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Abstract: In a dynamic network of interconnected transfer functions, it is not necessary to
use all the node signals for estimating a local transfer function. Given the network topology,
detailed conditions are available for selecting inputs and outputs in a (MIMO) predictor model
that warrants consistent and minimum variance estimation of a target module through the so-
called local direct method. Motivated by the existing minimum-input signal selection approach
that gradually incorporates additional signals, an alternative graphical algorithm for signal
selection is developed in this work by directly exploiting the complete network graph. Then, as
a straightforward application of existing analytical results, graphical conditions for consistent
identification are derived for the novel signal selection approach. We show by an example that
in some cases, for the consistent estimation of the target module, the developed method leads
to fewer selected signals than the original minimum-input method.

Keywords: System identification, identifiability, dynamic networks, interconnected systems.

1. INTRODUCTION

In this paper, we consider a particular class of linear
dynamic networks, where vertices represent measurable in-
ternal signals, and directed edges denote transfer functions
referred to as modules (Gonçalves and Warnick, 2008;
Materassi and Innocenti, 2010; Van den Hof et al., 2013).
This model class is a natural extension of the multiple-
input-multiple-output (MIMO) model settings and is use-
ful for characterizing the causal relations among the mea-
sured signals. Note that there are also alternative model
classes of network models (Yu and Verhaegen, 2018).

Various problems related to data-driven modeling of
dynamic networks have been addressed, e.g., network
topology estimation (Zorzi, 2022), identifiability analysis
(Weerts et al., 2018; Hendrickx et al., 2019; Shi et al.,
2023), and the identification of a local module (Dankers
et al., 2016; Ramaswamy and Van den Hof, 2021). We will
consider the last problem in this paper.

To identify a single module given the topological informa-
tion of a dynamic network, it is not necessary to estimate
the complete network or to use all the available signals.
The major question is how to select relevant signals and a
corresponding subsystem that contains the target module,

⋆ This project has received funding from the European Research
Council (ERC), Advanced Research Grants SYSDYNET and CLar-
iNet, under the European Union’s Horizon 2020 research and innova-
tion programme (grant agreement No. 694504 and No. 101018826).

such that the subsystem together with target module can
be estimated successfully, i.e., typically in the sense of
statistical consistency. By exploiting the network topol-
ogy, the conditions for selecting the signals are typically
formulated as graphical conditions (Dankers et al., 2016;
Ramaswamy and Van den Hof, 2021).

One option is to estimate the multiple-input-single-output
(MISO) subsystem that contains the target module, as in
Van den Hof et al. (2013); Gevers et al. (2018). An impor-
tant step has been made in Dankers et al. (2016), which
shows that instead of using all the inputs of the MISO
subsystem, there is freedom for signal selection according
to certain graphical criterion. This signal selection scheme
has motivated several extensions to incorporate extra free-
dom for signal selection (Linder and Enqvist, 2017; Weerts
et al., 2020). In contrast to the above works, a different
perspective for signal selection has been developed in Ja-
handari and Materassi (2022), motivated by probabilistic
graphical models (Koller and Friedman, 2009).

The above MISO approaches require restricted assump-
tions on the network, e.g., uncorrelated disturbances in
the network, and thus in more general settings, it may
be necessary to select an appropriate MIMO subsystem
instead for estimating the target module (Ramaswamy and
Van den Hof, 2021). In this setting, consistency of single
module estimates typically requires a predictor model that
is the result of handling four types of conditions: (a)
a module invariance condition that requires the target



module to remain invariant upon elimination (immersing)
of irrelevant node signals; (b) appropriately dealing with
confounding variables, i.e. correlated disturbances on pre-
dictor inputs and outputs; (c) the presence of delays in
selected loops in the network, and (d) data-informativity,
i.e. sufficient excitation of the predictor model inputs.
Based on these conditions, several signal selection algo-
rithms have been developed in (Ramaswamy and Van den
Hof, 2021) to formulate a MIMO predictor model. These
approaches are bottom-up procedures, which start from a
small set of signals around the target module and then
gradually expand it toward the final predictor model.

In this work, building on the basic idea of the minimum-
input approach from (Ramaswamy and Van den Hof,
2021), we develop an alternative graphical approach
for selecting signals to form a MIMO predictor model.
For the resulting identification problem in a prediction-
error framework (Ljung, 1999), graphical conditions are
straightforwardly derived to ensure the consistent identifi-
cation of a target module, by exploiting existing analytical
tools. An example study shows that in some situations, the
developed approach requires fewer signals than the original
minimum-input approach.

2. DYNAMIC NETWORKS

A dynamic network model describes the causal relation-
ships among measured internal signals w(t) ∈ RL, mea-
sured excitation signals r(t) ∈ RK , and unmeasured white
noises e(t) ∈ RP , with K, P ⩽ L (Van den Hof et al.,
2013). It is formulated as

w(t) = G(q)w(t) +R0r(t) +H(q)e(t), (1)

where q−1 is the delay operator, i.e. q−1w(t) = w(t −
1); G(q), H(q) are matrices of unknown rational transfer
operators; R0 is known and contains a subset of columns
from an identity matrix. The matrix G(q) has zeros on its
main diagonal. The dependencies of transfer operators on
q and signals on t will be omitted for simplicity of notation.
In addition, the r and e signals are called external signals,
and the entries in G are called modules. Throughout this
work, we assume that e is a white noise vector; r is
persistently exciting and is uncorrelated with e.

In the identification setting, the network model (1) is
assumed to satisfy standard assumptions in the literature,
i.e., no algebraic loop 1 , G and H are proper and stable,
the network is well-posed (Shi et al., 2022, Assumption 1).
Following Ramaswamy and Van den Hof (2021), we also
assume that the covariance matrix of e is diagonal 2 . Note
that the noise model H can have more rows than columns,
which is more general than the square noise model in
(Ramaswamy and Van den Hof, 2021).

We assume to know the structural information of (1),
i.e., the fixed zeros in G, R0, and H. This information
is encoded by a directed graph G = (V, E), where V
is a set of vertices that representing the (internal and
external) signals, and E ⊆ V × V is the set of directed
edges representing the non-zero entries in the matrices,
e.g., Gji ̸≡ 0 iff the directed edge from wi to wj is in E .
1 This means that every directed cycle in the network has a delay.
2 This assumption can be made without loss of generality when H
can be non-monic (Youla, 1961, Theorem 2).

Given measured r and w, our goal is to estimate target
module Gji, with input wi and output wj , consistently
using the local direct approach (Ramaswamy and Van den
Hof, 2021) of the prediction-error method (PEM) (Ljung,
1999).

3. PRELIMINARIES: SUB-PROBLEMS IN LOCAL
MODULE IDENTIFICATION

In this section, we discuss several sub-problems for local
module identification. The solutions to these sub-problems
will be presented in the next section.

3.1 Network immersion

To identify a single module, it is not necessary to exploit
the original network model (1). We can first eliminate
some irrelevant signals to obtain a new network, based on
which signals or subsystems can be selected for the actual
identification. This signal elimination procedure is called
network immersion (Dankers et al., 2016).

Given a subset S of selected internal signals and after
eliminating the others in (1), a new network model can
be obtained:

wS = ḠwS + R̄r + H̄ē, (2)

where only the subvector wS of w remains, and the model
and its sparsity pattern change after immersion. Note that
R̄may contain zeros, ones and unknown transfer functions.
Moreover, in order to obtain a noise model H̄ suitable for
identification, new noises sources in ē are introduced by
spectral factorization. The detailed elimination procedure
can be found in (Dankers et al., 2016). Note that (1) is the
special case of (2) with wS = w.

To obtain a useful immersed network for identifying Gji,
one important criterion is to select S such that the target
module Gji remains invariant in (2). Then it is natural
to estimate this module by exploiting the new model (2)
instead. A graphical condition was developed for module
invariance in Dankers et al. (2016) and can be equivalently
stated as follows:

Lemma 1. (Shi et al. (2022)). In G, if {wj , wi} ⊆ S, and
if S \{wi, wj} is a disconnecting set 3 from wi to the other
inputs of wj , then Gji is invariant in (2).

Another important problem is to obtain the graphical rep-
resentation GS of the resulting immersed network model
(2) from the original network graph G.
Definition 2. In G, given any non-empty subset S of inter-
nal signals, and let set X contain all the external signals.
Then a directed path from S ∪ X to S is called an un-
measured path (with respect to S) if it has at least one
edge and its internal vertices 4 do not belong to S.

Then the structural information of Ḡ and R̄ in (2) can be
obtained from the original graph G as a direct consequence
of (Dankers et al., 2016, Algorithm 3).

3 A set D of vertices is a disconnecting set from vertex set V1 to set
V2 if when the vertices in D are removed, there is no directed path
from V1 to V2.
4 Internal vertices of a directed path/cycle are the ones excluding
the starting and ending vertices.
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Corollary 3. Let GS denote the graph of (2) and set R
contain all excitation signals. Then in GS , any vertex vi in
S ∪R has a directed edge to a distinct vertex wk ∈ S if in
G, vi has an unmeasured path to wk with respect to S.

However, due to the spectral factorization, it is not clear
how to obtain the sparsity pattern of the noise model H̄ in
(2) from the graph G. This sub-problem will be addressed
in this work.

Sub-Problem 1. Obtain the sparsity pattern of the noise
model H̄ in (2) from the original network graph G.

3.2 Selecting subsystem for confounding noises

Given an immersed network (2) that contains the target
module and given its structural information, the next
issue is to select an appropriate subsystem that contains
the module of interest. Then the consistent estimation
of this subsystem can lead to the consistent estimation
of the target module. Note that selecting a subsystem is
equivalent to selecting its output internal signals (and the
corresponding input signals).

Recall wj is the output of the target module Gji, and
consider any subvector wY of wS that contains wj . Then
the rows in (2) corresponding to wY lead to subsystem

wY = ḠYDwD + R̄YKrK + R̄0
YPrP + H̄YU ēU , (3)

where wD, ēU are subvectors of wS and ē that affect wY via
non-zero columns in (2), and the submatrices are defined
according to these signals. rK is a subvector of r and
corresponds to the unknown columns in R̄; rP corresponds
to the known non-zero columns in R̄ (Ramaswamy, 2022).

The main differences between (3) and a standard MIMO
system are (i) wD and wY may have common signals and
(ii) wY can be correlated with the signals in wD due to
noises in the network. Therefore, to consistently estimate
(3) using the direct method, one sufficient condition is to
ensure that there is no noise affecting both the output wY
and the inputs in wD that are not in wY ; otherwise, these
so-called confounding noises lead to correlation between
inputs and outputs and therefore a lack of consistency
(Dankers et al., 2016).

Sub-Problem 2. Select a subset Y of internal signals, such
that the MIMO subsystem with outputs in Y contains Gji

and does not suffer from confounding noises.

Three signal selection algorithms have been developed in
Ramaswamy and Van den Hof (2021) to address the above
sub-problem. This work is inspired by the basic idea in
the so-called minimum-input approach there: If a signal
wk in wD is correlated with an output signal in wY , then
wk is taken to be an output to expand wY . Based on
this idea, we develop an alternative approach for signal
selection, together with completely graphical conditions
for consistent estimation. The benefit of the developed
approach will be illustrated in Example 2.

3.3 Data informativity

To consistently estimate a MIMO subsystem of the form
(3) using the direct method, a data informativity condition
is essential. Similar to the classical informativity condition

in PEM (Ljung, 1999), the existing conditions typically
take the form of rank conditions on signal power spectral
densities (Ramaswamy and Van den Hof, 2021): With an
appropriately chosen subvector wY in (3), the existing
sufficient condition requires

ΦK(ω) ≻ 0 for almost all ω, (4)

where ΦK(ω) is the power spectral density matrix of

K =
[
w⊤

D r⊤K ē⊤U
]⊤

in (3). It is possible to reformulate the
above condition into a graphical condition by exploiting
the following result from Van den Hof and Ramaswamy
(2020):

Lemma 4. Given a network model (1) with a parameter
value θ and a graph G, consider any subvector w̄ of internal
signals, and let Dim(w̄) denote its dimension. If there are
Dim(w̄) vertex disjoint paths 5 from all the external signals
to w̄, then w̄ is persistently exciting for almost all θ.

The above result shows that counting the number of vertex
disjoint paths in the network graph can help us verify
data informativity. The result is generic, i.e., it excludes
some pathological parameter values, and it has been used
to derive a graphical data informativity condition to
ensure (4), under particularly chosen predictor inputs
and outputs (Van den Hof and Ramaswamy, 2020). In
this work, following a similar reasoning, we will derive a
graphical condition to guarantee informativity of the input
signals in the MIMO subsystem, selected by the developed
approach for handling confounding noises.

Sub-Problem 3. Derive a graphical condition on the graph
G such that for the MIMO subsystem (3), its input

signal vector
[
w⊤

D(t) r⊤K(t) e⊤U (t)
]⊤

is persistently exciting
generically, i.e., its spectral density matrix has full rank
for almost all ω.

4. SOLUTIONS FOR THE SUB-PROBLEMS

4.1 Immersed graph for network immersion

We first address Sub-Problem 1 and derive an approach
to obtain the sparsity pattern of the noise model H̄ in the
immersed network. Given a chosen subset S of internal
signals and the graph G of the original network, consider
the resulting immersed network (2). We first partition S
into several subsets as

S = ∪m+1
k=1 Sk, (5)

such that

• in G, for any distinct Si and Sj , there is no noise that
has unmeasured paths to both Si and Sj .

Then the following result holds:

Lemma 5. Given (1) with graph G and any subset S of
internal signals, consider (2). If S is partitioned according
to (5) and let Se

j be the set of white noises in G that have
an unmeasured path to Sj , then (2) can be permuted as

5 Two directed paths are vertex disjoint if they do not share any
vertex, including the starting and ending vertices.
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 wS1

...
wSm+1

 = Ḡ

 wS1

...
wSm+1

+R̄r+


H̄S1B1

0 0

0
. . . 0

0 0 H̄SmBm

0 0 0


 ēB1

...
ēBm

 ,

(6)
where H̄SjBj can be non-square, and |Bj | = min{|Se

j |, |Sj |}.

The above result can be proved by following the reasoning
in (Dankers et al., 2016, Lemma 1) analogously. Lemma 5
shows that by G, the noise model of (2) admits a block
diagonal structural. The last zero block row in the noise
model is to incorporate the internal signals in wSm+1

that are possibly noise-free. Then combining Lemma 5
and Corollary 3 leads to the complete graph GS of the
immersed network.

4.2 Handling confounding noises

With an immersed network model (6) and its structural
information, we then address Sub-Problem 2. Motivated
by the minimum-input approach of (Ramaswamy and
Van den Hof, 2021) as discussed in Section 3.2, we intro-
duce an alternative simple but general approach to select
a subsystem from (6) to avoid confounding noises.

In (6), the noises in ēBj
affect the internal signals in wSj

only. Therefore, if the target module Gji belongs to the
j-th block row of Ḡ, i.e., its output wj is an entry of wSj

,
then we consider the j-th MIMO subsystem only:

wSj = ḠSj :wS + R̄Sj :r + H̄SjBj ēBj , (7)

where ḠSj : denotes the submatrix of Ḡ determined by the

rows corresponding to wSj
, and R̄Sj : is defined similarly.

It is clear that in the above subsystem, there is no
confounding noise: The outputs wSj

are affected by the
noises eBj

only, while eBj
does not affect any input signal

in wS except the ones in output wSj
.

In addition, note that the submatrices ḠSj : and R̄Sj : may
contain zero columns depending on the structure of the
immersed network, and thus we can re-write (7) as

wSj
= ḠSjDwD + R̄SjKrK + R̄0

SjPrP + H̄SjBj
ēBj

, (8)

where we have excluded the zero columns from ḠSj :, R̄Sj :

and their corresponding entries from wS and r. Moreover,
R̄SjK consists of the columns from R̄Sj : that have an

unknown transfer function, while R̄0
SjP contains the non-

zero binary columns and thus is known.

Due to the absence of confounding noises in (8), under
the standard conditions of PEM, i.e., system in the model
set and data informativity, directly estimating (8) using
PEM can lead to a consistent estimate of ḠSjD and thus
of the target module as one of its entries. We formalize
this estimator as follows. Assume that HSjBj

is square,
i.e., when |Se

j | ⩾ |Sj |, and parameterize each non-zero
transfer function in (8) with independent parameters, col-
lecting into a parameter vector θ. Then the one-step ahead
predictor (Ljung, 1999) for the output wSj is formulated
as

ŵSj
(t, θ) = H̄−1

SjBj
(q, θ)[ḠSjD(q, θ)wD + R̄SjK(q, θ)rK

+ R̄0
SjPrP ] + (I − H̄−1

SjBj
(q, θ))wSj

(t), (9)

based on which, the parameter can be estimated (asymp-
totically as data length approaches infinity) as

θ⋆ ≜ argmin
θ

1

2
Ē
[
wSj

(t)− ŵSj
(t, θ)

]⊤[
wSj

(t)− ŵSj
(t, θ)

]
,

(10)

where Ē is the expectation operator for quasi-stationary
signals (Ljung, 1999). This estimator leads to an asymp-
totic estimate ḠSjD(q, θ

⋆), and due to the absence of
confounding noises, the following result can be obtained by
following (Ramaswamy and Van den Hof, 2021, Theorem
2) analogously.

Lemma 6. Given an immersed network model (6) with its
graph GS , consider its j-th MIMO subsystem (8) with
a real parameter value θ0, and suppose |Se

j | ⩾ |Sj |. If
(i) S satisfies the condition in Lemma 1, (ii) the input

signal vector
[
w⊤

D r⊤K e⊤Bj

]⊤
is persistently exciting and

(iii) every directed path in GS from wSj
via wD to wSj

has
a delay, then the parameter estimate θ⋆ from (10) satisfies
Gji(q, θ

⋆) = Gji(q, θ0).

In the above result, condition (i) ensures that the target
module is contained in the MIMO subsystem (8). Condi-
tion (ii) follows from the classical informativity condition,
and condition (iii) is a generalization of the classical al-
gebraic loop condition: Every path from an output via
the input to any other output should have a delay. In
addition, |Se

j | ⩾ |Sj | ensures that the noise model H̄SjBj

in (9) is square and monic based on Lemma 5. Under the
above conditions, Lemma 6 shows that we can consistently
estimate the target module Gji.

However, the graphical condition (iii) in Lemma 6 is for-
mulated on the graph GS of the immersed network. We can
take one step further to formulate this condition directly
on the graph G of the original network, by exploiting the
connection between GS and G in Corollary 3.

Corollary 7. Lemma 6 remains to hold if condition (iii) is
replaced by the condition that every directed path in G
from wSj

via wD to wSj
has a delay.

4.3 Graph-based data informativity

The condition (ii) in Lemma 6 for data informativity is
still formulated as a rank condition on the power spectral
density. In this subsection, we will address Sub-Problem 3
and formulate this condition into a more explicit graphical
condition on the graph G of the original network.

For the data informativity of internal signals in dynamical
networks, since they are generated by external signals,
there are also structural aspects in the informativity
conditions, i.e., the questions whether there are a sufficient
number of external signals in the network, and whether
these external signals can reach internal signals of interest
to provide excitation (Shi et al., 2022).

The above structural aspects become clear if we combine
condition (ii) in Lemma 6 and Lemma 4 to obtain a
graphical data informativity condition on the immersed

network: For the input vector K =
[
w⊤

D r⊤K ē⊤Bj

]⊤
, there

are Dim(K) vertex disjoint paths from the external signals
to K. Moreover, since rK and ēBj

are external signals
4



and are already persistently exciting, we can re-write this
graphical condition equivalently by only considering the
internal signals in wD:

Corollary 8. Given the immersed network (6) with graph
GS , consider its MIMO subsystem (8), and let X̄ be the set
of all external signals in GS excluding the ones in rK and

ēBj
. Then the signal vector

[
w⊤

D r⊤K ē⊤Bj

]⊤
is persistently

exciting for almost all θ0 if in GS , there exist Dim(wD)
vertex disjoint paths from X̄ to wD.

The graphical condition in Corollary 8 is formulated on the
immersed graph, where the signals rK and ēBj

are excluded
from establishing the number of vertex disjoint paths. To
further formulate it directly on the graph G of the original
network, the main issue is to determine the signals in rK
and ēBj

by inspecting G.
• In the immersed network, the noises in ēBj are inputs
to wSj . Based on Lemma 5, these noises are generated
by the white noises in Se

j of the original network.

Remark 9. rK and rP can be determined by inspecting G
as follows. In G, each signal in rP should have a directed
edge to some wk in wSj , and all the directed cycles (also
called loops) from wk to wk should have an internal vertex
in S. The above observation can be obtained analogously
to the parallel path and loop condition (Dankers et al.,
2016). Then rK consists of the other excitation signals
that have an unmeasured path to wSj

in G, based on
Corollary 3.

Note that Remark 9 is a special case of (Ramaswamy,
2022, Lemma 4.1) with set B = ∅ (defined there).

The above observations directly lead to the following:

Lemma 10. In G, let set X̃ contain all external signals

excluding the noises in Se
j and rK. Then

[
w⊤

D r⊤K ē⊤Bj

]⊤
in

(8) is persistently exciting for almost all θ0 if in G, there
exist Dim(wD) vertex disjoint paths from X̃ to wD.

5. GRAPHICAL SIGNAL SELECTION FOR SINGLE
MODULE IDENTIFICATION

Selecting appropriate signals for estimating a single target
module Gji involves the combination of the solutions to
all the previous sub-problems. We first summarize them
into the following identification algorithm:

Algorithm 1: given G, target Gji, and data

(a) Select a subset S of internal signals that satis-
fies {wi, wj} ⊆ S and the graphical condition in
Lemma 1;

(b) Select predictor outputs: Partition S according to
(5), and in the partition, let Sj denote the subset
that contains wj . Then select the signals in Sj to be
the predictor outputs, collected into a vector wSj

. In
addition, let set Se

j contain the noises that have an
unmeasured path to wSj

;
(c) Select predictor inputs: In G, determine wD that con-

tains the internal signals in S having an unmeasured
path (with respect to S) to wSj

; rK and rP are
determined graphically according to Remark 9;

(d) Construct a predictor model as in (9), where wSj is
the predictor output, and wD, rK and rP are the
predictor inputs;

(e) Compute a parameter estimate θ⋆ as (10)

In the above algorithm, step (a) selects the remaining
internal signals in S for the immersed network. The final
selected signals for estimation are the ones in wSj

, wD,
rK and rP , which have been obtained in step (b), (c) and
Remark 9 by directly inspecting the graph G.
To ensure the consistent identification of Gji using Algo-
rithm 1, the following conditions should be ensured:

• The target module should be invariant after immer-
sion, i.e., the selected set S satisfies the graphical
condition in Lemma 1

• The relevant signals should be informative

The above conditions can be achieved by combining
Lemma 1, Corollary 7, and Lemma 10, which directly leads
to the final consistency result:

Theorem 11. Given (1) with G, consider Algorithm 1 and

suppose |Se
j | ⩾ |Sj | at step (b). In G, let X̃ be defined as in

Proposition 10. Then if the following conditions hold for
G: (i) S satisfies the graphical condition in Lemma 1, (ii)

there exist Dim(wD) vertex disjoint paths from X̃ to wD,
and (iii) every directed path from wSj via wD to wSj has
a delay, then Gji(q, θ

⋆) = Gji(q, θ0) for almost all θ0.

In the above theorem, condition (i) ensures that the target
module Gji is indeed an entry of the estimated MIMO
subsystem (8). The condition (ii) is a graphical condition
for data informativity from Lemma 10, and condition (iii)
is the condition on the delay from Corollary 7.

Note that all the three conditions in Theorem 11 are
graphical and formulated on the graph G of the origi-
nal graph. This is in contrast to the results in (Dankers
et al., 2016; Ramaswamy and Van den Hof, 2021) where
a non-graphical data informativity condition is enforced.
Compared to the graphical results in Van den Hof and Ra-
maswamy (2020); Van den Hof et al. (2023), our conditions
are developed for the specific signal selection procedure in
Algorithm 1.

Example 1. Consider the network in Fig. 1(a), and our
goal is to identify G31. To apply Algorithm 1, we select the
green vertices in S = {w1, w2, w3}, which clearly satisfies
the condition in Lemma 1. Then we can partition S as
S = {w1} ∪ {w2, w3}, as e4 have unmeasured paths to
both w2 and w3. In this partition, {w2, w3} is the set
Sj in Algorithm 1, i.e., the predictor outputs, and we
have Se

j = {e3, e4}. Correspondingly, w1 and w2 are the
predictor inputs for the outputs in {w2, w3}. Moreover,
new noises ē2 and ē3 are introduced in Fig. 1(b) as in (6).
Note that the informativity condition in Theorem 11 is
also satisfied: In Fig. 1(a), there are two vertex disjoint

paths from X̃ = {r1, r2}, with {e3, e4} excluded, to the
two predictor inputs in {w1, w2}.

As a comparison between Algorithm 1 and the minimum-
input approach for signal selection from Ramaswamy and
Van den Hof (2021), we show that in the following exam-
ple, Algorithm 1 leads to a predictor with fewer signals.
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(a) (b)

Fig. 1. Signal selection for identifying G31 in the original
network, shown in Fig. 1(a). The immersed network
with w4 eliminated is shown in (b), where new noises
ē2 and ē3 are introduced.

Example 2. Given the example in Fig. 2 from Fonken
(2023), the goal is to select signals for identifying G12.
Algorithm 1 leads to a predictor model with w1 and w3

as predictor outputs, and w2 as the predictor input. The
path-based informativity condition is also satisfied by e2.

Fig. 2. A network with three internal signals (Fonken,
2023).

However, the minimum-input algorithm (Ramaswamy and
Van den Hof, 2021; Van den Hof et al., 2023) requires
{w1, w2, w3} as the set of predictor outputs and {w2, w3}
as the set of predictor inputs, see Section 7 of Van den
Hof et al. (2023), while excitation signals would have to
be added to w2 and w3 to achieve data informativity.

6. CONCLUSION

The signal selection problem for identifying a local transfer
function in a linear dynamical network is considered.
Motivated by the existing minimum-input approach, we
have developed an alternative graphical signal selection
approach that can lead to fewer selected signals in some
cases. Graphical conditions for the consistent estimation
have also been derived for the developed approach by
applying existing analytical tools.
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