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Finite-sample analysis of identification of
switched linear systems with arbitrary or

restricted switching
Shengling Shi, Member, IEEE , Othmane Mazhar, and Bart De Schutter, Fellow, IEEE

Abstract— For the identification of switched systems
with measured states and a measured switching signal, this
work aims to analyze the effect of switching strategies on
the estimation error. The data is assumed to be collected
from globally asymptotically or marginally stable switched
systems under switches that are arbitrary or subject to an
average dwell time constraint. Then the switched system is
estimated by the least-squares (LS) estimator. To capture
the effect of the parameters of the switching strategies
on the LS estimation error, finite-sample error bounds are
developed in this work. The obtained error bounds show
that the estimation error is logarithmic of the switching
parameters when there are only stable modes; however,
when there are unstable modes, the estimation error bound
can increase linearly as the switching parameter changes.
This suggests that in the presence of unstable modes, the
switching strategy should be properly designed to avoid the
significant increase of the estimation error.

Index Terms— Identification, Switched systems.

I. INTRODUCTION

THE finite-sample error analysis of identification methods
has recently received considerable attention [1]. When

the estimated model is used for controller design, the obtained
error bound is important in understanding the effect of the
estimation error on the control performance [1]. While several
works consider the finite-sample analysis of linear system
identification [2]–[7], the finite-sample analysis for identifying
hybrid systems has rarely been addressed [8]. In this work, we
consider the identification of a particular class of hybrid sys-
tems, i.e., switched linear systems (which consist of multiple
linear systems corresponding to different modes).

A practical setting is when the switching signal of a
switched system is measured, e.g., servo turntable systems
[9] and power systems with the switching signal as an input
for stabilization [10]. In this setting, the statistical analysis of
the identification problem has been considered in [11]–[13].
The authors of [11] consider a more general setup where the
outputs are measured instead of the states, and a subspace
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identification method is employed. However, the estimation
procedure requires collecting data from multiple independent
trajectories obtained by restarting the system. When both the
states and the switching signal are measured, the statistical
analysis of the switched LS estimator, i.e., applying the
standard LS estimator for every mode separately, has been
addressed recently in [12], [13]. The extension of the analysis
from the standard LS to switched LS is non-trivial, as the
covariances of the local estimators are coupled through the
system dynamics [6].

The authors in [13] have established the consistency of
the switched LS estimator; however, the result is asymptotic
and thus valid only when the data length approaches infinity.
The work [12] addresses the finite-sample analysis of the
switched LS estimator. The employed estimator requires sub-
sampling the data and knowing the noise covariance, typically
an unknown quantity. Furthermore, all the above three works
model the switching signal as a stochastic process, i.e., an i.i.d.
process or a Markov chain. This model may not be suitable
for some situations, e.g., when the switching is an external
input or caused by state-space partition.

This work aims to derive a finite-sample estimation error
bound for the LS estimation of switched linear systems from
the measured states and the measured switching signal. We
consider the typical classes of deterministic switching signals,
including arbitrary switching and switching with an average
dwell time constraint [14]. Under the considered classes of
switching signals, we assume the nominal switched system to
be globally marginally or asymptotically stable.

A preliminary estimation error bound is first obtained by
extending the results in [3] for linear systems; however, the
resulting bound contains the Gramian of the switched system,
which depends on the measured switching sequence. To obtain
an error bound that generally holds, independently of any
realization of the switching signal, and that captures the effect
of the parameters of the switching strategies, data-independent
bounds on the spectrum of the Gramian are developed and
then combined with the preliminary bound. In summary, the
contributions of this work are as follows:

• The existing data-independent finite-sample error bound
in [3] for linear system identification is extended to
switched systems.

• Data-independent error bounds for the spectrum of the
Gramian are developed for the switched system.
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Notation

For any positive integer k, [k] denotes the set {1, 2, . . . , k}.
Given any real matrix M , ρ(M) denotes its spectral radius,
σmax(M) denotes its maximum singular value, σmin(M)
denotes the minimum singular value, and M† denotes its
pseudoinverse. Given two symmetric matrices M and H , M ⩽
H and M < H means that H −M is positive semi-definite
and positive definite, respectively. For any real number c, ⌊c⌋
and ⌈c⌉ denote the floor function and the ceiling function,
respectively. For the summation

∑k1

j=k0
aj of any sequence

with some integers k0, k1, we define
∑k1

j=k0
aj ≜ 0 if k1 < k0.

II. PROBLEM FORMULATION

Consider the discrete-time switched linear system:

xt+1 = Awt
xt + et, (1)

where t ∈ Z+ is the time step, xt ∈ Rn is the state vector,
wt is the deterministic switching signal satisfying wt ∈ [s]
with s a positive integer, and et is a sub-Gaussian distributed
white noise vector with variance proxy 1 and E(ete⊤t ) = I .
The (nominal) system is said to be (globally) marginally
stable1 if, when the noise is absent, there exists a b such that
∥xt∥2 ⩽ b∥x0∥2 for any t and any x0. Similarly, (nominal)
global asymptotic stability is defined when the noise is absent.

We consider the LS estimation of the switched system
given the measurements in {(xt, wt)}Nt=1, when the switched
system is (globally) asymptotically or marginally stable. For
simplicity, we assume x0 = 0 for the data collection. For any
mode i ∈ [s], let Ti ⊆ [N − 1] denote the subset of time steps
when mode i is active, i.e., wt = i for all t ∈ Ti, and Ni ∈ Ti
denotes the last time step when mode i is active.

Then the LS estimator for mode i is

Âi = argmin
Ai

∑
t∈Ti

∥xt+1 −Aixt∥22,

=
( ∑

t∈Ti

xt+1x
⊤
t

)( ∑
t∈Ti

xtx
⊤
t

)†
. (2)

Equation (2) leads to

Âi −Ai = SiX
†
i , (3)

where Si ≜
∑

t∈Ti
etx

⊤
t , Xi ≜

∑
t∈Ti

xtx
⊤
t . Therefore,

the main goal is to derive a high-probability error bound
for ∥SiX

†
i ∥2. In addition, we focus on developing an error

bound that is data-independent and captures the dependence on
the parameters of the switching strategies. Data-independent
bounds are more theoretically informative than data-dependent
ones as they reveal how they scale with the properties of the
unknown system and the parameters of the switching signal
[1]. They also provide the worst-case guarantees as they hold
for any realization of the data.

Before we address the above problem, let us define some
notations. For any time step t, we adopt a shorthand notation:
A(t) ≜ Awt

. For any two positive integers j ⩾ k, we define

1While different definitions for marginal stability exist, we follow the notion
in [15].

A(j:k) ≜ A(j)A(j−1) . . . A(k) and A(j:k) ≜ I when j < k.
Then for any t, we have

xt = A(t−1:0)x0 +

t−1∑
i=0

A(t−1:t−i)et−1−i. (4)

We define the Gramian of the system:

Γt ≜
t−1∑
i=0

A(t−1:t−i)A
⊤
(t−1:t−i), (5)

and it can be found that E(xtx
⊤
t ) = Γt.

Remark 2.1: The results in this work remain valid if et is
replaced by a more general noise source ηt = σeet in (1),
which has E(ete⊤t ) = σ2

eI . This new noise will lead to the
same LS estimate (2) due to the cancellation of σe in (2).

III. PRELIMINARY ERROR BOUND

In this section, we obtain a preliminary high-probability
bound for ∥Ai− Âi∥2 by applying the result for linear system
identification. In particular, we start from the finite-sample
bound in [3]. While there are other bounds available for linear
systems, the one in [4] is derived for asymptotic stable system
only, and the one in [2] has an additional parameter introduced
by the analytical method.

Since the switching signal is deterministic, the bound in
[3] for linear systems extend to the estimation error of this
work with the difference that the Gramian for linear systems
is replaced by the Gramian in (5). To this end, we first define
T (0) ≜ K

(
n + ln 2

δ

)
, where K is some positive constant.

Then following [3, Sections 4, 9] analogously, the following
high-probability error bound for one mode can be obtained.

Theorem 3.1: For any δ ∈ (0, 1/4), if n ⩾ 2 and |Ti| ⩾

max{T (0), 64n ln
(
tr(ΓNi

− I) + 1
)
+ 128n ln

(5
δ

)
}, (6)

then with probability at least 1− 4δ, we have ∥Âi −Ai∥2 ⩽

1√
|Ti|

√
32n

[1
2
ln

(
4tr(ΓNi) + 1

)
+ ln

(5
δ

)]
. (7)

The result admits a less compact formulation when n = 1
[16]. The bound in (7) decreases as |Ti| increases, and it
holds uniformly for all the modes with probability at least
1−4sδ for any δ ∈ (0, 1/(4s)). The lower bound (6) requires
a mode to be visited sufficiently often and is related to the
persistent excitation of the state measurements, i.e., it ensures
that

∑
t∈Ti

xtx
⊤
t in (2) is invertible and also well-conditioned

with high probability. Similar requirements for the switching
sequence also appear, e.g., in [17].

Remark 3.1: The constant K in T (0) is due to a concen-
tration inequality of sub-Gaussian random matrices, see [3,
Proposition 8.3]. Concentration inequalities and the resulting
finite-sample results are typically not precise and hold up to
some unspecified constants, as discussed in [18] and shown
in [2]–[4]. The main objectives of interest are typically the
change rate of the guarantees when important parameters
change, e.g., the sample size or the state dimension. ■

The bound (7) depends on the switching sequence {wt}Nt=1

due to the Gramian ΓNi
. Given that tr(ΓT ) ⩽ nλmax(ΓT ),
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we will further upper bound λmax(ΓT ) for a certain class
of switching signals using the properties of the switching
class. Combining this upper bound with the results in this
section will lead to estimation error bounds that capture the
dependence on the parameters of switching strategies. These
error bounds can reveal how the properties of the switching
signal influence the estimation error.

Note that the derived bounds for the Gramian in the follow-
ing sections are also applicable to other finite-sample bounds
for linear system identification [2], [4], [5] when extended to
switched systems, as the Gramian is an essential object in these
bounds. In addition, since λmin(ΓT ) can also be of interest,
e.g., in [2], [4], the analysis of the lower bound for λmin(ΓT )
can be found in [16].

IV. SPECTRAL PROPERTIES OF THE GRAMIAN

To derive a bound for λmax(ΓT ) that captures the parame-
ters of the switching strategies, the properties of the switching
signal should be further specified. In this work, we consider
the typical classes of deterministic switching signals that are
arbitrary or under time restriction [14].

In addition, both sides of (6) depend on |Ti|; this is clear
when only a single mode is active, i.e., Ni = |Ti|. Thus,
λmax(ΓT ) should not grow too fast as T increases; otherwise,
there may not exist a Ti for (6) to hold. To control the growth
rate of λmax(ΓT ), the (nominal) switched system is assumed
to be asymptotically or marginally stable under switching.

A. Arbitrary switching

We first consider systems that are marginally or asymptot-
ically stable under arbitrary switching, i.e., any switching se-
quence. The following stability condition follows immediately
from [14, Theorem 6].

Lemma 4.1: The switched system is globally marginally
stable under arbitrary switching (or asymptotically stable) if
there exists a positive integer m such that ∥As1 . . . Asm∥2 ⩽ 1
(or ∥As1 . . . Asm∥2 < 1) for all sj ∈ [s] and j = 1, . . . ,m.

In the above case, we say that the switched system is
globally marginally or asymptotically stable with stability
horizon m. Here, m can be interpreted as a safe time horizon,
within which any switching sequence will not affect stability.
It has been shown in [14] that if global asymptotic stability
and the ∞-norm are considered instead, the above condition
is sufficient and necessary. In this work, we consider the 2-
norm to facilitate our analysis of λmax(ΓT ). With this result,
we aim to upper bound λmax(ΓT ) as a function of m.

Theorem 4.1: Define σmax ≜ maxi∈[s] σmax(Ai). If there
exist a positive integer m and a real number amax ∈ [0, 1] such
that ∥As1 . . . Asm∥2 ⩽ amax for all sj ∈ [s] and j = 1, · · · ,m,
then it holds that

λmax(ΓT ) ⩽
(m−1∑

i=0

σ2i
max

) ⌊(T−1)/m⌋∑
j=0

a2jmax. (8)

Proof: For any i ∈ {0, 1, . . . , T − 1}, it holds that i =
⌊i/m⌋m+bi for some non-negative integer bi < m. This leads

to ∥A(T−1,T−i)∥2 ⩽ ∥A(T−1,T−bi)∥2×

∥AT−bi−1,T−bi−m∥2 . . . ∥A(T−i+m−1,T−i)∥2
⩽ a⌊i/m⌋

max ∥A(T−1,T−bi)∥2 ⩽ σbi
maxa

⌊i/m⌋
max . (9)

Since ⌊i/m⌋ ∈ {0, . . . , ⌊(T − 1)/m⌋} and bi < m, it holds
that λmax(ΓT ) ⩽

T−1∑
i=0

∥A(T−1:T−i)∥22 ⩽
⌊(T−1)/m⌋∑

j=0

[
a2jmax

(m−1∑
b=0

σ2b
max

)]
,

which concludes the upper bound.
The upper bound can be simplified in special cases.

Corollary 4.1: In the setting of Theorem 4.1, if σmax ̸= 1
holds additionally, we have

λmax(ΓT ) ⩽ p(⌊T/m⌋+ 1), (10)

where p ≜ (1− σ2m
max)/(1− σ2

max); ■
The above corollary also covers the situation with σmax > 1,
and combining it with (7) can lead us to an estimation error
bound that depends on the stability horizon m:

Corollary 4.2: For any δ ∈ (0, 1/4), if the switched system
is globally marginally stable under an arbitrary switching
signal with stability horizon m, and if it holds that σmax ̸= 1,
n ⩾ 2 and |Ti| ⩾ max{T (0),

64n ln
(
n
[
p(⌊Ni/m⌋+1)− 1

]
+1

)
+128n ln

(5
δ

)
}, (11)

then with probability at least 1− 4δ, we have ∥Âi −Ai∥2 ⩽

1√
|Ti|

√
32n

[1
2
ln

[
4np(⌊Ni/m⌋+ 1) + 1

]
+ ln

(5
δ

)]
.

The above error bound is logarithmic of 1/m, and thus the
increase of the stability horizon m leads to a slow decrease
in the error bound. Intuitively, given a data length N , a larger
m leads to less informative state measurements and thus a
smaller Gramian in (7), which decreases the error bound.
The decay rate of the bound in terms of the data length is
O
(√

(lnN)/|Ti|
)
, which agrees with the asymptotic analysis

in [13, Corollary 4]. Furthermore, when the nominal system
is asymptotically stable, i.e., amax < 1, we have λmax(λT ) ⩽
m/(1−a2max), and combing this bound with (7) shows that the
estimation error of each mode is O

(
1/
√
|Ti|

)
, which matches

the optimal decay rate of the LS estimator for asymptotically
stable linear systems [4]. In addition, (11) requires |Ti| to scale
with the state dimension as O

(
n ln(n)

)
, which is in line with

the rate in [2].
Remark 4.1: The bound in Corollary 4.2 is pseudo-data-

independent, as |Ti| still varies over different switching se-
quences in the considered class of switching signals, i.e.,
arbitrary switching in this section. We choose to keep |Ti|
in the bound, as the data size of a particular mode is valuable
information for identifying one mode. In some situations,
e.g., with a stochastic switching that visits every mode with
a positive probability, it is possible to substitute |Ti| by a
function of the total sample size N , e.g., see a similar step
taken in [13] for the asymptotic analysis. Then the bound
becomes less tight but completely data-independent.
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B. Minimum dwell time

Time-restricted switching is a standard switching strategy
in the control of switched systems [14]. The intuition is that
if the system does not switch too often or stay too long at
unstable modes, the overall switched system can be stable.
We first consider switching with a dwell time constraint, where
each mode is stable, and the system stays in each mode for
a sufficiently long time such that the overall system is stable.
The concept of dwell time is defined as follows.

Definition 4.1: ( [14]) A positive integer τ is called a dwell
time of a switching signal if the time interval between two
consecutive switchings is not smaller than τ .

To characterize λmax(ΓT ) using the dwell time, we first
define several new variables that capture the system properties.
Let all Ai be Schur stable in this subsection, and there always
exist real constants ρ < 1 and ci ⩾ 1 such that ∥Ak

i ∥2 ⩽ ciρ
k

holds for any positive integer k and any i ∈ [s] [19]. Then,
we define c ≜ maxi∈[s] ci.

Finally, when the dwell time of the switching signal is larger
than a minimum dwell time τ⋆ such that the switched system
is marginally stable or asymptotically stable, we can upper
bound λmax(ΓT ) as a function of the minimum dwell time
and the constants c, ρ.

Theorem 4.2: Suppose that ρ(Ai) < 1 holds for all i ∈ [s],
and let τ⋆ be any positive integer such that ∥Aτ⋆

i ∥2 ⩽ a ≜
cρτ

⋆

⩽ 1. If the dwell time τ of the switching signal in (1)
satisfies τ ⩾ τ⋆, we have

•

λmax(ΓT ) ⩽ 1 + c4
ρ2

1− ρ2

(
1 +

T

τ⋆

)
; (12)

• if a < 1 also holds, we have

λmax(ΓT ) ⩽ 1 + c4
ρ4

1− ρ2

(
1 +

1− a⌊T/τ⋆⌋

1− a

)
. (13)

Proof: Let P denote the number of switches within the
time step interval [0, T − 1], and for any j ∈ [P ], tj denotes
the first time step of the new mode after the j-th last switch,
e.g., t1 is the first time step after the last switch. Therefore,
for the term A(T−1,T−i) in ΓT and if T − i < t1, we have for
some j ∈ [P ], ∥A(T−1,T−i)∥2 ⩽

∥A(T−1,t1)∥2 . . . ∥A(tj−1−1,tj)∥2∥A(tj−1,T−i)∥2
⩽ aj−1∥A(T−1,t1)∥2∥A(tj−1,T−i)∥2,

where the last inequality follows from the minimum dwell
time condition, and a = cρτ

⋆

⩽ 1.
According to the defined variables c and ρ, it holds that

∥A(tj−1,T−i)∥2 ⩽ cρtj−T+i, ∥A(T−1,t1)∥2 ⩽ cρT−t1 .

If T − i ⩾ t1, ∥A(T−1,T−i)∥2 ⩽ cρi. Therefore, we have

λmax(ΓT ) ⩽
T−1∑
i=0

∥A(T−1,T−i)∥22 ⩽ 1 +

T−t1∑
j=1

(cρj)2+

(cρT−t1)2
[ P−1∑

j=1

aj−1
( tj−tj+1∑

i=1

(cρi)2
)
+ aP−1

tP−1∑
k=1

(cρk)2
]
.

Given ρ < 1 and a ⩽ 1, for any positive integer N , we have∑N
k=1 ρ

2k ⩽ ρ2

1−ρ2 , which leads to

λmax(ΓT ) ⩽ 1 + c2
ρ2

1− ρ2

(
1 + Pc2ρ2(T−t1)

)
⩽ 1 + c2

ρ2

1− ρ2

(
1 + Pc2

)
⩽ 1 + c4

ρ2

1− ρ2

(
1 +

T

τ⋆

)
.

Finally, if a < 1, we have λmax(ΓT ) ⩽ 1 + c4 ρ2

1−ρ2 (1 +∑P
j=1 a

j−1). The fact that P ⩽ ⌊T/τ⋆⌋ together with the
above equation concludes the last bound.
The first bound (12) is valid when the switched system is
marginally stable, which is guaranteed by ∥Aτ⋆

i ∥2 ⩽ cρτ
⋆

⩽
1. The bound (12) shows that a smaller τ⋆ leads to a larger
bound for λmax(ΓT ), which can be interpreted as the effect
of more frequent switching on the more informative states.
The bound (13) is valid when the switched system is globally
asymptotically stable. Then combining (12) and (7) leads to
the following estimation error bound.

Corollary 4.3: In the setting of Theorem 4.2, for any δ ∈
(0, 1/4), if it holds additionally that n ⩾ 2 and |Ti| ⩾
max{T (0),

64n ln
[
n

c4ρ2

1− ρ2

(
1 +

Ni

τ⋆

)
+ 1

]
+ 128n ln

(5
δ

)
},

then with probability at least 1− 4δ, we have ∥Âi −Ai∥2 ⩽

1√
|Ti|

√
32n

[
ln

1

2

[
4nL+ 1

]
+ ln

(5
δ

)]
,

where L =
(
1 + c4 ρ2

1−ρ2 (1 +
Ni

τ⋆ )
)
. ■

Given |Ti|, the above bound is logarithmic of 1/τ⋆, and
thus a smaller minimum dwell time leads to a slow increase
of the error bound, while the error bound is dominated by the
sample size |Ti| and the state dimension n.

V. SPECTRAL PROPERTIES OF THE GRAMIAN WITH
AVERAGE DWELL TIME

The so-called average dwell time constraint limits the num-
ber of switches in each time period, and it is less restrictive
than the requirement for the minimum dwell time in the
following two aspects: (i) Unstable modes are allowed to exist,
while stability can still be guaranteed by the switching signal;
(ii) switches can happen consecutively [19]. In this section,
we aim to upper bound λmax(ΓT ) when the switching signal
satisfies an average dwell time constraint. We consider the
possible existence of unstable modes: assume ρ(Ai) < 1
for i ∈ [s0], with some s0 < s, and ρ(Aj) ⩾ 1 for all
j ∈ {s0 + 1, · · · , s}. In addition, there always exist positive
real numbers λ1 < 1, λ2 ⩾ 1, and Cv ⩾ 1 with v ∈ [s], such
that for any positive integer k, it holds that ∥Ak

i ∥ ⩽ Ciλ
k
1 and

∥Ak
j ∥ ⩽ Cjλ

k
2 , where i ∈ [s0] and j ∈ {s0 + 1, · · · , s} [19].

Then we define
C = max

v∈[s]
{Cv}. (14)

Motivated by the class of switching signals in [19], we
consider a slightly different class of switching signals in order
to control the growth rate of λmax(ΓT ). To introduce it, let
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Nw(0, t) denote the number of switches of wt within the
time step interval [0, t). Let K−(0, t) and K+(0, t) denote the
number of time steps of the stable and unstable modes within
the time step interval [0, t), respectively. Then the considered
class of switching signals is defined as follows.

Definition 5.1: Given λ ∈ (λ1, λ2), λ⋆ ∈ (λ1, λ], τa > 0, a
non-negative integer N0, and a positive integer h, a class of
switching signals, denoted by S(τa, N0, λ, λ

⋆, h), satisfy the
following condition: for any positive integer j, it holds that

1)

K−((j − 1)h, jh
)
⩾ rK+

(
(j − 1)h, jh

)
, (15)

where r ≜ (lnλ2 − lnλ⋆)/(lnλ⋆ − lnλ1), and
2)

Nw

(
(j − 1)h, jh

)
⩽ N̄w. (16)

where N̄w ≜ N0 + h/τa. ■
The conditions (15) and (16) constrain the number of unstable
modes and switches in the time step intervals with length
h. The condition (16) indicates that if the first N0 switches
are ignored, then the average time step interval between two
consecutive switches should be at least τa, and τa is thus called
the average dwell time [19]. These conditions are extended
from the ones in [19], where the same conditions hold with
h = T and j = 1. Intuitively, (15) and (16) lead to more
evenly distributed unstable modes in a switching sequence,
which can facilitate our analysis of ΓT . We should also note
that (15) and (16) are not restrictive if h is sufficiently large.

Given the defined class of switching signals, it is a straight-
forward extension of [19, Theorem 3] to show the stability of
the nominal switched system.

Lemma 5.1: • If C = 1 and λ⋆ ⩽ 1
(
or λ⋆ < 1

)
hold,

then the switched system is globally marginally stable
(or asymptotically stable) for any switching signal w ∈
S(τa, N0, λ, λ

⋆, h) with any N0, τa, λ and h;
• If C > 1, λ ∈ (λ1, 1), λ⋆ ∈ (λ1, λ) hold, and N0 sat-

isfies N0 ln(C) ⩽ −h ln(λ)
(
or N0 ln(C) < −h ln(λ)

)
,

then there exists a τ⋆a such that the switched system is
globally marginally stable (or asymptotically stable) for
any switching signal w ∈ S(τ⋆a , N0, λ, λ

⋆, h).
Proof: Recall C defined in (14), and thus (15) implies

∥A(jh−1:(j−1)h)∥2 ⩽ CNw((j−1)h,jh)(λ⋆)h, (17)

for any positive integer j, and thus the first statement holds
trivially. If C > 1, then following a reasoning similar to the
proof of [19, Theorem 3], there exists

τ⋆a = ln(C)/(lnλ− lnλ⋆), (18)

such that given N0 ⩽ −h ln(λ)/ ln(C), (16) implies

CNw((j−1)h,jh)(λ⋆)h ⩽ CN0λh ⩽ 1. (19)

The above last inequality is strict if N0 < −h ln(λ)/ ln(C).
Then for any t, there exists a non-negative integer b < h

such that t = ⌊t/h⌋h + b. Based on (17) and (19), we have

∥xt∥2 ⩽

∥A(t−1:t−b)∥2∥A(⌊t/h⌋h−1:(⌊t/h⌋−1)h)∥2 · · · ∥A(h−1:0)∥2∥x0∥2

⩽ ∥x0∥2(Cλ2)
h−1

⌊t/h⌋∏
j=1

[
(C)Nw((j−1)h,jh)(λ⋆)h

]
Therefore, if N0 ⩽ −h ln(λ)/ ln(C), we have (19) and thus,
the system is marginally stable. If N0 < −h ln(λ)/ ln(C), the
system is then asymptotically stable.
In the above result, the case with C = 1 covers the situation
where all the modes Ai are diagonal matrices; when C > 1,
stability is achieved by upper bounding N0, while in [19]
N0 can be chosen arbitrarily. However, the upper bound
−h ln(λ)/ ln(C) is not restrictive if h is sufficiently large.

Finally, with the considered class of switching signals, an
upper bound for λmax(ΓT ) can be obtained.

Theorem 5.1: Given a switched system with a switching
signal in S(τa, N0, λ, λ

⋆, h), if it satisfies either (i) C = 1 and
λ⋆ ⩽ 1, or (ii) C > 1, λ ∈ (λ1, 1), λ⋆ ∈ (λ1, λ). N0 ln(C) ⩽
−h ln(λ) and τa = τ⋆a defined in (18), then it holds that

λmax(ΓT ) ⩽ g(k0) + g(h)f(k0)
2⌊T/h⌋, (20)

where the function g is defined in (22), the function f is
defined in (21), and k0 = T − h⌊T/h⌋.

Proof: We first consider the time step interval [(j −
1)h, jh), for every positive integer j. Let K̄+ ≜ ⌊h/(1 + r)⌋
be the maximum allowable number of unstable modes in [(j−
1)h, jh) according to (15). Then for i = 0, 1, · · · , h, we have
∥A(jh−1:jh−i)∥2 ⩽

f(i) ≜


CN̄wλi

2 if 1 ⩽ i ⩽ K̄+

CN̄wλK̄+

2 λi−K̄+

1 if h > i > K̄+

1 if i = 0

a if i = h

, (21)

where it holds a = (λ⋆)h in case (i) according to (17), or
a = CN0λh in case (ii) due to (19). Then it holds that∑b−1

i=0 ∥A(jh−1:jh−i)∥22 ⩽ g(b) ≜ 1 + C2N̄w×

[min{b−1,K̄+}∑
j=1

λ2j
2 + λ2K̄+

2

min{b−1,h−1}∑
k=K̄++1

λ
2(k−K̄+)
1

]
, (22)

where b ∈ {1, 2, . . . , h}, and g(0) ≜ 0. Then for any
T , there exists a k0 < h such that T = ⌊T/h⌋h + k0.
If i > k0, based on (19) we have ∥A(T−1:T−i)∥2 ⩽
a⌊(i−k0)/h⌋∥A(T−1:T−k0)∥2∥A(jh−1:jh−l)∥2, for some pos-
itive integer j and some l ∈ {0, . . . , h − 1}. There-
fore, it holds λmax(ΓT ) ⩽

∑T−1
i=0 ∥A(T−1:T−i)∥22 ⩽∑k0−1

j=0 ∥A(T−1:T−j)∥22

+ ∥A(T−1:T−k0)∥
2
2

( ⌊T/h⌋−1∑
j=0

a2j
h−1∑
l=0

∥A(kjh−1:kjh−l)∥22
)

⩽ g(k0) + g(h)f(k0)
2

⌊T/h⌋−1∑
j=0

a2j , (23)

where kj = 1, · · · , ⌊T/h⌋. The result is obtained from a =
(λ⋆)h ⩽ 1 in case (i) and a = CN0λh ⩽ 1 in case (ii).
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The bound of the above result shows λmax(ΓT ) = O(T ) for
marginally stable systems. When the system is asymptotically
stable, a bound can be obtained by exploiting (23) and a < 1.
To better interpret the upper bound, we consider the special
case where h is a factor of T .

Corollary 5.1: In the setting of Theorem 5.1, if T −
h⌊T/h⌋ = 0 also satisfies, then it holds that λmax(ΓT ) ⩽
⌊T/h⌋×[

1 + C2N̄w

(
λ
2(K̄++1)
2 − λ2

2

λ2
2 − 1

+ λ2K̄+

2

λ2
1 − λ

2(h−K̄+)
1

1− λ2
1

)]
,

where K̄+ ≜ ⌊h/(1 + r)⌋. ■
Given h, the above bound increases if more switches are
allowed, i.e., a larger N̄w, or if more unstable modes can be
active, i.e., a larger K̄+. In addition, the bound admits an
exponential growth rate in h: Let C = 1, then λmax(ΓT ) is
O(⌊T/h⌋λk1h

2 ) for some positive constant k1, and if T ⩾ h
holds, this bound increases exponentially as h increases. This
is due to that a larger time interval h in Definition 5.1 allows
the unstable modes to be active continuously for a longer
period, and it further leads to a linear dependence on

√
h in

the estimation error bound (7), in contrast to the logarithmic
dependence on the switching parameters in Corollaries 4.2
and 4.3. Therefore, h should be limited to avoid the potential
significant increase of the estimation error.

With the above bounds, a bound for the LS estimation error
can be obtained by combining (20) and (7). A numerical
example is shown in Fig. 1, and the data is generated by
a two-mode system which contains A1 = diag(0.5, 0.5),
A2 = diag(2, 2) and satisfies the case (i) in Theorem 5.1.

(a) (b)

Fig. 1. In (a), the bound (20) is compared with λmax(ΓT ), where
the bound correctly capture the behavior of λmax(ΓT ); the resulting
estimation error bound for the unstable mode is shown in (b) and is
compared to 300 error trajectories resulting from 300 noise realizations.
The bound captures the behavior of the error up to a constant, i.e., its
magnitude is conservative but captures the decay trend.

VI. CONCLUSIONS
Finite-sample error bounds are developed for the LS es-

timation of switched systems, such that the bounds capture
the effect of the parameters of the switching strategies. It is
shown that when there are only stable modes, the bound is
logarithmic of the switching parameters; however, the presence
of unstable modes leads to a linear increase of the error bound
as the change of the switching parameter. This suggests that
when there are unstable modes, the switching signal should

be properly designed to avoid a significant increase in the
estimation error. While the developed theoretical error bounds
are conservative as they concern the worst-case estimation
error under the considered classes of switching signals, they
reveal how the estimation error scales with the sample size and
the important parameters of the switched systems. Future work
includes the application of the developed bounds to analyze the
sample complexity of hybrid controllers [1], the development
of less conservative bounds for practical applications, and
the consideration of output measurements and unmeasured
switching signal.
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