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Model Reference Adaptive Stabilizing Control with

Application to Leaderless Consensus
Dongdong Yue, Member, IEEE, Simone Baldi, Senior Member, IEEE, Jinde Cao, Fellow, IEEE

and Bart De Schutter, Fellow, IEEE

Abstract—This paper describes an extension of the well-
known model reference adaptive control (MRAC) approach. The
extension relies on explicitly involving the tracking error in the
feedback control law: it is shown that including this term along
with its appropriate extra adaptive gain allows to handle possibly
unstable reference dynamics. Due to its stabilizing nature, the
proposed framework is referred to as model reference adaptive
stabilizing control (MRASC). Such an extension turns out to
be particularly useful in leaderless consensus of heterogeneous
uncertain agents, since the literature has discussed that leaderless
adaptation may not avoid unstable closed-loop dynamics. In such
consensus setting, the framework, referred to as model reference
adaptive stabilizing consensus (MRASCon), generalizes existing
MRAC-based consensus schemes and can achieve consensus when
state-of-the-art MRAC-based schemes may fail.

Index Terms—MRAC, adaptive stabilization, consensus, di-
rected spanning tree, multiagent systems.

I. INTRODUCTION

Abbreviations:

MRAC Model Reference Adaptive Control
MRACon Model Reference Adaptive Consensus
CMRAC Closed-loop Model Reference Adaptive Control
CMRACon Closed-loop Model Reference Adaptive Consensus
MRASC Model Reference Adaptive Stabilizing Control
MRASCon Model Reference Adaptive Stabilizing Consensus

Model Reference Adaptive Control (MRAC) is a long-

standing and powerful tool for controlling uncertain systems,

with the goal of tracking a reference model specified by the

designer. As sketched in Fig. 1 (left), the idea of MRAC is

to tune the behavior of the closed-loop system so as to match

that of the reference model [1]–[3].

Recent years have seen increasing research devoted to

improving MRAC. One modification of MRAC is recognized

as closed-loop MRAC (CMRAC) [4], [5], sketched in Fig. 1

(right): this comes from the fact that the classic (open-loop)

reference model is modified into a closed-loop reference model

by explicitly involving the tracking error in the reference dy-

namics. In CMRAC, the tracking problem is separated into two
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Fig. 1. Block diagrams of MRAC (left) and CMRAC (right). CMRAC
modifies the original reference model: the modified closed-loop reference
model plays a role of an observer of the original reference model.

objectives, i.e., the tracking of the closed-loop reference, and

the convergence of the closed-loop reference to the original

open-loop reference. These two objectives arise because the

closed-loop reference model plays the role of an observer.

This observer introduces a new degree of freedom in CMRAC,

which can provide better transient behavior than MRAC under

suitable observer gains [4]. Nevertheless, due to its separation

nature, CMRAC may tend to deviate from the target open-loop

reference model (cf. our simulations in Section IV).

When MRAC is applied to multiagent systems, several in-

teresting results have been reported in recent years. For linear

heterogeneous uncertain agents, it has been shown that leader-

follower tracking is attainable via hierarchical distributed

model reference adaptation [6], or via MRAC-based adaptation

in both feedback gains and coupling gains [7]. Meanwhile, the

idea of CMRAC has also been adopted in a multiagent setting

to address leader-follower tracking problems [8], [9].

The problem of leaderless consensus is essentially different

from that of leader-follower tracking: without a leader, the

agents have to reach consensus by purely collaborating with

each other. It has been shown, for a network of linear het-

erogeneous harmonic oscillators with unknown frequencies,

that leaderless consensus is attainable by adaptively learning

an a priori unknown group model [10]. More recently, the

MRACon framework has been proposed for leaderless consen-

sus [11], assuming that the communication graph among the

agents is directed (asymmetric) with a spanning tree structure:

this is widely known as a general assumption in the field of

multiagent systems [12]–[16].

The main contribution of this paper is twofold:

1) A novel extension of MRAC is proposed, which is called

model reference adaptive stabilizing control (MRASC)

and is sketched in Fig. 2. Partly inspired by CMRAC

[4], [5], MRASC also involves the tracking error for

feedback. However, differently from CMRAC, MRASC

feeds the tracking error directly into the control loop. As
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Fig. 2. Diagram of the proposed MRASC approach. MRASC modifies the
adaptive controller: the tracking error is explicitly involved for feedback
control along with its appropriate extra adaptive gain.

such, MRASC does not modify the target reference model

to track. Compared with MRAC/CMRAC, MRASC can

exhibit better transient behavior and, more importantly,

can handle marginally stable or unstable reference models

thanks to a properly designed adaptive stabilization term.

2) Motivated by its ability to track unstable reference mod-

els, MRASC is suitably adopted in leaderless multiagent

systems, resulting in a new framework named model ref-

erence adaptive stabilizing consensus (MRASCon). The

novelty comes from the result known in the literature [17]

that the consensus manifold in MRAC-based leaderless

adaptation cannot be specified a priori and might even

be divergent. MRASCon allows to specify the consensus

manifold by selecting proper reference dynamics. We

show that when unstable closed-loop dynamics arise, em-

bedding state-of-the-art MRAC within the framework of

MRACon [11] may fail to solve the consensus problem.

Notations: Denote R,C as the real and complex space of

numbers, respectively. For a λ ∈ C, denote λH as its complex

conjugate and R(λ) as its real part. For a vector a, span(a)
is the real space spanned by a, i.e., {κa|κ ∈ R}. For a matrix

A, let null(A) be its zero space; if A is square, let λi(A) with

some subscripts i be its eigenvalues. Let I be the identity

matrix and 1 be the vector with each element being 1, where

the dimensions are omitted when clear from the context. The

operator ⊗ stands for the Kronecker product.

Basics of graph theory: A directed graph (or simply di-

graph) G(V, E ,A) consists of a node set V = {1, 2, · · · , N},

an edge set E = {Eij |i → j, i 6= j}, and an weighted

adjacency matrix A = (aij) ∈ R
N×N such that aij > 0

if Eji ∈ E ; and aij = 0 otherwise. The Laplacian matrix

L = (lij) ∈ R
N×N associated with G consists of lij = −aij

for i 6= j, and lii =
∑N

j=1 aij . For Eij ∈ E , i is called an in-

neighbor of j and j an out-neighbor of i in return: i ∈ Nin(j)
and j ∈ Nout(i). A path is a sequence of edges connecting a

pair of nodes, which respects the edge directions. A directed

spanning tree Ḡ(V, Ē , Ā) of G is a subgraph with the same

nodes and selected edges from G, such that there exists a

root (i.e., a node that has no in-neighbors) and one can find a

unique path from the root to every other node. Let pk denote

the unique in-neighbor (parent) of node k + 1 in Ḡ(V, Ē , Ā),
k = 1, · · · , N − 1.

II. MRASC: MODEL REFERENCE ADAPTIVE STABILIZING

CONTROL

A. Problem formulation

Consider an LTI system with dynamics

ẋ(t) = Ax(t) +Bu(t) (1)

in which x ∈ R
n is the state, and u ∈ R is the control input.

The matrices A ∈ R
n×n and B ∈ R

n are assumed to be

unknown.

The control objective of a standard MRAC framework is to

design u such that the plant state follows the state xm ∈ R
n

of a reference model specified by the LTI system

ẋm(t) = Amxm(t) +Bmr(t) (2)

where the pair (Am, Bm) has the same dimension as the pair

(A,B), and the reference input r ∈ R is continuous. The

reference model (2) is open-loop as its dynamics will not be

directly influenced by the tracking error e = x− xm.

In line with the standard MRAC formulation (see e.g.

[2, Ch. 3.3.2] and [3, Ch. 6.2]), the following condition is

assumed.

Assumption 1 (Matching condition): There exist ideal gains

K∗ ∈ R
1×n and L∗ ∈ R such that

A+BK∗ = Am, BL∗ = Bm (3)

where K∗, L∗ are unknown but sgn(L∗) is a priori known.

However, differently from standard MRAC, the matrix Am

is not necessarily stable. Instead, we make the following more

general assumption.

Assumption 2 (Stabilizability): The pair (Am, Bm) is stabi-

lizable.

Remark 1: It is known in the MRAC literature that As-

sumption 1 amounts to imposing some structural requirements

so that the unknown plant (1) can match the behavior of the

reference model (2) for some unknown gains. Notice that the

single-input case is considered here as in the standard MRAC

formulation. Addressing multiple inputs is possible provided

that other structural conditions are satisfied.

In the following, let us show how the standard MRAC needs

to be modified in such a way as to handle the more general

Assumption 2.

B. MRASC: design and stability

Under Assumption 2, it follows from [18, Th. 3] that there

exists a unique solution P > 0 of the algebraic Riccati

equation1:

AT
mP + PAm − PBmB

T
mP + I = 0. (4)

Furthermore, upon defining

G = −BT
mP, (5)

the matrix Am + BmG is asymptotically stable, i.e., G is a

stabilizing gain of (Am, Bm).

1This holds as (I, Am) is detectable. Equation (4) may be generalized to
AT

mP +PAm −PBmB
T
m P +CTC = 0 for a detectable pair (C,Am). For

the sake of simplicity, we choose C = I .
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Consider the following feedback adaptive law, which we call

model reference adaptive stabilizing control (MRASC) law:

u = K̂(t)x+ L̂(t)r + F̂ (t)e

˙̂
K = −γ sgn(L∗)BT

mPexT

˙̂
L = −γ sgn(L∗)BT

mPerT

˙̂
F = −γ sgn(L∗)BT

mPeeT (6)

where K̂(t), L̂(t) are the estimates of K∗, L∗ in (3), respec-

tively, and F̂ (t) is the estimate of F ∗ , L∗G with G as in

(5). Moreover, γ ∈ R
+ is a constant adaptation gain. It is

clear that, as compared to the standard MRAC scheme, the

proposed scheme (6) includes an explicit feedback gain from

the tracking error (cf. Fig. 2), leading to an extra adaptive law.

Define K̃ = K̂ −K∗, L̃ = L̂− L∗, and F̃ = F̂ − F ∗ as the

parameter estimation errors.

Remark 2: The additional term F̂ e can be seen as a con-

sensus term between the reference model (2) and the system

(1). The idea of introducing a consensus between the reference

model and the system was introduced in closed-loop MRAC

(CMRAC) [4], [5]. However, in CMRAC, the consensus term

is introduced as a closed-loop action in the reference model

(called, for this reason, closed-loop reference model), which

modifies its original open-loop dynamics. In (6), the consensus

term is introduced in the controller, without modifying the

reference dynamics.

We have the following result for MRASC.

Theorem 1: Under Assumptions 1-2, consider the MRASC

(6) law applied to the plant (1) with reference model (2). Then,

the tracking error e converges to zero asymptotically, and the

parameter estimation errors K̃, L̃, F̃ are globally uniformly

bounded.

Proof. In the ideal case that K∗, L∗ are known, so that F ∗

would also be known, the ideal controller u∗ = K∗x+L∗r+
F ∗e would result in the stable error dynamics

ė = (Am +BmG)e, (7)

which is stable by the design of G.

However, K∗, L∗ are unknown since the pair (A,B) is

unknown, which prevents us from using the ideal controller u∗.

Nevertheless, u∗ can be used for stability analysis by adding

and subtracting Bu∗ in (1), which leads to the closed-loop

plant x as

ẋ =Ax+BK̂x+BL̂r +BF̂e+BK∗x

+BL∗r +BF ∗e−BK∗x−BL∗r −BF ∗e

=Amx+Bmr +BmGe+B(K̃x+ L̃r + F̃ e). (8)

Then, the error dynamics becomes

ė =(Am +BmG)e+B(K̃x+ L̃r + F̃ e)

=(Am +BmG)e+BmL
∗−1(K̃x+ L̃r + F̃ e). (9)

The equation (9) relates the tracking error with the param-

eter estimation errors, and can be used to prove stability. To

proceed, consider the Lyapunov candidate

V = eTPe+ γ−1
(

tr(K̃TΓK̃) + tr(L̃TΓL̃) + tr(F̃TΓF̃ )
)

(10)

where P is defined in (4) and Γ , L∗−1 sgn(L∗). Note that

both P and Γ are positive definite.

The derivative of (10) along the trajectory of (9) is given

by

V̇ =2eTP (Am +BmG)e+ 2eTPBmL
∗−1(K̃x+ L̃r + F̃ e)

+ 2γ−1
(

tr(K̃TΓ
˙̂
K) + tr(L̃TΓ

˙̂
L) + tr(F̃TΓ

˙̂
F )

)

. (11)

Substituting (4) and (5) leads to

V̇ =− eT (I + PBmB
T
mP )e

+ 2eTPBmL
∗−1(K̃x+ L̃r + F̃ e)

+ 2γ−1
(

tr(K̃TΓ
˙̂
K) + tr(L̃TΓ

˙̂
L) + tr(F̃TΓ

˙̂
F )

)

. (12)

Note that

eTPBmL
∗−1

K̃x =xT K̃TL∗−1
BT

mPe

=tr(K̃TL∗−1
BT

mPexT ) (13)

where the second equality holds since the trace operator is

invariant under cyclic permutations. Clearly, with the definition

of Γ and the designed
˙̂
K in (6),

eTPBmL
∗−1

K̃x+ γ−1tr(K̃TΓ
˙̂
K)

=eTPBmL
∗−1

K̃x− tr(K̃TL∗−1
BT

mPexT ) = 0. (14)

Similar analysis as (13)-(14) can be performed for the other

terms related with L̃ and F̃ . Then, it follows from (12) that

V̇ = −eT (I + PBmB
T
mP )e ≤ 0. (15)

Let us denote the right-hand side of equation (9) as ė =
f(e, t). Since both f and ∂f

∂e
are continuous, f(e, t) is locally

Lipschitz in e uniformly in t [19, Lem. 3.2]. Then, applying

the LaSalle-Yoshizawa Theorem [1, Th. 2.1], all signals e, K̃,

L̃, F̃ are globally uniformly bounded and

lim
t→∞

eT (I + PBmB
T
mP )e = 0 ⇒ lim

t→∞
e = 0. (16)

This completes the proof.

Remark 3: In MRAC and CMRAC, the matrix Am of the

reference model must be stable. The proof of Theorem 1 shows

that the novel adaptive stabilization term in (6) makes the

tracking error converge to zero even without the condition that

Am is stable. This feature endows MRASC with the power to

track an unstable reference model with asymptotic convergent

errors: though possibly resulting in unbounded control signals

at infinity, in practice one may exploit such a feature in a short

time interval to generate certain patterns in the state response,

e.g., spikes, as discussed in [20].

Remark 4: As known from classical MRAC results, there is

no guarantee in general that the estimates K̂, L̂, F̂ converge

to their ideal values (cf. [3, Ch. 6.4] and recent relaxed

persistence of excitation conditions to guarantee convergence

of the estimation errors to zero [21], [22]). With this in mind,

we will address a consensus problem in the following section,

where the proposed MRASC law plays an important role.



4

III. MRASCON: MODEL REFERENCE ADAPTIVE

STABILIZING CONSENSUS

A. Problem formulation

Consider a network of N heterogeneous LTI agents where

the dynamics of the i-th (i ∈ {1, 2, · · · , N}) agent follows

ẋi(t) = Aixi(t) +Biui(t) (17)

in which xi ∈ R
n is the state, and ui ∈ R is the control input.

The matrices Ai ∈ R
n×n and Bi ∈ R

n are assumed to be

unknown. The interaction graph between the agents (17) is a

digraph denoted by G(V, E ,A) or simply G.

The control objective is to design ui such that the agents

reach consensus, i.e., limt→∞ ‖xi(t)− xj(t)‖ = 0, ∀i, j ∈ V .

Along with the previous Assumption 2, the following assump-

tions are made.

Assumption 3 (Decentralized matching condition): There

exists a family of homogenization gains K∗
i ∈ R

1×n and

L∗
i ∈ R such that

Ai +BiK
∗
i = Am, BiL

∗
i = Bm (18)

where K∗
i , L∗

i are unknown but sgn(L∗
i ) is a priori known,

∀i ∈ V .

Assumption 4 (Connectivity): The communication digraph

G(V, E ,A) contains a directed spanning tree Ḡ(V, Ē , Ā) (the

specific structure of the tree is not necessarily known).

Remark 5: Assumption 3 extends Assumption 1 from a

single plant to a multiagent network. Assumption 4 is standard

in the field of multiagent systems [12]–[16]. In fact, undirected

or directed acyclic communication graphs are often required

in state-of-the-art distributed MRAC [6]–[10], which is more

conservative than Assumption 4.

B. A technical lemma

Under Assumption 4, let us construct two matrices based

on Ḡ(V, Ē , Ā). Define Ξ ∈ R
(N−1)×N as

Ξkj =







−1, if j = k + 1,
1, if j = pk,

0, otherwise.

(19)

In fact, Ξ is the difference matrix along the tree: Ξx = (xp1
−

x2, xp2
−x3, · · · , xpN−1

−xN )T for any vector x. Define Q ∈

R
(N−1)×(N−1) as

Qkj =
∑

c∈V̄j+1

(Lk+1,c − Lpk,c
), (20)

where V̄j+1 represents the vertex set of the subtree of Ḡ rooting

at node j + 1. Note that L is the Laplacian matrix of the

communication digraph G.

Lemma 1 ([15], [16]): Under Assumption 4, the following

statements hold for L (of G), and Ξ, Q defined above:

1) 0 = λ1(L) < R(λ2(L)) ≤ R(λ3(L)) ≤ · · · ≤
R(λN (L)). Moreover, null(L) = span(1N ).

2) ΞL = QΞ. Moreover, null(Ξ) = span(1N ).
3) λi(Q) = λi+1(L), i = 1, · · · , N − 1.

C. MRASCon: design and stability

Inspired by MRACon [11], we propose a novel MRASCon

framework in this section. The idea of MRASCon is to sep-

arate the consensus problem into two parts: the decentralized

tracking of each agent to a local reference model by MRASC

established in the previous section, and the consensus over the

reference models by manipulating their external inputs. This

results in a reference model for each agent i ∈ V as

ẋm,i(t) = Amxm,i(t) +Bmri(t),

ri(t) = r(t) + cG

N
∑

j=1

aij(xi(t)− xj(t)) (21)

where Am, Bm are defined in (18), aij is from the adjacency

matrix A, and r(t) is a user-designed common reference input

playing a similar role as the reference model input in (2). Here,

c ∈ R
+ is the coupling gain of the network and G ∈ R

1×n

is the stabilizing gain defined as in (5). The reference models

(21) are open-loop as they are not affected by the tracking

errors ei = xi − xm,i, i ∈ V .

Consider the following feedback adaptive law, which we call

model reference adaptive stabilizing consensus (MRASCon)

law:

ui = K̂i(t)xi + L̂i(t)ri + F̂i(t)ei
˙̂
Ki = −γi sgn(L

∗
i )B

T
mPeix

T
i

˙̂
Li = −γi sgn(L

∗
i )B

T
mPeir

T
i

˙̂
Fi = −γi sgn(L

∗
i )B

T
mPeie

T
i (22)

where K̂i(t), L̂i(t) are the estimates of K∗
i , L

∗
i in (18), re-

spectively, and F̂i(t) is the estimate of F ∗
i , L∗

iG. Moreover,

γi ∈ R
+ is the constant gain for adaptation.

Theorem 2: Under Assumptions 2-4, consider the MRAS-

Con law (22) applied to the multiagent system (17) with

reference models (21). Then, for each agent i ∈ V , all tracking

errors ei converge to zero asymptotically, and all parameter

estimation errors K̃i, L̃i, F̃i are globally uniformly bounded.

Furthermore, if c ≥ 1
2R(λ2(L)) , the multiagent system (17)

reaches consensus asymptotically.

Proof. Following similar steps as in the proof of Theorem 1,

the dynamics of ei can be obtained as

ėi = (Am +BmG)ei +Bi(K̃ixi + L̃iri + F̃iei). (23)

Similarly to (10), consider the Lyapunov candidate

Vi = eTi Pei + γ−1
i

(

tr(K̃T
i ΓiK̃i) + tr(L̃T

i ΓiL̃i) + tr(F̃T
i ΓiF̃i)

)

(24)

where P is defined in (4) and Γi , L∗
i
−1 sgn(L∗

i ) > 0. Along

similar lines as the proof of Theorem 1, one can conclude

that the closed-loop error signals ei, K̃i, L̃i, F̃i are globally

uniformly bounded, and the tracking errors ei converge to zero

asymptotically.
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Let xm, x, e be the stacked vectors of xm,i, xi, ei, respec-

tively (e.g., xm = (xT
m,1, x

T
m,2, · · · , x

T
m,N )T ). It follows from

(21) that

ẋm = (I ⊗Am)xm + c(L ⊗BmG)x + (1N ⊗Bmr)

= (I ⊗Am + cL ⊗BmG)xm

+ c(L ⊗BmG)e + (1N ⊗Bmr). (25)

Let x̄m = (Ξ ⊗ I)xm where Ξ is defined as in (19). Since

null(Ξ) = span(1N ) (see Lemma 1), one has Ξ1N = 0, and

x̄m = 0 if and only if xm,i = xm,j for any i, j ∈ V . Based on

statement 2 of Lemma 1, we have

˙̄xm = (I ⊗Am + cQ⊗BmG)x̄m + c(ΞL ⊗BmG)e (26)

where Q is defined as in (20).

Next, we claim that the first part of the dynamics in (26)

is stable, i.e., the matrix I ⊗ Am + cQ ⊗ BmG is Hurwitz.

Note that any square matrix is unitarily similar to an upper

triangular matrix with diagonal entries being its eigenvalues.

When this fact is applied to Q and noticing statement 3) of

Lemma 2, it is sufficient to show that the upper triangular

matrix






Am + cλ2(L)BmG ⋆
. . .

0 Am + cλN (L)BmG







is Hurwitz, which is then equivalent to show that the blocks

on the main diagonal are Hurwitz. In fact, based on (4) and

(5),

(Am + cλi(L)BmG)HP + P (Am + cλi(L)BmG)

=AT
mP + PAT

m − cλi(L)
HPBmB

T
mP − cλi(L)PBmB

T
mP

=AmP + PAT
m − 2cR(λi(L))PBmB

T
mP

=− I + (1− 2cR(λi(L)))PBmB
T
mP. (27)

for any i ∈ {2, 3, · · · , N}. Then, provided c ≥ 1
2R(λ2(L)) , the

blocks Am + cλi(L)BmG are indeed Hurwitz.

Since limt→∞ e = 0 and the dynamics of x̄m in (26) is

internally stable, we have limt→∞ x̄m = 0, which implies the

consensus over xm,i.

Now since xi → xm,i and xm,i → xm,j as t → ∞, we

conclude that limt→∞ ‖xi(t) − xj(t)‖ = 0, ∀i, j ∈ V . This

completes the proof.

Remark 6: Similarly to Theorem 1, Theorem 2 confirms that

MRASCon drives the consensus error to zero asymptotically,

even in the case that the homogeneous dynamics matrix Am

not necessarily stable. As known from [17], MRAC-based

leaderless consensus does not allow to specify the consensus

manifold a priori since the consensus manifold is completely

unknown and it can be either bounded or divergent depending

on the initial conditions and the system dynamics. MRASCon

allows to specify rich classes of consensus manifolds a priori

via proper design of the reference dynamics matrix Am and

the reference input r(t).
Remark 7: The reference input r(t) in (21) can be designed

to manipulate the leaderless consensus manifold, as will be

illustrated in Example 3 of Sect. IV; however, this requires

the knowledge of a common reference among all agents. In

case no such knowledge is allowed, it is still possible to set

r(t) ≡ 0 in (21), in which case the consensus manifold will

be specified only by Am.

Remark 8: MRASCon (22) encompasses MRACon [11]

in the case of known and homogeneous system matrices.

Specifically, [11] considers the special case when the agents’

dynamics follows a (known) homogeneous pair (Am, Bm)
perturbed by some (unknown) matching gain K∗

i , i.e.,

ẋi = Amxi +Bm(ui − Φi(t, xi)K
∗
i ). (28)

Here, Φi is a known and bounded continuous function. In this

case, the reference models can be designed the same as in

(21), considering that r(t) ≡ 0 in [11]. Due to the fact that

the special dynamics (28) imposes Bi = Bm, it follows that

L∗
i = I and F ∗

i = G (with G defined as in (5)), ∀i. As

these matrices are known, the controller (22) degenerates to

MRACon proposed in [11]:

ui = ΦiK̂i(t) + ri +Gei

˙̂
Ki = −γiΦ

T
i B

T
mPei.

The above discussions also imply that MRACon is not directly

applicable when the agent dynamics (Ai, Bi) is heterogeneous

and unknown, as is the case considered in this paper.

IV. ILLUSTRATIVE EXAMPLES

Example 1 (MRASC): For illustration, Table 1 summarizes

the classical MRAC, CMRAC, and the proposed MRASC law

for a scalar unknown plant. Then we take a = 1, b = 2 which

are assumed to be unknown for the control design.

TABLE I
MRAC, CMRAC AND MRASC FOR A SCALAR UNKNOWN PLANT.

Plant ẋ = ax+ bu;
only sgn(b) is known, b 6= 0 (controllable).

Reference ẋm = amxm + bmr;
am, bm, r are user-specified, r(t) is bounded.

MRAC (e.g., [3]) u = φT θ(t), θ̇ = −γ sgn(b)φe.

φ = (x, r)T , θ = (k̂, l̂)T , e = x− xm.

CMRAC ([4], [5]) u = φT θ(t), θ̇ = −γ sgn(b)φec.

φ = (x, r)T , θ = (k̂, l̂)T , ec = x− xc
m.

ẋc
m = amx

c
m + bmr − ρec; ρ < 0.

MRASC u = φT θ(t), θ̇ = −γ sgn(b)φe.

φ = (x, r, e)T , θ = (k̂, l̂, f̂)T , e = x− xm.

We select bm = 1, r = sin(t); let ρ = −1 for CMRAC and

γ = 1 for all three methods. Then, we select am = −1 for a

stable reference and am = 0.1 for an unstable one, respectively,

for comparisons. All initial values are set to zero.

The simulation results are shown in Fig. 3 (stable reference

model) and Fig. 4 (unstable reference model). When tracking

the stable reference model, MRASC improves the transient of

classical MRAC thanks to the adaptive stabilization process;

meanwhile, MRASC realizes faster tracking as compared

with CMRAC since MRASC targets the reference model xm

directly instead of the closed-loop reference model xc
m. More

importantly, Fig. 4 shows that MRASC can track the unstable

reference asymptotically while MRAC fails and CMRAC

realizes bounded tracking with some bias. The estimated
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Fig. 3. Example 1: MRAC, CMRAC, and MRASC (6) for tracking a stable reference model (am = −1).
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Fig. 4. Example 1: MRAC, CMRAC, and MRASC (6) for tracking an unstable reference model (am = 0.1).
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Fig. 5. Example 1: Estimated parameter θ(t) (with am = 0.1).

parameters in the unstable case converge to some finite values,

as shown in Fig. 5.

Example 2 (MRASCon): Consider a network of N = 6
heterogeneous unknown second-order agents. Their true pa-

rameters (unknown for control design) are

Ai =

(

0 1
i i

)

, Bi =

(

0
(−1)ii

)

. (29)

The communication topology among the agents is a directed

ring with edge set E = {E12, E23, E34, E45, E56, E61} along with

unitary weights: in this case, R(λ2(L)) = 0.5, leading to the

lower bound of the coupling gain c ≥ 1. Let us select c = 1.

Consider a stabilizable (but unstable) pair

Am =

(

0 1
−1 0.2

)

, Bm =

(

0
2

)

. (30)

The control direction sgn(L∗
i ) is known as sgn(L∗

i ) = −1 for

i = 1, 3, 5, and sgn(L∗
i ) = 1 for i = 2, 4, 6. It can be easily

verified that Assumptions 2-4 hold. Assume r(t) ≡ 0 in (21).

Solving the algebraic Riccati equation (4) with the are

command in Matlab gives

P =

(

1.4765 0.3090
0.3090 0.6880

)

,

resulting in G = (−0.6180,−1.3759).
In order to highlight the advantages of MRASCon as

defined in (22), let us first consider two methods, namely

MRACon∗2 and CMRACon. MRACon∗ can be obtained by

simply removing the adaptive feedback term Fi(t)ei from the

MRASCon law (22). CMRACon is the leaderless consensus

version of CMRAC [4], [5], and is expressed as follows

ui = K̂i(t)xi + L̂i(t)ri
˙̂
Ki = −γi sgn(L

∗
i )B

T
mPecl

i x
T
i

˙̂
Li = −γi sgn(L

∗
i )B

T
mPecl

i r
T
i

ẋcl
m,i = Amx

cl
m,i +Bmri − ρecl

i (31)

2To avoid confusion, notice that MRACon∗ is not the same as MRACon
in [11]. In fact, MRACon in [11] is not directly applicable to heterogeneous
and unknown agents (cf. Remark 8). Therefore, MRACon∗ is a reformulation
of the method in [11] to handle heterogeneous and unknown agents.
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where ecl
i = xi−xcl

m,i, ri = cG
∑N

j=1 aij(xi−xj) and ρ < 0 is

an observer gain. Clearly, CMRACon converges to MRACon∗

as ρ converges to zero.

Without the adaptive stabilization term, both MRACon∗ and

CMRACon give a closed-loop dynamics of xi as

ẋi = Amxi +Bmri +Bi(K̃ixi + L̃iri).

This indicates that a singular case may happen near the origin

x = 0: the states of all agents decay to zero, while all local

(open-loop) reference models diverge to infinity. This singular

case is extremely undesired since the agents are expected to

track the corresponding local reference models. Fig. 6 shows

an example of this singular case occurring in MRACon∗,

where, although consensus (to zero) is achieved, the tracking

task is completely neglected. In the simulation of Fig. 6, we

select γi = 1; the initial adaptive gains are set to zero, and

the initial states of the agents and the reference models are

randomly chosen according to a Gaussian distribution with

standard derivation 5.

0 5 10 15 20 25 30

-50

0

50

0 5 10 15 20 25 30

-50

0

50

Fig. 6. Example 2: States of the agents under MRACon∗ law (obtained by
removing Fi(t)ei in MRASCon (22)). The agents (solid lines) reach a trivial
consensus at zero, but fail to track the corresponding local reference models
(dashed lines): that is, a trivial consensus is reached without tracking.

CMRACon law (31) can also make the agents trapped into

the origin x = 0, especially when ρ is small in magnitude:

in this case, the closed-loop reference model acts more as a

reference model than as an observer. For example, by selecting

ρ = −1, CMRACon leads to similar results as in Fig. 6

(omitted due to the space limits), i.e., a trivial consensus is

reached without tracking. In addition, we show in Fig. 7 that,

even with a larger (in magnitude) ρ = −100, CMRACon

fails to drive the agents to consensus. The main reason for

this phenomenon is that CMRAC cannot guarantee asymptotic

tracking performance when the reference model is unstable.

The scenarios mentioned in Fig. 6-7 will not occur in

MRASCon since all tracking errors ei are guaranteed to

converge to zero asymptotically, i.e., consensus is achieved

along with tracking of the reference models. Fig. 8 shows

the results of the proposed MRASCon approach (22) with

the same initial conditions as in Fig. 6-7. The comparisons

0 5 10 15 20 25 30
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20

Fig. 7. Example 2: States of the agents under CMRASCon law (31) with
ρ = −100. The agents (solid lines) fail to accomplish the consensus and
tracking tasks.
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Fig. 8. Example 2: States of the agents under the proposed MRASCon law
(22) with the same initial conditions as in Fig. 6-7. Consensus and tracking
are both achieved.

highlight the effectiveness of MRASC and MRASCon in

tracking unstable reference dynamics.

Example 3 (MRASCon with switching reference models):

To support Remarks 6-7, this example illustrates how the final

consensus value can be easily designed by MRASCon. As

a matter of fact, MRASCon is able to specify a priori the

consensus dynamics via Am and r(t), thanks to the guarantee

of asymptotic tracking and consensus. Note that a priori

knowledge of the consensus manifold is absent in [17] since

the unstable consensus manifold depends on the unknown

system dynamics and thus cannot be specified a priori.

Let us consider the following specifications for consensus

of agents (29): diverging for 50 seconds; then oscillating for

30 seconds; finally converging to a stable equilibrium point

(200; 0). This can be accomplished by choosing Am to be the
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same as in (30) with r(t) = 0 for t ≤ 50; Am =

(

0 1
−1 0

)

with r(t) = 0 for 50 < t ≤ 80; and Am =

(

0 1
−1 −0.5

)

with r(t) = 100 thereafter. The states and control inputs of the

agents are shown in Fig. 9. The consensus behavior meets the

prior specifications, thus resulting in a predictable behavior of

the leaderless, heterogeneous, and uncertain agents.

Fig. 9. Example 3: States and control inputs of the agents under the proposed
MRASCon law (22) with switching reference models (unstable for t ≤ 50;
marginally stable for 50 < t ≤ 80; stable for t > 80).

V. CONCLUSIONS

We have proposed a natural extension of the classical

MRAC approach, where the main novelty arises from an extra

adaptive stabilization loop. For this reason, this extension is

called model reference adaptive stabilizing control (MRASC).

It has been rigorously proved that with MRASC the track-

ing error is driven to zero even when the reference model

is unstable. This feature, absent in state-of-the-art MRAC

schemes, has allowed us to extend MRASC into a model

reference adaptive stabilizing consensus (MRASCon) law for

a leaderless consensus problem.

We can identify two future lines of research. The first

is to study MRASC with switched dynamics rigorously: by

handling unstable reference dynamics, MRASC can potentially

address switched reference dynamics where one or more

subsystems are unstable. The second is to further increase

the allowed uncertainty in the multiagent MRASCon scenario,

e.g., to get rid of the knowledge of the Laplacian eigenvalues,

possibly with the methods of [13]–[16], [23].
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