained for tolerr values in Table 3 using
our proposed cut-based algorithm (CB), and the Lebesgue PWA
approximation (LB) approach proposed by Azuma et al. (2010),
have been compared with the nonlinear system for the open-
loop system simulation in Fig. 4. In the LB approach, the
domain is partitioned perpendicular to each axis and based
on variation of the nonlinear function’s gradient; this results
in hypercubic regions. However, the CB approach cuts the
domain perpendicular to 2-dimensional subspaces which leads
to polytopic regions. The same tolerances were selected for
both algorithms for fair comparison, and they converged to the
number cuts nc defined as

nc =
[
nc(vx ,r)

, nc(vy,δ )
, nc(Fxf ,Fxr)

]
.

The total number of regions N is listed as well in Table 3.
Fig. 4 shows that the CB approach provides a more accurate
approximation of the model, and its good performance is better
seen in v̇x which has a higher degree of nonlinearity where
CB gives a better approximation while introducing a smaller
number of regions.

Table 3. The number of cuts at convergence for
case study instances with different error tolerance

values

Instance v̇x v̇y ṙ
tolerr 0.30 0.10 0.05

PWA−LB nc [1,3,0] [0,0,0] [0,0,0]
N 8 1 1

PWA−CB nc [0,3,0] [1,0,0] [1,0,0]
N 4 2 2

4. CONCLUSIONS

In this paper, an iterative algorithm for PWA approximation
of nonlinear systems was proposed assuming no prior knowl-
edge of the application area. By using a cut-based parametric
definition of the regions in the optimization problem, the algo-
rithm aims at finding an optimal partitioning of the domain into
polytopic regions and the corresponding local affine approxi-
mations, simultaneously. This combined optimization problem

Fig. 4. Open-loop simulation of an evasive double lane-change
maneuver using nonlinear vehicle model and two PWA
approximations: LB and CB approaches

is solved in each iteration for several cases of adding new cuts
whereas the number of cuts is increased in each iteration until
a user-specified error tolerance is reached. The algorithm is im-
plemented on a nonlinear vehicle model as a case study where
different error tolerances were selected for each state and the re-
sults were compared to another PWA approximation approach
from the literature, where similar to our proposed algorithm,
the regions are included parametrically in the decision variables
of the combined optimization problem. The comparison shows
that our approach gives more a accurate approximation of the
nonlinear system, in some cases with fewer number of regions.

In future work, the current algorithm can be improved along
two lines. First, the iteration law can be enhanced for faster con-
vergence to the optimal number of regions while avoiding intro-
duction of extra and/or redundant cuts. For instance, instead of
increasing the number of cuts in each iteration by one, more
cuts can be introduced based on the difference of the objective
functions between the last two iterations. Second, adjustments
or additions to the algorithm structure can be introduced for
applications where discontinuity is problematic, to either avoid
discontinuity on the region borders in the obtained PWA ap-
proximation, or to circumvent its undesired consequences (e.g.
in switching analysis or control synthesis) by defining auxiliary
affine dynamics or switching rules along the borders. Moreover,
on the application level we aim at investigating the performance
of our proposed approximation method on a wider variety of
test cases, i.e. driving scenarios.
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