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Abstract: This paper proposes a method to encourage safety in Model Predictive Control
(MPC)-based Reinforcement Learning (RL) via Gaussian Process (GP) regression. The frame-
work consists of 1) a parametric MPC scheme that is employed as model-based controller with
approximate knowledge on the real system’s dynamics, 2) an episodic RL algorithm tasked with
adjusting the MPC parametrization in order to increase its performance, and 3) GP regressors
used to estimate, directly from data, constraints on the MPC parameters capable of predicting,
up to some probability, whether the parametrization is likely to yield a safe or unsafe policy.
These constraints are then enforced onto the RL updates in an effort to enhance the learning
method with a probabilistic safety mechanism. Compared to other recent publications combining
safe RL with MPC, our method does not require further assumptions on, e.g., the prediction
model in order to retain computational tractability. We illustrate the results of our method in
a numerical example on the control of a quadrotor drone in a safety-critical environment.

Keywords: Learning-based Model Predictive Control, Safe Reinforcement Learning, Gaussian
Processes

1. INTRODUCTION

The modern proliferation of advances in Machine Learning
has led to a growing interest in learning-based control
methodologies that strive to learn different elements of
the controller scheme from data in order to, e.g., reduce
conservativeness and improve closed-loop performance, or
encourage safety and robustness (Brunke et al., 2022).
In particular, Model Predictive Control (MPC) is the
subject of a large amount of the current research in this
field thanks to its wide variety of applications and high
versatility, especially in regard to multivariate and con-
strained systems (Hewing et al., 2020b). While robust and
stochastic MPC schemes allow for a systematic handling
of different sources of uncertainties affecting the MPC
performance, they often follow a strict separation between
the offline design phase and the closed-loop application,
where in most cases the controller remains unresponsive to
changes in, e.g., the system or task. Adaptive and learning-
based methodologies aim at overcoming this paradigm by
automating the controller design and adaptation based on
data collected during operation (Mesbah et al., 2022).

To this end, several tools from ML have been successfully
coupled with MPC in order to enhance its performance
or augment its capabilities. Among all, we can refer to
Gaussian Process (GP) regression, which has been widely
employed to, e.g., automatically learn the unmodeled (of-
ten nonlinear) dynamics in the prediction model (Hewing
et al., 2020a) and to construct provably accurate confi-
dence intervals on predicted trajectories (Koller et al.,
2018); and black-box Bayesian Optimization, which is a

widespread tool for automatic tuning and optimization of
the MPC controller hyperparameters (Piga et al., 2019),
thus relieving some burden on the design phase. Equally
interesting is the combination of MPC with Reinforcement
Learning (RL), another paradigm of ML gaining more and
more attention thanks to its recent developments, in which
an agent learn how to interact with the environment and
take actions so as to maximize/minimize a reward/cost
signal (Sutton and Barto, 2018). The majority of RL algo-
rithms that are nowadays popular in the ML community
are model-free and rely purely on observed state transi-
tions and realizations of stage cost to increase the perfor-
mance of the control policy. Deep Neural Networks (DNN)
are predominantly used as function approximators and,
while they have proven effective, they lack interpretability,
and their behavior is difficult to analyze, certify, and trust
in regard to stability and constraint satisfaction.

Recently, Gros and Zanon (2020) proposed and justified
the use of MPC as the function approximation of the
optimal policy in model-based RL. In such a scheme, the
MPC controller yields the policy and value functions via its
optimization problem, while, at the same time, the learn-
ing algorithm is tasked with adjusting the parametrization
of the controller in an effort to implicitly or explicitly dis-
cover the optimal policy, thus improving closed-loop per-
formance in a data-driven fashion. Via sensitivity analysis
(Büskens and Maurer, 2001), it is possible to apply RL al-
gorithms such as Q-learning and stochastic/deterministic
policy gradient by differentiating the MPC optimization
problem with respect to its parameters and updating these
accordingly. In contrast to DNN-based RL, MPC-based



RL agents can ideally exploit the underlying optimization
problem to provide stability requirements by construction
and guarantee safety, which defines the ability of a control
policy to yield state-action trajectories that do not violate
system constraints. However, even in this novel paradigm,
certificates on safety and stability remain an arduous chal-
lenge. If proper care is not taken, the RL updates can still
potentially jeopardize the MPC scheme by updating its
parameters to an undesirable configuration, resulting in
a controller with unsatisfactory behavior, e.g., that does
violate constraints and hence is unsafe.

In this paper, we propose and explore a learning method in
the context of safe MPC-based RL where the estimation of
the safety set (i.e., the set of MPC parameters that yields a
controller able to attain constraint satisfaction) is carried
out in a data-driven fashion. In particular, we borrow a
technique for estimating unknown constraints from the
fields of constrained Bayesian Optimization (Sorourifar
et al., 2021) and safe exploration (Schreiter et al., 2015),
which offer tools to tackle black-box optimization prob-
lems that are constrained by some unknown functions in
the decision variables. As a consequence, we are able to
learn in a probabilistic way which configurations of the
MPC controller are safe or not directly from data.

The rest of this article is organized as follows. Background
and motivations both for safe RL in combination with
MPC and for unknown constraint modeling via GP are
given in Section 2. The proposed algorithm and details of
its implementation are discussed in Section 3. A numeri-
cal experiment showing the effectiveness of the proposed
method in a safe-critical quadrotor control application is
reported and analyzed in Section 4. Lastly, conclusions
and directions for future research are presented in Section
5. More details on are available in our extended version
(Airaldi et al., 2022).

2. BACKGROUND

2.1 MPC as Function Approximation in Safe RL

As in Sutton and Barto (2018), we describe discrete-
time system dynamics as a Markov Decision Process with
continuous state s ∈ Rns and continuous action a ∈ Rna ,
and state transitions s, a → s+ with the underlying
conditional probability density

P [s+|s, a] : Rns × Rns × Rna → [0, 1]. (1)

Considering a deterministic policy πθ(s) : Rns → Rna

parametrized in θ ∈ Rnθ and resulting in the state
distribution τπθ

. The performance of such policy is defined
as

J(πθ) := Eτπθ

[ ∞∑
k=0

γkL
(
sk, πθ(sk)

)]
, (2)

where sk is the state at time step k, L(s, a) : Rns ×
Rna → R is the stage cost and γ ∈ (0, 1] is the discount
factor. The RL problem is then to find the optimal policy
π⋆
θ as

π⋆
θ = arg min

θ
J(πθ). (3)

While DNNs are possibly the most common choice for
representing such policy, an MPC scheme can be exploited
as function approximation as proposed in Gros and Zanon

(2020). Consider the following MPC problem approximat-
ing the value function Vθ : Rns → R as

Vθ(s) = min
u, x, σ

λθ(x0) +

N−1∑
k=0

γk
(
Lθ(xk, uk) + w⊤σk

)
+ γN

(
V f
θ (xN ) + w⊤

f σN
)

(4a)

s.t. xk+1 = fθ(xk, uk), (4b)

hθ(xk, uk) ≤ σk, (4c)

hfθ(xN ) ≤ σN , (4d)

x0 = s (4e)

where vectors x, u and σ respectively collect states, actions
and slack variables over the horizon N . In (4a), λθ(x0)
is an initial cost term, Lθ(x, u) is the stage cost, and
V f
θ (x) is a terminal cost approximation. fθ(x, u) is the

model approximation, and hθ(x, u), h
f
θ(x) are inequality

constraints. Lastly, w and wf are the weights of the slack
variable in the objective. The value function (4) satisfies
the fundamental equalities of the Bellman equations, so
Qθ(s, a) and πθ(s) can be defined similarly.

Therefore, in RL terms, the MPC parametric scheme acts
as policy provider for the learning agent, whose goal is to
modify the parameters θ of the controller in an effort to
minimize (3). Various forms of RL exist that solve this
problem directly or indirectly via iterative updates

θ ← θ − α∇θ

m∑
k=0

ψ(sk, ak, sk+1, θ), (5)

where α ∈ R+ is the learning rate, m denotes the
number of observations used in the update (i.e., a batch of
observations), and ψ captures the controller’s performance
and varies with the specific RL algorithm.

While in most learning algorithms a safe policy is usually
implicitly achieved at convergence assuming violations are
appropriately penalized, naively performing updates (5)
does not guarantee such property during the learning
process itself. Thus, we would like to restrict the search
of θ to a set S that ensures the safety of the corresponding
parametric policy. More specifically, consider a generic
episodic task of duration T with nc safety-critical con-
straints, gathered as the function h : Rns × Rna → Rnc

(e.g., bounds on the temperature of a chemical reactor,
or obstacles in autonomous navigation). By deploying the
MPC policy πθ to accomplish the task, safety amounts to
satisfying

h
(
xt, πθ(xt)

)
≤ 0, t = 1, . . . , T. (6)

Thus, we can define the safe set S as

S := {θ | (6) holds} , (7)

leading to the following reformulation of (5) as a con-
strained update

min
θ+

1

2
∥θ+ − θ∥22 + α∇θ

m∑
k=0

ψ(sk, ak, sk+1, θ)
⊤
(θ+ − θ)

(8a)

s.t. θ+ ∈ S, (8b)

by then setting θ ← θ⋆+, where θ
⋆
+ is the optimal point

of (8). Nonetheless, the characterization of S is in general
difficult, even more so in the case of function approxima-
tors with vast parametrizations. Fortunately, an MPC ap-
proximator can be leveraged here: as shown in Zanon and



Gros (2021) and further analyzed in terms of feasibility
and stability in Gros and Zanon (2022), a robust MPC
scheme coupled with an online set-membership system
identification approach allows to guarantee that the MPC-
RL algorithm is robustly safe with respect to the estimated
disturbance set throughout the whole training, despite the
fact that the dynamics of the real system are unknown
to the learning agent. However, even though an adaptive
robust scheme is deployed, safety is only guaranteed up to
a probability smaller than one, due to the lack of perfect
knowledge of the underlying system (1). In this context,
safety can be viewed in the light of Bayesian inference,
where it is probabilistically conditioned on our limited
knowledge of the system, i.e., prior information and actual
data, labeled as D, with probability β. Henceforth, we will
refer to safety in probabilistic terms and define SD as

SD := {θ | P [(6)|D] ≥ β} . (9)

A limitation in the approach proposed by Zanon and Gros
(2021) is that, in order to retain computational tractability
in the algorithm, the MPC prediction model fθ has to be
linear and kept fixed during learning. As acknowledged
in the paper (Zanon and Gros, 2021), while linear MPC
applied to nonlinear systems can still be successful, strong
nonlinearities are likely to deteriorate its performance,
compromise safety, and prevent the agent from tuning the
prediction model, which might severely hinder learning
and lead to convergence to suboptimal policies.

In this paper, we propose a method that estimates the
safe set SD directly from episodic data in a way that
bypasses the aforementioned limitation and that conforms
with the probabilistic nature of the issue of safety itself.
As detailed next, we propose to leverage GP regression
tools that deliver surrogate models that are able to provide
uncertainty estimates whether a specific θ belongs to SD or
not. This will then allow us to formulate an RL algorithm
that can learn while being safe, up to some probability.

2.2 Estimation of Unknown Constraints

In essence, the matter of the estimation of set SD in order
to impose safety coincides with estimating whether a given
state-action trajectory, produced by an MPC controller
parametrized in θ, will satisfy constraints h(xt, ut) ≤
0, t = 1, . . . , T , with ut = πθ(xt). However, while on
the one hand the relationship h(x, u) is given by the
task, on the other hand we cannot predict beforehand
whether πθ(x) will yield safe control actions and hence safe
trajectories. Therefore, we introduce the following safety
constraint function z : Rnθ → Rnc

z(θ) = max
t=1,...,T

h
(
xt, πθ(xt)

)
(10)

that directly maps parametrizations to positive values,
in case θ resulted in trajectories with violations, or to
negative values, in case of safe trajectories. Analytically,
this function is unknown to us, but each time a state-
action trajectory for the given task is computed, it can be
evaluated for the current θ. Therefore, by leveraging past
observed data, an approximation of (10) can be learned
and used to predict safety at any previously unobserved
query point θ∗. Thus, we could use this surrogate model
of z(θ) to constrain learning only to those parameters that
are estimated to be safe.

Assumption 1. We assume the trajectory to be dependent
only on θ, and, consequently, that z(θ) wholly captures
safety (i.e., no other factor has an impact).

Remark 1. In general, this is not the case as also the
initial and final conditions of the task, as well as the
initialization of the optimization solver in case of nonlinear
MPC, will affect constraint satisfaction. To mitigate these
dependencies, we assume the episodic task to be repetitive,
e.g., to have the same initial and final conditions, and
the MPC problem to be convex. Analogously, we could
also assume these factors to be readily included into
the MPC parametrization θ so that, in principle, all
parameters affecting safety may be included in z(θ) and
made learnable.

Remark 2. In (10), the maximum over the time horizon T
is taken in order to reduce violations along a trajectory to a
point-wise maximum violation, but this does not invalidate
(9) since z(θ) ≤ 0 ⇔ h

(
xt, πθ(xt)

)
≤ 0, t = 1, . . . , T .

Likewise, functions other than max could be crafted to
quantify safety of a trajectory while still encoding (9).

Unknown constraint estimation has been already tack-
led in literature. In constrained Bayesian Optimization,
Sorourifar et al. (2021) propose a method for black-box
optimization with unknown constraints that can only be
evaluated at specific query points, where GP regression is
exploited to achieve surrogate models of both the objective
and the constraint functions, the latter being then used
to weigh the exploration strategy by the probability of
constraint satisfaction; conversely, Krishnamoorthy and
Doyle (2022) include the GP models as barrier penalty
terms. Safe exploration algorithms also make extensive use
of GPs, either for classification (Schreiter et al., 2015) or in
combination with regularity tools (Turchetta et al., 2019).

In this paper, GPs are used to model the safety-critical
constraints (10) since these processes allow to inherently
address the probabilistic nature of (9). Training data for
the GPs are collected each time the given task is solved,
yielding the tuple ⟨θ, z̃⟩, where θ is the current MPC
parametrization and z̃ is a noisy observation of (10). Ob-
servations are generally regarded as noisy due to, e.g., mea-
surement noise or disturbances in the dynamics. Therefore,
the basic idea is that, given the dataset Dn = {

(
θi, z̃i

)
}ni=1,

one independent GP regressor per constraint is used to
model the corresponding safety constraint function zj , j =
1, . . . , nc. In particular, we assume the function to have
a GP prior with mean µ0 : Rnθ → R and covariance
kernel ν : Rnθ × Rnθ → R. Under the GP prior and
assumed i.i.d. Gaussian noise, observations z̃ij are jointly
Gaussian distributed, so that, at any query point θ∗, the
corresponding constraint violation zj(θ

∗) must be jointly

Gaussian too, i.e., zj(θ
∗) ∼ N

(
µn
j (θ

∗), σn
j
2(θ∗)

)
, where

µn
j (θ

∗) is the estimate mean and σn
j (θ

∗) its uncertainty
(Rasmussen and Williams, 2005, Algorithm 2.1). In this
context, (9) can be approximated from data as

SDn
= {θ | P [zj(θ) ≤ 0|Dn] ≥ β, j = 1, . . . , nc} , (11)

where zj is represented by a GP trained on data in Dn.

In the next section, we illustrate how to combine MPC-
based RL with GP constraint modeling into a safety-aware
algorithm.



3. DATA-DRIVEN SAFE MPC-BASED RL

Algorithm 1 illustrates the procedure to promote safety,
up to some probability β, upon an MPC-based RL agent.
Starting from an initial parametrization of the MPC con-
troller and a (possibly empty) dataset of initial observa-
tions, experiment i is carried out by completing the given
task with an MPC scheme parametrized in θi. At the
end of such experiment, the full state-action trajectory
can be collected and the maximum constraint violation
z̃i computed. Thanks to the collected data, constraints
zj(θ), j = 1, . . . , nc are then approximated via GP regres-
sors. The RL update is then enhanced with the trained
GP-based constraints, which help the algorithm in select-
ing the next parameters θ+ that satisfy these constraints
and thus are likely to yield a safe policy.

Algorithm 1: Data-driven Safe MPC-based RL

Input: Initial MPC parameters θ0; initial
observations D0; ϱ ∈ (0, 1)

1 for i = 1, . . . , nmax do
2 Perform MPC closed-loop task with θi by

solving (4) at each time step t = 1, . . . , T
3 Observe z̃ij , j = 1, . . . , nc as per (10)

4 Augment dataset Di ← Di−1 ∪ {
(
θi, z̃i

)
}

5 Train GPs for zj(θ), j = 1, . . . , nc on Di

6 do
7 Try performing safe RL update

θ⋆+ ← arg min
θ+

(8a) (12a)

s.t. θ+ ∈ SDi
(12b)

8 Reduce safety probability β ← ϱβ
9 while (12) is not feasible

10 Update parametrization θi+1 ← θ⋆+
11 end

Remark 3. Gaussianity of the GPs can be conveniently
leveraged to express constraint (12b) deterministically as

µi
j(θ+) + Φ−1(β)σi

j(θ+) ≤ 0, j = 1, . . . , nc, (13)

where Φ−1 is the normal distribution quantile function.
However, since the GP terms µi

j(θ+) and σi
j(θ+) are in

practice always nonlinear, the overall RL update opti-
mization problem (12) becomes nonlinear too. Moreover,
there exist no guarantees on the feasibility of (12), i.e.,
the update might get stuck as it is unable to find a safe
θ⋆+. This is especially relevant at the beginning of the
simulation in case D0 is empty, i.e., data is scarce and
the GP approximation is poor. Currently, one can miti-
gate this issue by backtracking (i.e., iteratively reducing)
the requested safety probability β to smaller and smaller
values till feasibility is recovered, as shown in lines 6-9.
Of course, this trades off safety with feasibility, which
might be undesirable in cases where the former must be
guaranteed with high enough certainty. However, one could
easily envision methods for alleviating this issue by, e.g.,
injecting prior knowledge via the GP prior mean or the
initial dataset D0, or, alternatively, assuming the initial
condition θ0 to be safe with unitary probability (thus
acting as a sort of backup configuration).

4. NUMERICAL EXPERIMENT

The proposed algorithm was implemented and simulated
in a numerical experiment of a quadrotor drone application
adapted from Wabersich and Zeilinger (2022). In the
following sections, we detail the system, the controller and
the safe learning algorithm, and present the final results.

4.1 System Description

The aim of the task is for the drone to reach a final
destination in the fastest and most accurate way, while
avoiding violations of safe-critical boxing constraints on
the states and control actions, with wind disturbances at
different altitudes influencing the drone’s dynamics. The
goal of the RL agent is, on one side, to tune the parameters
of the MPC controller to achieve stable flight and better
performance in terms of the objective function and, on the
other side, to learn to avoid constraint violations as much
as possible. The discrete-time dynamics of the drone are

xt+1 = Axt +But + CΨ(xt)wt +G, (14)

where the state x ∈ R10 contains the pose (position,
velocity, attitude, and its rate), the control action u ∈
R3 dictates the desired pitch/roll attitude and vertical
acceleration, and system matrices A and B describe the
dynamics of the quadrotor around the hovering state,
and vector G represents the constant gravity pull. The
term CΨ(xt) models nonlinear wind disturbances at time
step t: Ψ(x) ∈ R3 is a state-dependent vector simulating
three different wind currents at different altitudes, each
implemented as a squared exponential basis function with
unknown hyperparameters, whereas matrix C modulates
the influence of each gust on each state, and wt ∼ U(0, 1)
induces randomness. Box constraints h are imposed on
the state and control action. The RL stage cost takes into
account, at each step, the error from the target position sf,
the control action usage, as well as constraint violations

L(s, a) = ∥s− sf∥22 + c1∥a∥22 + c⊤2 max
(
0, h (s, a)

)
, (15)

where scalar c1 and vector c2 are weights.

4.2 MPC Function Approximation

The controller chosen for this task consists of an MPC
scheme based on (4): the stage/final costs are tracking
costs (in both states and actions) but their cost matrices
are fixed/non-learnable, and no initial cost is used, i.e.,
λθ(x0) = 0; the parametric prediction model is fθ(x, u) =
Aθx + Bθu + Gθ; the constraints are parametrized by
means of a backoff parameter hθ(x, u) = (1 + δ)h(x, u)
and are made soft in the MPC to avoid infeasibilities.
Eight different system parameters in Aθ, Bθ and Gθ affect
the dynamics of the quadrotor drone but, out of these,
the learning is restricted exclusively to the gravitational
pull constant g and the vertical thruster coefficient Kz.
Additionally, the constraint backoff δ is made learnable,

i.e., θ = [g Kz δ]
⊤
, while all the other parameters in

the drone model and optimization are kept fixed during
learning. To better test the viability of the proposed
approach, all eight dynamics parameters in the MPC
scheme are initialized wrongly (with an error ≈ ±20%), so
as to lead to a controller with initial poor performance and
constraint violations. Therefore, the agent has to achieve



better performance and safety by only tuning θ, a small
subset of all the dynamics parameters.

4.3 Safe RL Algorithm

For learning safety constraints (10), one independent GP
is employed to model each constraint. A zero prior mean
function is assumed, whereas the kernel function is selected
as the sum of the squared exponential kernel and a white
noise kernel. As per Algorithm 1, the GP regressors are
trained on past observed data before each update of
the MPC parameters. For the RL updates, a second-
order LSTD Q-learning algorithm (Lagoudakis et al.,
2002) is employed to find the parameter vector θ that
minimizes closed-loop performance under the policy πθ(s).
Q-learning is a classical RL algorithm that tries to find the
parametrization which best fits the action-value function
to the observed data, thus indirectly finding the optimal
policy, and has shown promising results also with MPC
(Esfahani et al., 2021). Additionally, the second-order
Newton’s method ensures faster convergence by exploiting
an approximation of the Hessian. The gradient ∇θQθ is
computed via nonlinear programming sensitivity analysis
(Büskens and Maurer, 2001). A more in-depth explanation
of the RL algorithm can be found in Airaldi et al. (2022).
Lastly, in the constrained update (12), the target safety
level β is set to 0.9, but backtracking on this level is
enabled in case of infeasibility.

4.4 Results

The experiment was implemented in Python leveraging
the symbolic framework CasADi (Andersson et al., 2019)
and its interface to the IPOPT solver (Wächter and
Biegler, 2006). Source code and simulation results can be
found in the following repository: https://github.com/
FilippoAiraldi/learning-safety-in-mpc-based-rl.

To investigate the effectiveness of the proposed algorithm,
simulations were carried out for the LSTD Q-learning
algorithm both with and without our GP-based safety
enhancement. The safe variant of the algorithm was also
tested with zero initial knowledge (i.e., D0 empty), and
with limited prior knowledge in the form of 5 datapoints
picked randomly from previous simulations. Where rele-
vant, we also compare the algorithm with a baseline, in
which the MPC controller is initialized with perfect knowl-
edge on the system model. Each algorithm is averaged over
100 simulations for 50 learning episodes. In the figures,
average results are plotted with one standard deviation.

As shown in Figure 1, despite starting from an unfavor-
able initial configuration θ that yields large constraint
violations, both safe and unsafe algorithms are able to
recover and converge to a performance that is just ≈ 20%
worse than the baseline. Note that they achieve so by
adjusting only a limited subset of the system dynamics
parameters. However, the convergence speed of the two
substantially differs, the safe variants being much faster.
This is explained by the fact that already in the first few
iterations the safety mechanism is able to approximate
the safe set SD, even if only locally, and to steer the
learning towards parameters θ that are likely to yield safer
policies. However, we note that at the very beginning of the
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Fig. 1. Comparison in performance between the original
LSTD Q-learning algorithm and its GP-based safe
variant (with and without prior knowledge). In dashed
black, the baseline cumulative cost when exact knowl-
edge of the system is given to the MPC controller.
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Fig. 2. Comparison in (top) violations of the altitude
constraint, where positive values imply violation, and
(bottom) the cumulative number of unsafe episodes.

learning process the zero-knowledge safe algorithm suffers
from much higher variance in the results compared to its
counterpart initialized with some prior information. This
confirms that at the beginning the ability to predict safety
is extremely poor and can even damage performance.

Figure 2 shows the effectiveness of our method in en-
couraging safety. At the end of the learning process, we
witnessed a 57% and 64% reduction in the total number
of unsafe episodes (episodes in which constraint violation
occurs) for the two safe algorithms compared to the unsafe
LSTD Q-learning variant. These results are achieved in a
purely data-driven fashion and with no or little previous
information on safety. Furthermore, constraint violations
are recovered much faster, especially in the quadrotor alti-
tude, which is the state variable most prone to violations.
This explains why the performance of the safe algorithms
shows faster convergence to better suboptimal policies.

Lastly, Figure 3 shows the impact of the backtracking on
β, as explained in Remark 3. In particular, it shows on
average during learning at which probability Algorithm
1 had to decrease β in order to obtain the feasibility of
the constrained update (12). In the case of zero initial
information, at the beginning β has to be decreased
to achieve feasible updates, while at convergence, when
enough data for the GPs has been collected, the required
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Fig. 3. Backtracked safety probability β during learning.

probability of 0.9 is achieved. Conversely, the simulations
with initial knowledge seems to confirm that providing
a small D0 to pre-train the GP-based safety constraints
(12b) is an effective way to avoid backtracking on β.

5. CONCLUSIONS

In this paper, we propose a method that enables safety in
the context of MPC-based RL via GP regression. It learns
and encourages safety exclusively from observed past tra-
jectories, without the need of, e.g., a priori information
on the system or estimation of disturbances affecting its
dynamics. The algorithm is straightforward and can be
implemented without extensive customization on top of
several RL agents, such as Q-learning and policy gradient
methods. The numerical experiment for the quadrotor con-
trol application demonstrated that the safety mechanism
successfully reduces the number of unsafe episodes during
learning and also promotes faster convergence by avoiding
unnecessary constraint violations.
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