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Modeling and Efficient Passenger-Oriented Control

for Urban Rail Transit Networks
Xiaoyu Liu, Azita Dabiri, Yihui Wang, and Bart De Schutter, Fellow, IEEE

Abstract—Real-time timetable scheduling is an effective way
to improve passenger satisfaction and to reduce operational costs
in urban rail transit networks. In this paper, a novel passenger-
oriented network model is developed for real-time timetable
scheduling that can model time-dependent passenger origin-
destination demands with consideration of a balanced trade-off
between model accuracy and computation speed. Then, a model
predictive control (MPC) approach is proposed for the timetable
scheduling problem based on the developed model. The resulting
MPC optimization problem is a nonlinear non-convex problem.
In this context, the online computational complexity becomes
the main issue for the real-time feasibility of MPC. To reduce
the online computational complexity, the MPC optimization
problem is therefore reformulated into a mixed-integer linear
programming (MILP) problem. The resulting MILP problem is
exactly equivalent to the original MPC optimization problem
and can be solved very efficiently by existing MILP solvers, so
that we can obtain the solution very fast and realize real-time
timetable scheduling. Numerical experiments based on a part of
Beijing subway network show the effectiveness and efficiency of
the developed model and the MILP-based MPC method.

Index Terms—Model predictive control, Urban rail tran-
sit, Real-time timetable scheduling, Time-dependent passenger
origin-destination demand.

I. INTRODUCTION

URBAN rail transit is recognized as a safe, sustainable,

and high-efficiency transportation modality, and it plays

an increasingly important role in the public transportation

systems. Real-time timetable scheduling is one of the most

effective and efficient approaches to improve passenger sat-

isfaction and to reduce operational costs. With the rapidly

growing passenger demands and the increasing urban rail

network scale, advanced urban rail network models and the

corresponding control approaches are crucial to obtain efficient

timetables and to improve the performance of transportation

services.

In the research on railway traffic management problems, one

important class of studies pays attention to departure times and

arrival times of trains in the network [1], [2], [3], where the

aim is to improve the performance of daily timetables and
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to minimize the effects of delays or cascade delays caused

by disturbances. Another class of studies incorporates rolling

stock circulation [4], train orders [5], conflict resolution [6],

etc., into timetable scheduling problems, which is particularly

helpful when disruptions occur, as it can be used to adjust

the impacted timetable and make the railway network recover

from disruptions as soon as possible. In this paper, we consider

passenger demands when generating timetables online in order

to provide high-quality service for passengers.

There are many studies related to passenger-oriented

timetable scheduling. Several studies handle passenger flows

while including rolling stock circulation [4], [7], speed pro-

files [8], and short-turning [9], but without detailed passen-

ger origin-destination (OD) information. Another direction of

studies addresses passenger OD demands on a single line [10],

[11]. However, the passenger demands in networks are more

complex than those of a single line due to the transfer activities

of passengers, and hence, efficient approaches that consider

passenger OD demands in urban rail networks are required.

Some studies consider passenger OD demands in railway

networks [12] or urban rail networks [13], [14]; however,

the computational complexity of including the time-dependent

passenger demands and the detailed number of passengers is

still a challenging issue. In real life, passenger demands are

typically represented as time-dependent OD matrices. Nev-

ertheless, most studies on timetable scheduling problems do

not take the detailed time-dependent passenger OD demands

into account, leaving an open gap for further improving the

timetable through closed-loop control while taking real-time

passenger demands into account.

Generally, the timetable scheduling problem is a typical

constrained control problem. Model predictive control (MPC)

is a well-recognized effective method for its ability to handle

multi-variable constrained control problems [15], [16], [17].

The online computational burden of the MPC optimization

problem is the main challenge for real-time timetable schedul-

ing when taking time-dependent passenger OD demands into

account. Passenger flows in railway networks have a certain

similarity with traffic flows in urban road networks. The effi-

cient traffic flow model and fast MPC methods for the urban

road network [18], [19] have inspired us to develop an efficient

model for passenger-orient railway traffic networks and to

develop efficient MPC methods for the real-time timetable

scheduling problem.

The main contributions of the paper are listed as follows:

1) A novel model for passenger-oriented urban rail traffic

networks is proposed that can explicitly include the

number of passengers in urban rail networks under time-
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dependent passenger origin-destination demands.

2) Thanks to the notion of cycle time introduced in this

paper, the time-varying passenger demands are approx-

imated as piecewise constant functions in the model

to achieve a trade-off between model accuracy and

computation speed.

3) An MPC approach is proposed for the real-time

timetable scheduling problem based on the developed

model. The nonlinear MPC optimization problem is

exactly transformed into an MILP problem to reduce

the online computational burden.

The rest of this paper is structured as follows. Section II

summarizes the literature related to this paper. In Section III,

the passenger-oriented urban rail traffic model is proposed. In

Section IV, the MPC controller is designed for the passenger-

oriented timetable scheduling problem based on the proposed

model. In Section V, the MPC optimization problem is

solved with different methods, and an MILP-based approach

is proposed. Section VI provides case studies to illustrate the

accuracy of the model and the efficiency of the developed

method. Finally, conclusions are given in Section VII.

II. STATE OF THE ART

A. Models for Timetable Scheduling

In the literature, many models and methods have been

explored for the timetable scheduling problem. One direction

of research is based on event-driven models where train

actions are defined as different events with predefined rules

determining the orders of events. In [2], the timetable was

formulated as an alternative graph model, and a branch-and-

bound algorithm was proposed to find solutions efficiently.

Based on the alternative graph model, a tabu search algorithm

was proposed to reroute trains in [20]. In [21], the interaction

between train speeds and headway under the quasi-moving

block system was considered, when rescheduling high-speed

trains based on the alternative graph model. The timetable

scheduling problem can also be formulated through an event-

activity network (a directed graph), which can be used to

minimize the total weighted train delay and the number of

canceled trains [22], to optimize passengers’ routes [9], and

to integrate passenger reassignment and timetable scheduling

[12]. Furthermore, max-plus models [23] and switching max-

plus-linear models [1], [24] have also been used to efficiently

generate efficient timetables; as the models make use of

properties from max-plus algebra, the resulting problem can

be reduced efficiently, and less time is required to get the

solution.

Another important direction of research is based on time-

driven models, where train actions are formulated with respect

to time constraints. Time-driven models are widely used in

the literature as they can directly include different factors

in railway traffic, such as passenger demands, train speeds,

and energy consumption. In [25], the timetable and the train

speed profile of one urban rail line with several stations were

jointly optimized within a bi-level scheme, where a numerical

approach was proposed to allocate the total time to each

section, given the optimal speed profile of a fixed running time

for each section. In [26], it was indicated that the timetable can

be optimized in real time with a closed-loop control framework

by predicting the traffic conditions through the real-time train

positions and speed profiles information. In [27], [28], the

timetable and train speed profile were integrally optimized by

a mixed-integer nonlinear programming (MINLP) approach,

a mixed-integer linear programming (MILP) approach, and a

simplified MILP approach considering different train speed

profile options. In [5], the rescheduling of large-scale railway

traffic networks was formulated as a bi-level MILP problem,

and an MPC scheme was applied to handle disruptions and

disturbances in real time.

B. Passenger-Oriented Timetable Scheduling

In recent decades, many studies have focused on passenger-

oriented timetable scheduling, where passenger demands are

explicitly taken into account to provide high-quality services

for passengers. In [29], a nonlinear integer programming

model was proposed to optimize arrival and departure times

of trains with the objective of minimizing operational costs

and passenger waiting times. In [30], the train speed and

stop-skipping were incorporated into the timetable scheduling

problem to minimize the energy consumption and the pas-

senger travel time, and a bi-level approach was proposed to

solve the resulting MINLP problem. Furthermore, an iterative

convex programming approach was developed to improve the

computational speed in [10]. In [31], an MINLP problem

was formulated to minimize passenger waiting time with

consideration of time-varying passenger demands. In [11],

a Lagrangian relaxation-based heuristic timetable scheduling

algorithm was proposed to minimize passenger waiting times

and operational costs by using a space-time network. An

integer linear programming problem was formulated to jointly

optimize the timetable and passenger flow control strategies for

an over-saturated railway line in [32]; then, a hybrid algorithm

was developed to solve the resulting optimization problem.

However, most research only focuses on the timetable schedul-

ing of a single line, and hence leaving an open gap for

improving the operational performance of urban rail transit

networks.

Passenger-oriented timetable scheduling of urban rail net-

works is more challenging than that of a single line as

different lines will interact with each other through the transfer

passengers. An urban rail network including time-dependent

passenger OD demands was modeled as a detailed event-

driven model in [13], and then the passenger travel time

and the train energy consumption were collaboratively opti-

mized. Furthermore, the event-driven model was extended as

a disruption management model for an integrated disruption

management problem with the objective of recovering the

impacted timetable and minimizing passenger waiting times in

[33]. In [34], an MINLP model was proposed to optimize line

frequencies and capacities in railway rapid transit networks;

the objective of that paper was to minimize operational costs

and passenger trip time and transfer time given a certain

OD matrix. In [14], feasible passengers routes in the urban

rail network were defined through a directed graph, so that
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the passenger OD demands and the transfer actions can

be included explicitly; then, a decomposed adaptive large-

neighborhood search method was proposed to minimize the

number of waiting passengers in the busiest station. However,

incorporating time-dependent passenger OD demands in the

urban rail network timetable scheduling problem is still a

challenging task because of the network’s size, high non-

linearity of the problem, and the large computational burden.

Accurate models for urban rail networks that include time-

dependent passenger OD demands and fast solution meth-

ods for passenger-oriented timetable scheduling are urgently

needed for real-time timetable scheduling.

C. MPC for Railway Traffic Management

As an efficient real-time control approach for constrained

systems, MPC has been applied in railway timetable schedul-

ing problems to optimize and adjust the timetable in real time.

In [1], MPC was used for railway timetable scheduling based

on the switching max-plus-linear models to minimize train de-

lays and operational costs of breaking connections or changing

the order of trains. Furthermore, the switching max-plus-linear

model-based timetable scheduling problem was solved in a

distributed manner to handle large-scale cases [24]. In [35], an

MPC approach was proposed to cope with train rescheduling

problems in the complex station areas. MPC was also used

in railway traffic management in case of disruptions, and the

MPC optimization problem was transformed into an MILP

problem to reduce the computational burden [5]. A hierarchical

MPC approach was proposed for real-time high-speed railway

delay management and train control problem, where the train

delay was minimized at the upper level while the detailed

train speed control was conducted at the lower level [36]. The

optimization problem in both levels of the hierarchical MPC

approach were also formulated as MILP problems to increase

the online feasibility. The existing literature indicates that the

online computational burden of the MPC optimization problem

must be reduced for real-time scheduling of large-scale railway

networks. The problem is even more challenging when taking

time-dependent passenger OD demands into account.

This paper proposes a novel timetable scheduling model

which can take time-dependent passenger OD demands into

account. An MPC approach is then proposed for real-time

timetable scheduling. Based on the proposed model the MPC

optimization problem can be easily transformed into an MILP

problem, to overcome computational complexity issues.

III. PASSENGER-ORIENTED REAL-TIME TIMETABLE

SCHEDULING MODEL

In this section, we propose a novel model for passenger-

oriented real-time timetable scheduling in urban rail traffic

networks. Some general explanations and assumptions adopted

for the model formulation throughout this paper are as follows:

1) Since the number of passengers is very large, the approx-

imation error of treating it as a real-valued variable is

relatively small. Hence, variables indicating the number

of passengers are regarded as real-valued variables.

2) The paper focuses on optimizing arrival and departure

times of trains, and hence, short-turning, stop-skipping,

and rolling stock circulation are not considered.

3) A platform can only accommodate one train at a time,

and the order of trains at a platform is fixed.

The notations used in this paper are introduced in Sec-

tion III-A. Then, the simplified passenger flow model is

proposed in Section III-B. In Section III-C, the train operation

model related to the simplified passenger flow model is given.

A. Notations

Sets and Indices

j Index of stations, j ∈ S, S is the set of stations
p Index of platforms
kp Index of cycles at platform p; also indicating the train

visiting platform p at cycle kp
spla (p) Successor platform of platform p
ppla (p) Predecessor platform of platform p

Input Parameters

cp(kp) Length of cycle kp at platform p
Lp(kp) Starting time of cycle kp at platform p
rmin
p (kp) Minimum running time of train from platform p to its

successor platform at cycle kp
rmax
p (kp) Maximum running time of train from platform p to

its successor platform at cycle kp
τmin
p Minimum dwell time of train at platform p

hmin
p Minimum headway of platform p

λstation
j,m (kp)Passenger arrival rate at station j with station m as

their destination at cycle kp
βj,p,m Splitting rate of passengers at station j who are

assigned to platform p with destination m as their
destination

βtrain
p,q,m Transfer rate of passengers from platform p to plat-

form q with station m as their destination
θtransp,q Average walking time for passengers walking from

platform p to platform q
θdurationp,q Duration time for the transfer process from platform

p to platform q

Decision variables

ap(kp) Arrival time of train at cycle kp of platform p
dp(kp) Departure time of train at cycle kp of platform p

Output variables

rp(kp) Running time of train from platform p to its

successor platform spla (p) in cycle kp
τp(kp) Dwell time of train at cycle kp of platform p
λp,m(kp) Passenger arrival rate at platform p with station

m as their destination at cycle kp
np,m(kp) Number of passengers with station m as their

destination waiting at platform p immediately
after time kpcp

narrive,new
p,m (kp) Number of passengers outside the urban rail net-

work with destination m arriving at platform p at
cycle kp

narrive,trans
p,m (kp)Number of transfer passengers with destination m

arriving at platform p at cycle kp
nbefore
p,m (kp) Number of passengers at platform p with station

m as their destination immediately before the
departure of train kp

nboard
p,m (kp) Number of passengers with station m as their

destination boarding on the train at cycle kp
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ndepart
p,m (kp) Number of passengers on train kp departing from

platform p with station m as their destination
nafter
p,m (kp) Number of passengers at platform p with station

m as their destination immediately after the de-
parture of train kp

ntrans
p,q,m(kp) Number of passengers alighting from train kp of

platform p who want to transfer to platform q with
station m as their destination

nremain
p,m (kp) Number of passengers who continue to stay on

train kp after the alighting process
nalight
p,m (kp) Number of passengers with station m as their

destination alighting from train kp at platform p

B. Simplified Passenger Flow Model

The passenger origin-destination demands can be described

as a time-varying matrix, and the element of the matrix is

denoted as λstation
j,m (t), with j and m indicating the origin

and destination stations, respectively. Passengers usually care

about whether there are regular departures at a platform so

that they can plan their journey easily and do not have to wait

too long for the next train if they missed the current train. A

train only visits a platform at a certain time period, and the

passenger arrival rate generally does not change significantly

during a short time period. Therefore, at each platform, we

discretize the planning time window into several time intervals

of equal length, where every time interval includes one and

only one arrival-departure pair of a train at the same platform

so as to provide reliable service for passengers. In addition,

we assume the passenger arrival rate is constant in each time

interval. In the sequel, we refer to these time intervals as

cycles. The cycle time for a given platform is then the length

of the cycle for that platform.1 The cycle times for platform

p and platform q, which are represented by cp(kp) and cq(kp)
respectively, can be different from each other.

The passenger arrival rate λoriginal
p,m (t) at platform p with

station m as destination is determined by

λoriginal
p,m (t) = βj,p,mλstation

j,m (t) , ∀p ∈ Pj , ∀m ∈ S, (1)

where Pj defines a set of platforms at station j; S is the set of

stations in the urban rail network; βj,p,m is the splitting rate

of passengers at station j who are assigned to platform p with

destination m as their destination,
∑

p∈Pj

βj,p,m = 1, ∀m ∈ S,

and βj,p,m can be obtained based on the historical data.

Fig. 1 illustrates the procedure of approximating the original

passenger arrival rate for the simplified passenger flow model,

where kp represents the index of the cycle at platform p, and

the approximated arrival rate can be calculated by:

λp,m(kp) =
1

cp(kp)

∫ Lp(kp)+cp(kp)

Lp(kp)

λoriginal
p,m (t)dt, (2)

where λoriginal
p,m (t) represents the original passenger arrival

rate, Lp(kp) represents the starting time of cycle kp, and

cp(kp) is the length of cycle kp. By introducing the cycle

1The cycle time at a platform can be equal to the expected departure-
departure headway of the basic timetable. Then, we can adjust departure and
arrival times to further improve the basic timetable based on the detailed
passenger demands. We can also generate the expected departure-departure
headway by a higher-level controller; for more details, we refer to our recent
work [37].

t

,p ml

original

,p ml

1 2 3 4 5 6 7 kp

Fig. 1. Illustration of approximating passenger arrival rate.

time, the computational efficiency for calculating passenger-

related factors can be significantly improved. Note that the

approximation can be conducted offline to reduce the online

computational burden.

According to the definition of cycle, only one train would

visit platform p at cycle kp; therefore, in this paper, for the

sake of simplification, we use “train kp” to represent the train

visiting platform p at cycle kp.

At each cycle, the number of passengers waiting at the plat-

form is updated as some passengers have boarded on a train

and departed from the platform. The number of passengers

waiting at platform p is updated at every cycle, according

to the new arriving passengers narrive,new
p,m (kp) from outside

the station, the transfer passengers narrive,trans
p,m (kp) from other

lines, and the boarding passengers nboard
p,m (kp), by

np,m(kp + 1) =np,m(kp) + narrive,new
p,m (kp)

+ narrive,trans
p,m (kp)− nboard

p,m (kp),
(3)

where np,m(kp) denotes the number of passengers with station

m as their destination waiting at platform p at the beginning

of cycle kp.

As depicted in Fig. 1, in each cycle, the passenger arrival

rate is regarded as constant, and the number of new passengers

narrive,new
p,m (kp) arriving at platform p with destination m be-

tween kp and kp + 1 can be calculated based on the passenger

arrival rate:

narrive,new
p,m (kp) = cp(kp)λp,m(kp), (4)

where λp,m(kp) is the passenger arrival rate at platform p with

station m as their destination at cycle kp.

Define θtransq,p as the average walking time for passengers

walking from platform q to platform p, ap(kp) and dp(kp)
as the arriving and departure times of train kp at platform p,
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respectively. Then, we introduce a binary variable ykq,q,kp,p to

represent the connection of trains at a transfer station:

ykq,q,kp,p =

{

1, if dp(kp−1) < aq(kq) + θtransq,p ≤ dp(kp);
0, otherwise,

(5)

with ykq,q,kp,p = 1 denoting that passengers from train

kq of platform q connect to train kp of platform p, i.e.,

passengers from train kq at platform q could arrive at platform

p between the departure of train kp − 1 and kp; otherwise,

when ykq,q,kp,p = 0, the passengers from train kq at platform

q cannot connect to train kp at platform p.

With ykq,q,kp,p defined as in (5), the number of passengers

narrive,trans
p,m (kp) transferring from other platforms of station j

and arriving at platform p before the departure of train kp can

be calculated by

narrive,trans
p,m (kp) =

∑

q∈plat(p)

∑

kq∈Nq

ykq,q,kp,pn
trans
q,p,m(kq), (6)

where plat(p) is the set of the platforms at the same station

as platform p, and Nq collects the indices of all the cycles of

platform q.

Then, the number of passengers nbefore
p,m (kp) at platform p

with station m as their destination immediately before the

departure of train kp can be computed by

nbefore
p,m (kp) =np,m(kp) + (dp(kp)− Lp(kp))λp,m(kp)

+ narrive,trans
p,m (kp),

(7)

Then, the total number of passengers nbefore
p (kp) waiting at

platform p immediately before the departure of train kp is

nbefore
p (kp) =

∑

m∈S

nbefore
p,m (kp). (8)

The total number of passengers nboard
p (kp) boarding the

train at cycle kp can be computed by

nboard
p (kp) = min

(

Cmax,kp
− nremain

p (kp), nbefore
p (kp)

)

,
(9)

where Cmax,kp
represents the capacity of train kp at platform

p, and nremain
p (kp) is the number of passengers remaining on

train kp after the alighting process at platform p.

Therefore, the number of passengers nafter
p (kp), who cannot

board train kp, waiting at platform p immediately after train

kp departs can be computed by

nafter
p (kp) = nbefore

p (kp)− nboard
p (kp). (10)

If we define

λp(kp) =
∑

m∈S

λp,m(kp), (11)

then the number of passengers who cannot board train kp at

platform p with different destinations can be calculated by

nafter
p,m (kp) = nafter

p (kp)
λp,m(kp)

λp(kp)
, (12)

which means the proportion of waiting passengers with dif-

ferent destinations, who cannot board train kp at platform p,

is assumed not to change significantly compared with the

proportion of passengers arriving in the current cycle. As

λp,m(kp) is defined as a known constant, nafter
p,m (kp) can be

computed linearly.

Then, the number of boarding passengers nboard
p,m (kp) with

destination m can be computed by

nboard
p,m (kp) = nbefore

p,m (kp)− nafter
p,m (kp). (13)

When train kp arrives at platform p, the number of passen-

gers ntrans
p,q,m(kp) with station m as their destination on train kp

transferring from platform p to platform q can be calculated

by

ntrans
p,q,m(kp) = βtrain

p,q,m ndepart
ppla(p),m

(kp), ∀q ∈ plat(p)/{p}, (14)

where ndepart
ppla(p),m

(kp) denotes the number of passengers with

destination m on train kp immediately after the train departure

from the predecessor platform ppla (p) of platform p, and

βtrain
p,q,m is the transfer rate of passengers on train kp, trans-

ferring from platform p to q ∈ plat(p) with destination m
immediately after arrival at platform p, and

∑

q∈plat(p)

βtrain
p,q,m = 1. (15)

The transfer rate of passengers can be obtained based on the

historical data or by a shortest path algorithm, e.g., Yen’s

algorithm [38], assuming that passengers select the platform

corresponding to the shortest path to reach their destination.

Remark 2.1 It is worth noting that βtrain
p,p,m denotes the

proportion of passengers with m as their destination remaining

on train kp at platform p after the alighting process, i.e., no

transfer behavior is needed; thus, we have ntrans
p,p,m(kp) = 0. In

particular, If the arrival station is not a transfer station, then

βtrain
p,p,m = 1.

Remark 2.2 Define sta(p) as the station corresponding

to platform p. For passengers whose destination is the

arrival station, i.e., j = sta(p), we set βtrain
p,p,j = 1 and

βtrain
p,q,j = 0, ∀q ∈ plat(p)/{p}, which means passengers who

have arrived at their destination will directly exit the station j
from platform p without any transfer behavior, and we have

ntrans
p,q,j (kp) = 0, ∀q ∈ plat(p).

The number of passengers nremain
p,m (kp) remaining on the

train at platform p in cycle kp with destination m after the

alighting process can be calculated by

nremain
p,m (kp) = βtrain

p,p,m ndepart
ppla(p),m

(kp), ∀m ∈ S/{sta(p)}.
(16)

In other words, nremain
p,m (kp) represents the number of pas-

sengers who continue to stay on train kp after the alighting

process. In particular, passengers, who have arrived at their

destination station when train kp arrives at platform p, will

alight from the train directly, i.e., no passengers with desti-

nation sta(p) will remain on train kp after arriving at station

sta(p), nremain
p,sta(p)(kp) = 0.

Having (16), the total number of passengers nremain
p (kp)

remaining on train kp at platform p after the alighting process

can be calculated by

nremain
p (kp) =

∑

m∈S

nremain
p,m (kp). (17)
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Then, the number of passengers ndepart
p,m (kp) with station m as

their destination, who will depart from platform p at time kp,

can be computed by

ndepart
p,m (kp) = nremain

p,m (kp) + nboard
p,m (kp). (18)

The total number of passengers ndepart
p (kp), who will depart

from platform p at time kp, can be calculated by

ndepart
p (kp) =

∑

m∈S

ndepart
p,m (kp). (19)

The total number of passengers nalight
p (kp) alighting from

train kp at platform p can be calculated by

nalight
p (kp) = ndepart

ppla(p)
(kp)− nremain

p (kp), (20)

where ndepart
ppla(p)

(kp) denotes the total number of passengers

on board of train kp departing from the predecessor platform

ppla (p) of platform p.

C. Train Operation Model

In this paper, we assume the order of trains at each platform

is fixed, and the aim is to generate departure and arrival

times by incorporating the detailed time-dependent passenger

OD demands of the urban rail network to further improve

passenger satisfaction. In this context, for a general urban rail

transit timetable scheduling problem, the operation of trains

can be described by arrival times, dwell times, departure times,

and running times. These variables interact with each other by

several constraints to guarantee the conflict-free and efficient

traffic operation.

Based on the definition of the cycle, we can generate

the lower and upper bounds of each cycle according to the

expected departure-departure headway. Then, the arrival and

departure times of train kp at platform p should satisfy

Lp(kp) < ap(kp) < dp(kp) ≤ Lp(kp) + cp(kp), (21)

where Lp(kp) is the starting time of cycle kp at platform p, and

cp(kp) is the length of cycle kp; ap(kp) and dp(kp) represent

the arrival time and the departure time of train kp at platform

p, respectively.

The dwell time τp(kp) of train kp at platform p can be

calculated by

τp(kp) = dp(kp)− ap(kp), (22)

and τp(kp) should be constrained by

τp(kp) ≥ τmin
p , (23)

where τmin
p is the minimum dwell time.

Then, the arrival time of train kp at platform p is also

constrained by the departure-arrival headway constraint

ap(kp) ≥ dp(kp−1) + hmin
p , (24)

where dp(kp−1) is the departure time of train (kp−1) at

platform p, and hmin
p is the minimum headway between two

successive trains at platform p.

The arrival time of train kp at the successor platform spla (p)
of platform p is

aspla(p)(kp) = dp(kp) + rp(kp), (25)

where rp(kp) represents the running time of train kp from plat-

form p to platform spla (p), and rp(kp) should be constrained

by

rmin
p (kp) ≤ rp(kp) ≤ rmax

p (kp), (26)

where rmax
p (kp) and rmin

p (kp) are maximal and minimal run-

ning time of train kp from platform p to spla (p), respectively.

The minimum running time is limited by the condition of the

line, speed limit, and train characteristics, and the maximum

running time is determined by the operational requirement.

IV. MODEL PREDICTIVE CONTROL FOR

PASSENGER-ORIENTED TIMETABLE SCHEDULING

Model predictive control is a control method that repeatedly

solves finite-horizon optimization problems and implements

optimized decisions in a moving horizon manner [39]. In

the MPC scheme, the current control action is obtained by

solving an optimization problem over a finite-horizon window.

The optimization yields a control sequence, but only the first

control action is implemented in the real system. At the next

control step, the optimization is conducted again using updated

state information and with a shifted finite-horizon window.

This moving horizon optimization procedure is repeated until

the end of the overall control period.

In this paper, the control time interval of each platform

is defined as the cycle time of the platform. Given the train

is assumed to run from the starting platform to the terminal

platform of a line, the cycle times of all platforms of a line are

identical. As cycle times can be different for different lines,

we introduce control time interval Tctrl, and the control time

step is indexed as κ. The number of cycles included in one

time step for different platforms can be different. The MPC

method can be described by the following three elements:

1) Prediction model.

The passenger-oriented urban rail traffic network model

developed in Section III can be used as the prediction

model for the MPC controller. The model is a nonlinear

model, and, for each cycle, it can be represented as

follows:

np,m(kp + 1) = f
(

np,m(kp), n
trans
q,p,m(kq), gp(kp)

)

,
(27)

where np,m(kp) is the number of passengers waiting

at platform p with station m as their destination at the

beginning of cycle kp; ntrans
q,p,m(kp) represents the number

of passengers transferring from other platforms (denotes

as q) at the same station; gp(kp) collects the decision

variables including arrival and departure times of trains

at cycle kp of platform p.

2) Optimization problem.

The waiting time of passengers at the platform is an

important criterion to evaluate passenger satisfaction.

Furthermore, to further improve passenger satisfaction

a penalty factor is added for passengers who cannot
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board a train because of the train capacity. Hence, in

this paper, an objective function of the following form

is considered:

J=
∑

p∈P

∑

kp∈Np(κ)

(

nbefore
p (kp)cp(kp)+ξnafter

p (kp)cp(kp)
)

,

(28)

where Np(κ) is the set indices of trains visiting platform

p within the prediction window starting at control step κ,

P denotes the set of platforms of the considered urban

rail network; nbefore
p (kp) and nafter

p (kp) represent the

number of passengers waiting at platform p immediately

before the departure of train kp and immediately after

the departure of train kp, respectively, and ξ is a non-

negative weight.

Generally speaking, passengers waiting at a platform

consist of two classes of passengers, i.e., passengers who

cannot board the previous train and the new arrival pas-

sengers. For all the passengers waiting at the platform,

the largest waiting time is the time interval between two

adjacent departure times, therefore the first term in (28)

is used as the cost function of total passenger waiting

time, which, loosely speaking, provides an upper bound

of the passenger waiting time. The passengers who can-

not board the train have to stay at the platform and wait

for the next train, so a penalty factor nafter
p (kp)cp(kp) is

employed to make the trains carry as many passengers

as possible.
Therefore, the optimization problem for MPC in each
control step is
{

min
g(κ)

J=
∑

p∈P

∑

kp∈Np(κ)

(

nbefore
p (kp) + ξnafter

p (kp)
)

cp(kp),

s.t. (1)− (14) , (16)− (26) ,
(29)

where g(κ) collects all decision variables gp(kp |κ ) for

all platform p and all kp ∈ N p(κ).
3) Moving horizon optimization.

Solving the optimization problem (29) results in a se-

quence of decision variables represented by g(κ), and

only the decision variables at the current time step are

implemented to the real-life urban rail network. At the

next control time step κ+1, the time window is shifted

for one step, and the optimization problem is solved

again based on the new information collected from the

urban rail network. The procedure of the closed-loop

control scheme is shown in Fig. 2.

As the length of cycle time at a platform can be equal to

the departure headway of a basic timetable, cycle times that

can ensure constraint satisfaction of problem (29) can always

be found, i.e., a feasible solution is always available if we

use the basic timetable. Therefore, the recursive feasibility of

MPC can be ensured.

V. SOLUTION APPROACHES

The resulting optimization problem in Section IV is a

nonlinear non-convex problem because of (5), (6), and (9). The

problem can be solved by nonlinear optimization approaches,

e.g., sequential quadratic programming approach. In order

to increase the online feasibility of the problem, the MPC

Real-life Railway 

Network

MPC controller

Prediction Model

Optimizer

, ( )p m pn k( )g k

( )kg

Fig. 2. MPC for passenger-oriented timetable scheduling.

optimization problem is formulated as a mixed-integer linear

programming (MILP) problem and a simplified mixed-integer

linear programming (SMILP) problem, which can be solved

efficiently by existing solvers.

A. Sequential Quadratic Programming Approach

Sequential quadratic programming (SQP) approach is a

gradient-based nonlinear programming approach, which is

widely used in many fields to solve nonlinear optimization

problems [40]. In SQP, a sequence of quadratic programming

problems is solved to get descent directions of the original

problem. The objective function and the constraints of the

optimization problem should be continuously differentiable

when applying the SQP algorithm. In this paper, the optimiza-

tion problem has some points of non-smoothness due to the

min function in (9). As the optimal solution is generally not

obtained at the points of non-smoothness, the SQP approach

can jump over these points. Since the SQP algorithm might

obtain a local optimal solution when handling non-convex

problems, multi-start SQP is used to improve the solution

quality of SQP in this paper.

B. Mixed-Integer Linear Programming Approach

In this section, the MPC optimization problem is trans-

formed into an MILP problem, by introducing auxiliary binary

variables to handle the nonlinear terms in (5), (6), and (9).

In order to transform (5) into a mixed logical dynami-

cal (MLD) system [41], the time checking binary variable

xkq,q,kp,p is introduced as

xkq,q,kp,p =

{

1, if aq(kq) + θtransq,p ≤ dp(kp);
0, otherwise,

(30)

where aq(kq) is the arrival time of train kq at platform q,

θtransq,p represents the average transfer time from platform q to

platform p, and dp(kp) denotes departure time of train kp at

platform p.

We define Mt and mt as the maximum and minimum value

of the departure (arrival) time, which are finite as we consider
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problems in a finite time window2. Then, (30) is equivalent to
{

aq(kq) + θtransq,p −dp(kp) ≤
(

1− xkq,q,kp,p

)

(Mt−dp(kp)) ;
aq(kq) + θtransq,p −dp(kp) ≥ ε+ xkq,q,kp,p (mt−dp(kp)−ε) ,

(31)

where ε is a sufficient small number (generally the machine

precision) [41]. Define

ykq,q,kp,p = xkq,q,kp,p − xkq,q,kp−1,p. (32)

Then, based on Lemma 5.1, (5) is equivalent to (31) and (32).

Lemma 5.1 Given ykq,q,kp,p = xkq,q,kp,p − xkq,q,kp−1,p,

dp(kp−1) < aq(kq) + θtransq,p ≤ dp(kp) holds if and only if

ykq,q,kp,p = 1; otherwise, ykq,q,kp,p = 0.

Proof: From the definition of xkq,q,kp,p in (30), we have

xkq,q,kp,p ≥ xkq,q,kp−1,p. Then, we have the following three

situations based on the value of aq(kq) + θtransq,p :

if aq(kq) + θtransq,p > dp(kp), we have xkq,q,kp,p = 0 and

xkq,q,kp−1,p = 0; then, ykq,q,kp,p = 0;

if dp(kp−1) < aq(kq)+θtransq,p ≤ dp(kp), we have xkq,q,kp,p =
1 and xkq,q,kp−1,p = 0; then, ykq,q,kp,p = 1;

if aq(kq) + θtransq,p ≤ dp(kp−1), we have xkq,q,kp,p = 1 and

xkq,q,kp−1,p = 1; then, ykq,q,kp,p = 0.

The min function in (9) can be handled by introducing the

auxiliary binary variable δboardkp,p
and the auxiliary real variable

fkp,p. Define

fkp,p =
(

Cmax,kp
− nremain

p (kp)
)

− nbefore
p (kp), (33)

Then, the expression δboardkp,p
= 1 ⇔ fkp,p ≤ 0 is equivalent to

{

fkp,p ≤ Mp

(

1− δboardkp,p

)

,

fkp,p ≥ ε+ (mp − ε) δboardkp,p
,

(34)

where Mp and mp are the maximum value and the minimum

value of fkp,p, respectively3.

Having (34), the expression (9) is equivalent to

nboard
p (kp) = δboardkp,p

(

Cmax,kp
− nremain

p (kp)
)

+
(

1− δboardkp,p

)

nbefore
p (kp).

(35)

After introducing auxiliary variables in (30) and (34), we

still have nonlinear terms, i.e., the product of binary variables

and real variables in (6), (31), and (35). The product of

binary variables and real variables can be transformed into

linear inequalities by introducing some auxiliary variables by

using the method presented in [41], [42]. The details of the

transformation are given in Appendix A.

In summary, we introduce three equivalence transforma-

tions, i.e., (5) with (31)-(32), (9) with (33)-(35), and (37) with

(38) in Appendix A. The proof for “(5) is equivalent to (31)-

(32)” is provided in Lemma 5.1. The equivalence of “(9) and

(33)-(35)” and “(37) and (38)” can be found in [41], [42].

Based on the above transformations, we can finally obtain

an MILP problem that is exactly equivalent to the original

optimization problem.

2The value of Mt can be the length of the planning time window, i.e.,
Mt = tend, and mt can be equal to 0.

3The value of Mp can be a very large value related to train capacities, i.e.,
Mp = 10·Cmax,kp

, and mt can be a small value, i.e., mp = −10·Cmax,kp
.

C. Simplified Mixed-Integer Linear Programming Approach

In Section V-B, several auxiliary variables and constraints

are introduced to handle the train capacity constraints in (9)

which calculates the possible number of boarding passengers

at a platform. These constraints play an important role in

accurately calculating the number of passengers in peak hours,

when there are a large number of passengers waiting at

platforms. During the peak hours, not all passengers can board

the current train, and, instead, some passengers must wait for

the next train at the platform. However, in off-peak hours,

the number of passengers waiting at the platform is relatively

small, and almost all passengers can board the current train

upon their arrival. In this case, we can disregard the train

capacity constraints in (9), and hence the constraints (33), (34),

and (35) are not required. Therefore, we can further reduce the

computational burden.

With this simplification, the number of passengers who can

board the train at cycle kp is equal to the number of waiting

passengers, i.e., (9) will be replaced with:

nboard
p (kp) = nbefore

p (kp). (36)

The simplification results in a simplified mixed-integer linear

programming (SMILP) problem.

As mentioned in Section V-A, the SQP algorithm might

get stuck in a local optimal solution when handling non-

convex problems. In this context, several starting points are

required for SQP, so as to improve the solution quality. The

simplified problem is solved by disregarding train capacity

constraints, and other constraints are identical with the original

MILP problem. Therefore, instead of doing multi-start SQP,

the SMILP formulation can be used to get an initial solution;

then, this initial solution is employed as the starting point of

SQP for the original nonlinear optimization problem.

VI. CASE STUDY

In this section, simulations are performed to evaluate the

effectiveness of the developed passenger-oriented urban rail

traffic model and the MILP-based MPC approach. We first

simulate the urban rail network using the proposed model and

the model in [13], [33] based on the real-life operation data

of part of the Beijing metro network, and simulation results

are used to test the accuracy of the proposed model. Then,

numerical experiments are designed to test the performance of

the solution approaches and the corresponding MPC controller.

A. Assessment of the Proposed Model

To the best of the authors’ knowledge, there is no commonly

recognized accurate model for passenger-oriented urban rail

networks, and the most accurate model we found in the

literature is the model in [13], [33]. Therefore, in this paper,

we define the model in [13], [33] as an “accurate model” to

simulate the real-life urban network and to test the accuracy

of our model.

The real-life network we use is shown in Fig. 3. The

network contains two bi-directional lines that consist of 19

stations and 40 platforms. The passenger OD data used for

the case study are obtained based on the real-life entering and
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exiting passenger flows of automatic fare collection systems.

The passenger flows over each half-hour are recorded and

stored. In the real-life data used for the case study, passenger

arrival rates in different stations have different dynamics. The

lines we use contains both normal and over-saturated lines. For

the simulation, we use the real-life passenger data from the

Beijing Subway, which is one of the busiest subway systems

in the world. Line 9 is one of the busiest lines in the Beijing

subway network. In order to show the effectiveness of the

developed method in severely congested situations, we select

the data corresponding to Line 9 during the morning peak

hours from 7:00 to 9:00 for the simulation.

We use MATLAB (R2019b) for simulations on a computer

with an Intel Xeon W-2223 CPU and 8GB RAM. The main

parameters associated with the simulation are listed in Table I.

In the developed model, we use the departure-departure head-

way as the cycle time, which is equal to the sum of the dwell

time and the departure-arrival headway of the basic timetable.

In the developed model, variables related to the number of

passengers for all platforms are updated every cycle.

NL

BSQN

BDZ

MM

BWRS

LLQELLQ

XJ

QLZ

FTDJ

FTNL

KYL

FSP

GGZ

DJGZZDWYGEPZGZ

Line 9

Line 14

down

direction

up

direction

up direction

down direction

Fig. 3. Real-life network of 2 lines from Beijing subway.

TABLE I
PARAMETERS FOR SIMULATION OF LINE 9 AND LINE 14

Parameters Line 9 Line 14

Dwell time τp(kp) 60 s 60 s
Departure-arrival headway 180 s 180 s
Cycle time cp(kp) 240 s 240 s
Number of trains 20 20
Train capacity 2400 2400

Average transfer time θtransp,q 60 s 60 s

Average transfer duration θdurationp,q 60 s 60 s

Cruising speed 80 km/h 80 km/h

At each platform, the comparisons are conducted with three

key values in the model, i.e., the accumulated number of

passengers boarding the trains, the number of departing pas-

sengers, and the accumulated number of passengers that cannot

board. The number of boarding passengers and departing

passengers can reflect the utility of trains, which are related

to operational costs, as the train operation company wants to

transport as many passengers as possible with the available

trains. The number of passengers who cannot board is related

to passenger satisfaction because if passengers cannot board

the current train upon their arrival, they have to wait for the

next train.

We conduct simulations using both the accurate model and

the developed model. For each line and each platform, we get

the accumulated number of boarding passengers, the number

of departing passengers, and the accumulated number of

passengers that cannot board. The computation times needed

to simulate the accurate model and the proposed model for the

given period are 1.17 s and 0.24 s, respectively. The platform

with the largest deviation between the proposed model and

the accurate model is selected to illustrate the accuracy of the

proposed model. The deviations are shown in Table II.

TABLE II
THE LARGEST DEVIATION FOR EACH LINE

Passengers Line 9 Line 14

Acc. # of boarding passengers 8.14% 0.58%
Number of departing passengers 11.59% 1.25%
Acc. # of pass. who cannot board 5.43% 0.1%
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Fig. 4. Accumulated number of boarding passengers at platforms.

For the accumulated number of boarding passengers, Line 9

Station LLQ (up direction platform) and Line 14 Station DWY

(down direction platform) have the largest deviation, with an

error of 8.14% and 0.58%, respectively. The simulation results

of the platforms are also shown in Fig. 4.

The largest deviation of the number of departing passengers

for the lines occurs at Line 8 Station BSQN (up direction

platform) and Line 14 Station DWY (down direction platform),

with an error of 11.59% and 1.25%, respectively (see Fig. 5).

For the accumulated number of passengers that cannot

board, the largest deviation happens at Line 9 Station LLQ

(up direction platform) and Line 14 Station GZZ (up direction

platform), with an error of 5.43% and 0.1%, respectively, and

we also provide the simulation results in Fig. 6.

According to above simulation results, we can conclude that

the developed model can model the passenger flows with a

maximal error of around 10% while the simulating time is

reduced with a factor about 5, compared with the accurate
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Fig. 5. Number of departing passengers at each time step.
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Fig. 6. Accumulated number of passengers that cannot board at platforms.

model. Therefore, with an acceptable loss of accuracy, the

proposed model can efficiently incorporate time-dependent

passenger OD demands into the real-time timetable scheduling

problem, which provides more possibilities to develop fast

solution methods.

B. Open-Loop Optimization based on the Proposed Model

Now we perform numerical experiments for open-loop opti-

mization to illustrate the solution quality and computation time

of the approaches provided in Section V, which can reflect

the effectiveness and the real-time feasibility of the developed

MPC controller. The model in [13], [33] is also used as the

accurate model to simulate the “real-life network”, in order to

compare and evaluate the performance of the approaches.

We use the same urban rail network as introduced in Sec-

tion VI-A, and the parameters for train operation constraints

are listed in Table III, where rregular indicates the running time

from the corresponding platform to its successor platform of

the basic timetable.

For the SQP approach, we use the fmincon function of the

MATLAB Optimization Toolbox, and we adopt the gurobi

solver implemented in MATLAB (R2019b) to solve the MILP

problem. The experiments are performed on a computer with

an Intel Xeon W-2223 CPU and 8GB RAM.

TABLE III
PARAMETERS FOR TRAIN OPERATION CONSTRAINTS

Parameters Line 9 Line 14

Minimum dwell time 30 s 30 s
Minimum headway 144 s 144 s
Maximum running time 1.3 · rregular 1.3 · rregular

Minimum running time 0.8 · rregular 0.8 · rregular

The basic timetable of the given urban rail network can be

calculated by the parameters in Table I and the distance be-

tween each pair of consecutive platforms. The basic timetable

represents the case without optimization. In the case study,

we use the same data set with Section VI-A. We optimize the

arrival and departure times of each platform for 5 time steps

(i.e., 5 · Tctrl). As the real-time feasibility is also important

for the online implementation of an approach, the maximum

solution time is set as 3600 s.

Simulation results are shown in Table IV, where the per-

formance is the value of the objective function in (28). We

find that all the approaches have better performance than

basic timetable. In particular, the MILP approach has the best

performance with the improvements for 22.66% compared

with the basic timetable, while the improvement of SQP

(with 1 starting point), SQP (with 10 starting points), and

SMILP+SQP are 17.87%, 18.74%, and 18.30%, respectively.

In order to investigate the impact of regarding the variables

related to the number of passengers as real-valued variables,

we conduct an extra case study using the MILP formulation

and by regarding passengers’ number as integer variables,

which is indicated as MILP-int in Table IV. We can find that

the objective function value of MILP-int is very close to that

of MILP. As the number of integer variables grows rapidly, the

CPU time however increases dramatically, and the MILP-int

approach cannot get its optimal solution within 3600 s, which

indicates that MILP-int is not a suitable choice for real-time

timetable scheduling.

TABLE IV
COMPARISON OF PERFORMANCE AND COMPUTATION TIME

CORRESPONDING TO DIFFERENT PROBLEM FORMULATIONS

Method Objective function CPU time (s)

Basic timetable 1.3813 · 104 -

SQP (1 starting point) 1.1344 · 104 264.3

SQP (10 starting points) 1.1225 · 104 2845.7

SMILP (+SQP) 1.1285 · 104 8.2

MILP-int 1.0831 · 104 3600.0

MILP 1.0683 · 104 6.4

The simulation results show that MILP performs best in

terms of solution quality and solution time, which indicates

that we can use the MILP-based MPC controller for real-

time timetable scheduling. We can also find that the SQP

approach is a bit time consuming compared with the MILP

approach. SQP can easily fall into a suboptimal solution of

the non-convex optimization problem, and the implementation

of multi-start SQP can help to improve the performance of

SQP. However, the computational burden of multi-start SQP is

much larger than single-start SQP, which would also influence

the real-time feasibility of MPC. The SMILP approach can

be used to find a starting point for the SQP approach so
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as to further improve the performance. In the case study,

the solution obtained from SMILP approach is already a

suboptimal solution of SQP; therefore, the application of SQP

cannot further improve the performance of SMILP.

C. Closed-Loop Control for Real-Time Timetable Scheduling

In Section VI-A and Section VI-B, we have illustrated the

effectiveness of the developed model and the MILP-based

approach, respectively. In this section, numerical experiments

are conducted from the control side based on the accurate

model (i.e. the model of [13], [33]) and the newly developed

model.

The urban rail network is shown in Fig. 3, and all set-

tings related to the numerical experiment are identical with

Section VI-B. The simulation is conducted for 15 time steps

and the prediction horizon of MPC is 5 (i.e. 5 · Tctrl). In the

developed model, variables related to the number of passengers

are updated every time step.

TABLE V
PERFORMANCE OF MPC IN REAL-TIME TIMETABLE SCHEDULING

Prediction model Performance
CPU time (s)

tavrg tmax

Basic timetable Accurate model 7.0692 · 104 - -

SQP-based MPC Accurate model 6.1104 · 104 1799.4 2680.5

MILP-based MPC Proposed model 5.6763 · 104 4.0 9.1

It has been illustrated in Section VI-B that MILP-based

formulation performs best among the optimization approaches

provided in Section IV; therefore, we only use the MILP-

based MPC when employing the newly developed model as the

prediction model. For the accurate model, we use SQP-based

MPC as it is difficult to transform the MPC optimization prob-

lem of the accurate model into an MILP or SMILP problem.

As real-time feasibility is important for MPC, in this section,

we conduct numerical experiments for SQP-based MPC (with

one starting point) to obtain an acceptable performance. For

further improvement of SQP-based approach (with the cost of

increasing computational burden), we refer to multi-start SQP

approach which has been included in Section VI-B.

As Table V shows, both SQP-based MPC and MILP-based

MPC perform much better than the basic timetable, with

an improvement of 13.56% and 19.70% respectively in the

performance, which indicates that SQP-based MPC and MILP-

based MPC can be used to improve the performance of the

basic timetable. Although we use a more accurate model for

SQP-based MPC, MILP-based MPC performs slightly better

than SQP-based MPC, as SQP can fall into suboptimal solution

in the timetable scheduling problem.

We collect the computation time of the MPC optimization

problem in each control step. The average and maximum

CPU time of SQP-based MPC are 1799.4 s and 2680.5 s,

respectively, which indicates SQP-based MPC may not be a

suitable choice for real-time timetable scheduling. MILP-based

MPC is time efficiency, with average and maximum CPU time

as 4.0 s and 9.1 s, respectively.

In order to graphically show the results, we depict a part

of the timetable from Line 9 in the considered time window.
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Fig. 7. Basic timetable.
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Fig. 8. Timetable generated by SQP-based MPC.
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Fig. 9. Timetable generated by MILP-based MPC.
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The basic timetable, the timetable generated by SQP-based

MPC, and the timetable generated by MILP-based MPC are

shown in Fig. 7, Fig. 8, and Fig. 9, respectively. Both SQP-

based MPC and MILP-based MPC can adjust the arrival and

departure times in real time so that the performance of the

corresponding timetable is improved compared with that of

the basic timetable. The timetable of SQP-based MPC is not

the same as that of MILP-based MPC, because we only take

one starting point (considering the real-time feasibility of

the approach), which would typically result in a suboptimal

solution. In order to show the impact on the passengers of

different timetables more clearly, the variables related to the

number of passengers are analyzed in the following.
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Fig. 10. Total number of departing passengers at each time step.

The total number of departing passengers for all lines and all

platforms is depicted in Fig. 10. The timetable obtained from

the MILP-based MPC approach results in more boarding and

departing passengers, which means the resulting timetable can

make better use of the available trains.
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Fig. 11. Total number of waiting passengers at each time step.

The total number of waiting passengers before the train

departs and the total number of passenger who cannot board

the train, for all lines and all platforms, is depicted in Fig. 11

and Fig. 12, respectively. We can find that the timetable

obtained from the MILP-based MPC controller results in less
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Fig. 12. Total number of passengers that cannot depart at each time step.

number of waiting passengers and less number of passengers

who cannot depart, i.e., more passengers can board their target

trains, which indicates that MILP-based MPC can help to

improve passenger satisfaction.

VII. CONCLUSIONS

In this paper, we have proposed a novel passenger flow

model for real-time timetable scheduling of urban rail net-

works. By introducing the cycle time, the time-dependent

passenger origin-destination demands can be modeled very

efficiently, with a loss of accuracy at around 10% compared

with an accurate model for a simulation including part of

Beijing urban rail network. Furthermore, a model predic-

tive control framework was proposed for real-time timetable

scheduling. In order to increase the real-time feasibility of

MPC, the optimization problem in MPC has been transformed

into a mixed-integer linear programming problem, which can

be solved very fast by existing MILP solvers. Simulation

results indicate that the MILP approach can greatly reduce

the online computational burden of the MPC controller with

the developed model. The developed model and MILP-based

MPC controller can be used in real-time timetable scheduling

for real-life passenger-oriented urban rail networks.

In our future work, we will investigate the possibility of

using MILP-based MPC combined with more accurate models

by designing efficient methods to transform or approximate the

integral of the passenger arrival rates into mixed-integer linear

inequalities. We will design distributed control approaches for

large-scale networks, where the developed MILP-based MPC

controller will be used as the local controller. Furthermore,

flexible coupling of trains will be considered, so that the

capacity of trains at each cycle can be adjusted based on

passenger demands. The influence of uncertain passenger

demands and the order of trains will also be a topic for future

research.

APPENDIX A

The product of real-valued variable f and binary variable

δ can be transformed into linear inequalities by introducing
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an auxiliary real-valued variable z using the method in [41],

[42], with

z = δ · f. (37)

Then, z = δ · f is equivalent to














z ≤ Mf δ,
z ≥ mf δ,
z ≤ f −mf (1− δ),
z ≥ f −Mf (1− δ),

(38)

where Mf and mf denote the maximum and minimum value

of f , respectively.
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