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ApproximateDynamicProgramming forConstrainedLinear

Systems:APiecewiseQuadraticApproximationApproach ⋆

Kanghui He, Shengling Shi, Ton van den Boom, Bart De Schutter

Delft Center for Systems and Control, Delft University of Technology, Delft, The Netherlands

Abstract

Approximate dynamic programming (ADP) faces challenges in dealing with constraints in control problems. Model predictive
control (MPC) is, in comparison, well-known for its accommodation of constraints and stability guarantees, although its
computation is sometimes prohibitive. This paper introduces an approach combining the two methodologies to overcome their
individual limitations. The predictive control law for constrained linear quadratic regulation (CLQR) problems has been proven
to be piecewise affine (PWA) while the value function is piecewise quadratic. We exploit these formal results from MPC to
design an ADP method for CLQR problems with a known model. A novel convex and piecewise quadratic neural network with
a local-global architecture is proposed to provide an accurate approximation of the value function, which is used as the cost-
to-go function in the online dynamic programming problem. An efficient decomposition algorithm is developed to generate
the control policy and speed up the online computation. Rigorous stability analysis of the closed-loop system is conducted for
the proposed control scheme under the condition that a good approximation of the value function is achieved. Comparative
simulations are carried out to demonstrate the potential of the proposed method in terms of online computation and optimality.

Key words: Approximate dynamic programming; Reinforcement learning; Model predictive control; Value function
approximation; Neural networks; Constrained linear quadratic regulation.

1 Introduction

Model-based reinforcement learning RL, also known as
(approximate) dynamic programming ((A)DP) [1], has
received much attention for the synthesis of controllers.
Compared to its diverse industrial applications, the the-
oretical analysis on the stability and safety for RL faces
great challenges. Thanks to Lyapunov stability theory,
the stability issue of ADP has been comprehensively ad-
dressed, both for linear [2] and nonlinear systems [3, 4].
Although ADP approaches consider stability, safety
is another important issue that needs further study.
Safety means that the states and inputs of closed-loop
systems satisfy some constraints. Techniques employed
by RL or ADP approaches for dealing with constraints
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can be grouped into two categories: policy-projection-
based methods and policy-optimization-based methods.
Policy-projection-based methods consider the RL for-
mulation in the unconstrained case and involves a regu-
lator to check and modify the policies that may violate
the constraints [5, 6]. These indirect methods, however,
sometimes fail to capture the optimal solution of the
constrained problem and lack stability guarantees. In
comparison, optimization-based methods intend to di-
rectly get the optimal value function for the constrained
problems by solving the constrained Bellman equation.
With the optimal value function available, the optimal
control policy can thereby be produced by solving a
constrained policy optimization problem. [7] was the
first investigation of this kind of method, but it is lim-
ited to searching for the best linear feedback control law
and needs an initial stabilizing policy. Following this
direction, [8] explores an estimation approach to find an
initial stabilizing policy even when there are uncertain
nonlinear dynamics.

In constrained cases, neither the optimal policy nor the
optimal value function is readily available, even for the
most basic infinite-horizon linear quadratic regulation
(LQR) problems. This to some extent restricts the de-
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velopment of the policy-optimization-based RLmethods
for constrained control problems. In comparison, model
predictive control (MPC) [9], an optimization-based con-
trol scheme widely adopted in the control community,
has amature stability and robustness theory as well as an
inherent constraint handling. For infinite-horizon LQR
problems, MPC can render the exact optimal control law
due to the equivalence of finite and infinite optimal con-
trol as long as the horizon is sufficiently long [10]. With
this fundamental property, infinite-horizon LQR prob-
lems can be solved by either implementing MPC online
or explicit MPC [11], and the solution is proven to be
piecewise affine (PWA) in the state space [11]. However,
the computational complexity of both online MPC and
explicit MPC grow dramatically with the increase of the
problem size. This is one of the main drawbacks of MPC
compared with RL or ADP.

Dedicated to overcoming this drawback, approximation
methods of predictive control laws have received much
attention in recent years. An emerging methodology
is using specific function regression techniques such as
PWA neural networks (NNs) [6, 12, 13]. Nevertheless,
no guarantees of closed-loop stability are conveniently
available, even through the final approximation error is
small enough. Using NN-based controllers to warm start
the solver in online MPC [14] can inherently guarantee
stability, and learning Lyapunov functions to verify the
stability of NN-based controllers [15] is also an alterna-
tive way. However, additional computation is required
in the optimization or learning procedure.

Observing that MPC has computational limitations and
approximation in the policy space lacks performance
guarantees, we aim to attain a computationally inexpen-
sive control scheme for linear systems with stability and
feasibility guarantees. To this end, we approximate the
value function via ADP and shorten the prediction hori-
zon to one. We focus on the infinite-horizon LQR prob-
lem with state and input constraints. Different from the
research on approximating the MPC policy [6, 12, 13],
we propose a value function approximation scheme. The
optimal value function that is characterized by explicit
MPC, is approximated by a piecewise quadratic (PWQ)
NN. The synthesis of the control law is conducted in aDP
problem, where stability, feasibility, and sub-optimality
can be guaranteed if a good approximation is obtained.
Meanwhile, note that one disadvantage of approximat-
ing the value function is that it needs online policy op-
timization. To address this issue, we develop algorithms
so that online optimization can be done efficiently.

The contributions of the paper are highlighted as follows:

(1) We propose a novel NN structure to approximate the
solution of the constrained LQR problem based on ADP.
The proposed NN structure can capture the PWQ and
convex properties of the value function. Different from
policy-based approximation approaches [6, 12, 16], our

approach has the important advantage that the resulting
controller has safety and stability guarantees.

(2) We propose an efficient algorithm to solve the pol-
icy optimization problem, which is a convex piecewise
quadratic program. In particular, this program is sim-
plified to a collection of quadratic programs (QPs). Note
that the main difficulty that prevents ones from consid-
ering more complex approximation structures is the in-
crease in online computational time. We solve this prob-
lem in Algorithm 1. Complexity analysis and simulation
results show that the proposed method requires much
less online computation time than implicit MPC.

(3) Compared to [7], the first exploration of ADP in a
constrained LQR setting, the proposed approach elim-
inates the restriction of searching for a linear feedback
law and does not require an initially stabilizing policy
nor an initial state belonging to an invariant set.

(4) We do a rigorous stability analysis, give stability
conditions, and provide a tractable way to verify them.

2 Preliminaries

Let N = {0, 1, 2, ...} and let λmax(P ) and λmin(P ) repre-
sent the maximum and minimum eigenvalues of a sym-
metric positive definite matrix P . The boundary of the
set P is ∂P, and int(P) stands for the interior of P. We
use Ai,· to represent the ith row of the matrix A.

2.1 Infinite-horizon optimal control and MPC

We study the infinite-horizon constrained linear
quadratic regulation (CLQR) problem

J∗
∞(x) =min

U∞

{

J∞ (x0, U
∞) ,

∞
∑

k=0

xT
kQxk + uT

kRuk

}

s.t. xk+1 = Axk +Buk, k = 0, 1, . . . , x0 = x

xk ∈ X , uk ∈ U , k = 0, 1, . . . (1)

where xk ∈ R
n, uk ∈ R

m, A ∈ R
n×n, B ∈ R

n×m, X and
U are polyhedra that contain the origin in their interior,
and U∞ = [u0, u1, ..., u∞] is the infinite-dimensional de-
cision variable. MatricesA andB are known. Like [6,17],
it is also assumed that

Assumption A1: (A,B) is stabilizable, Q > 0, and
R > 0. Moreover, there exists an initial state, such
that there exists a sequence of admissible input vectors
u0, u1, . . . that can steer the state to the origin, i.e.,
X̄ , {x ∈ R

n|∃U∞ s.t. xk ∈ X , uk ∈ U , and J∗
∞(x)

<∞, ∀k ∈ N } is not empty.

With Assumption A1, let K ∈ R
m×n be a stabiliz-

ing gain matrix for the unconstrained plant xk+1 =
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Axk + Buk. As in [10], we consider the admissible set
of states under a given stabilizing control gain K as
X̄K = {x ∈ R

n | x ∈ X ,−Kx ∈ U}.

If the constraints in (1) are removed, the problem admits

a unique linear solution uLQR
k = −K∗xk, k = 0, 1, . . .

where K∗ =
(

R+BTP ∗B
)−1

BTP ∗A and P ∗ = P ∗T

is the unique positive-definite solution of the algebraic
Riccati equation [2]. Then, J∗

∞(x) = xTP ∗x in the ab-
sence of constraints.

In the constrained case, if the state is close to the origin,

the unconstrained LQR solution uLQR
k = −K∗xk, k =

0, 1, . . . may not violate the constraints so that the
solution to (1) is identical to the unconstrained LQR
solution −K∗xk as if there is no constraint at all.
This motivates the consideration of the maximal
LQR invariant set OLQR

∞ = {x ∈ R
n | (A−BK∗)

k
x

∈ X̄K∗ , ∀k ∈ N ⊆ R
n
}

for the autonomous constrained
linear system xk+1 = (A−BK∗)xk, xk ∈ X , ∀k ∈ N

[9, 10]. With this definition, the existing literature [10]
considers using a finite-horizon problem:

J∗
N (x) = min

{uk}
N−1
k=0

N−1
∑

k=0

xT
kQxk + uT

kRuk + xT
NP ∗xN

s.t. xk+1 = Axk +Buk, k = 0, 1, . . . , N − 1, x0 = x

xk ∈ X , uk ∈ U , k = 0, 1, . . . , N − 1 (2)

to approximate the infinite-horizon LQR problem (1).
In (2), U = [u0, u1, ..., uN−1] is the decision variable and
U∗(x) is the solution. The rationale behind this design
is that after a sufficient long horizon, the resulting xN

will fall into OLQR
∞ where the unconstrained LQR solu-

tion uN = −K∗xN will not violate the constraints. As
the result, the terminal cost xT

NP ∗xN is an exact repre-
sentation for J∗

∞ (xN ). The following theorem, proposed
in [10], formally demonstrates the validity of this design.

Theorem 1 ( [10]) Let J̄ be an upper bound on J∗
∞(x).

Suppose that Assumption A1 holds. For any x ∈ X̄, if
N >

(

J̄ − p
)

/q where 0 < q ≤ qm , infx/∈OLQR
∞

{

xTQx
}

and 0 < p ≤ pm=̂ infx/∈OLQR
∞

{

xTPx
}

, then xN ∈ O
LQR
∞

and problem (2) is equivalent to problem (1) in the sense
of J∗

∞(x) = J∗
N (x), ∀x ∈ X̄.

Throughout the paper, we assume thatN in (2) is chosen
such that the equivalence in Theorem 1 is satisfied.

By substituting the state update equation into J∗
N (x)

and the constraints, (2) can be reformulated as a multi-
parametric quadratic program (mpQP). See [9, 18] for
details. Explicit MPC aims to directly solve the mpQP
for all possible x in a feasible set, and find the rela-
tionship between the optimizer U∗(x) and x. The re-
sults from explicit MPC show that the optimizer U∗(·)

is PWA. So, the first element u∗
0(·) of U

∗(·) satisfies

u∗
0(x) = Fjx+ gj if x ∈ Rj , j = 1, . . . , Nr (3)

where the polyhedral setsRj = {x ∈ R
n : Hjx ≤ hj} , j =

1, . . . , Nr constitute a finite partition of a compact set
of initial conditions X0 ⊆ X̄.

2.2 Problem formulation

The explicit controller is easy to compute offline in the
case of a short horizon and a low-dimensional input vec-
tor. However, with the increase of the horizon and the
system’s dimension, the number of regions in (3) grows
exponentially [11] and the representations of these re-
gions become more complex, which may make the offline
computation and online implementation intractable.

Artificial NNs with at least one hidden layer have the
capability of universal approximation for any continu-
ous function, provided that the hidden layer has enough
units. Herein, we can use NNs to represent the explicit
MPC law, without any need to identify the regions in (3).
Related work is reported in [6,12,16], combined with su-
pervised learning or policy gradient methods. The NN-
based controllers proposed in [6,12,16] require an online
feasibility certificate to determine whether the outputs
of the NNs are safe. These NN-based policy approxima-
tors, however, inherently lack stability guarantees.

To address the computational burden of MPC and the
lack of guarantees of policy-based approximation, we
adopt value function approximation and shorten the
MPC horizon to one. The main challenges are thereby (i)
the design of the value function approximator, which is
expected to output a function akin to the optimal value
function, (ii) the relation between those guarantees and
the quality of the approximation, and (iii) further re-
duction of online computation time concerning that the
one-step problem contains a function approximator.

Before establishing our approximation structure, we con-
centrate on the properties of J∗

∞(·).

Theorem 2 ( [9]) With Assumption A1 satisfied, in a
compact polyhedral set of the initial conditions X0 ⊆ X̄,
J∗
∞(·) is continuous, convex, and PWQ over polyhedra:

J∗
∞(x) = Ji(x) =xTPix+ qTi x+ vi,

ifx ∈ Ri, i = 1, . . . , Nr (4)

Moreover, if the mpQP problem (2) is not degenerate,
then J∗

∞(·) is continuously differentiable.

Theorem 3 ( [19]) Assume that (1) results in a non-
degenerate mpQP. LetRi,Rj be two neighboring polyhe-
dra and Ai,Aj be the corresponding sets of active con-
straints at the optimum of (2). Then, (i) Pi − Pj ≤
0 if Ai ⊂ Aj, and (ii) P ∗ − Pj ≤ 0, ∀j ∈ {1, 2, . . . , Nr}.
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For the detailed description of degeneracy, see [18,20].

3 ADP design for CLQR problem

3.1 NN design for approximation in value space

According to Theorems 2 and 3, the value function ap-
proximator, denoted by Ĵ(·, θ) where θ refers to some
parameters, is expected to have the following features:
(F1) It can partition its input space into polyhedral re-
gions. (F2) It can produce a convex and PWQ func-
tion partitioned by polyhedra. (F3) For x in a small re-
gion containing the origin, the approximator can pro-
vide the exact representation for the value function, i.e.,
Ĵ(x, θ) = xTP ∗x.

We will use a feed-forward NN to capture the relation-
ship between the state x and J∗

∞(x). A feed-forward NN
is composed of one or more hidden layers and an output
layer, where each hidden layer contains an affine map
fl (κl−1) = Wlκl−1 + bl, followed by a nonlinear map
κl = gl(fl). Here, Wl ∈ R

Ml×Ml−1 and bl ∈ R
Ml are the

weights and biases, gl(·) : RMl → R
Ml is a nonlinear

activation function, Ml is the width of the lth layer, re-
ferring to the number of units in the layer, and M0 = n.
Based on these definitions, an NN with L hidden lay-
ers and Ml units in the lth layer can be represented by
fNN(x, θ) = [fL+1 ◦ gL ◦ fL ◦ · · · ◦ g1 ◦ f1](x), where θ
contains all the weights and biases of the affine functions
in all the layers, and the symbol ◦ means the layers are
connected in series.

The activation function plays an important role in the
approximation of NNs. In this paper, we consider the rec-
tifier linear unit (ReLU), which is defined as gReLU(x) =
max {0, x}. An important property of the ReLU is that
it can produce a series of PWA functions with polyhedral
partitions, combined with an affine transformation [21].
Actually, the output of an NN with ReLUs as activation
functions is PWA. However, as the optimal value func-
tion is PWQ, we are interested in producing a class of
PWQ basis functions that can efficiently represent the
value function.

Let us focus on the last hidden layer. All activation units
in this layer can still be written as a continuous PWA
function over the input space of the network [22]. The
element-wise product of any two vector-valued contin-
uous PWA functions with the same number of compo-
nents is a continuous PWQ function. We therefore cal-
culate the element-wise product of all the units κL in
the last hidden layer

ϕ = p (κL) , diag(κL)κL ∈ R
ML

to generate a series of PWQ functions ϕ(x) =
[ϕ1(x) ϕ2(x) · · · ϕML

(x)]T . This can be viewed as a
layer in the NN, denoted by the product layer p(κL).

The output layer is a weighted sum of the outputs of the

previous layer fL+1(ϕ) = rTϕ =
∑ML

i=1 riϕi.

To make the proposed approximator satisfy F3, we de-
velop a “local-global” architecture, which decomposes
the outputs of the approximator into two parts

Ĵ (x,W, b, r) = xTP ∗x+ [f2 ◦ p ◦ g1 ◦ f1](x) (5)

with P ∗ the solution to the algebraic Riccati equation.
The term xTP ∗x is included to capture “global” as-
pects of J∗

∞(·), while the neural-network-based term is
exploited to identify the polyhedral partition in (4) and
capture the local residuals J∗

∞(x) − xTP ∗x. Since the
known term xTP ∗x that dominates the value function is
extracted and fixed, using such a “local-global” architec-
ture is possible to enhance the quality of approximation.

We hereafter denote M1 by M , and Ĵ (·,W, b, r) by

Ĵ (·, θ), with all the parameters condensed in θ.

3.2 NN training and convexity analysis

Training data needs to be generated offline by solving

(2) for Nx different initial states
{

x(i)
}Nx

i=1
, x(i) ∈ X0,

and getting the state-value pairs {(x(i), J∗
∞(x(i)))}Nx

i=1.

Let {u
(i)∗
k }N−1

k=0 and {x
(i)∗
k }Nk=0 denote the solution to

the MPC problem for the initial state x(i) and the cor-
responding trajectories of the closed-loop controlled
system. We present an efficient sampling strategy by
leveraging the equivalence in Theorem 1. Suppose
that we have obtained the optimal control sequence

{u
(i)∗
k }N−1

k=0 and the corresponding value J∗
N

(

x(i)
)

for

different x(i), consider the sub-problems whereby we

start at x
(i)∗
k , for k = 1, . . . , N − 1 and wish to

minimize J∞(x
(i)∗
k , U) in (1). According to the prin-

ciple of optimality [23], the truncated optimal control

sequence {u
(i)∗
j }N−1

j=k is also optimal for these sub-
problems. Hence, the optimal value functions for these

subsequent trajectories x
(i)∗
k , k = 1, . . . , N − 1 can

directly be computed as J∗
∞(x

(i)∗
k ) = J∗

N (x
(i)∗
k ) =

J∗
N (x(i))−

k−1
∑

j=0

x
(i)∗T
j Qx

(i)∗
j + u

(i)∗T
j Ru

(i)∗
j , with no need

to solve (2) repeatedly.

With this design, we can offline generate NxN state-
value pairs by only solving (2) Nx times. With the NxN
state-value pairs available, the NN is trained so that its
parameters approximate the solution to

min
b<0,W,r≥0

1

NNx

Nx
∑

i=1

N−1
∑

k=0

e(x
(i)∗
k , θ) (6)

4



where e(x
(i)∗
k , θ) = (Ĵ(x

(i)∗
k , θ) − J∗

∞(x
(i)∗
k ))2 is the

square of the approximation error for each training pair,

and x
(i)∗
0 = x(i), ∀i ∈ {1, . . . , Nx}. The constraint b < 0

is introduced to guarantee that no units in the hidden
layer are activated when x is near the origin, i.e., to
fulfill F3, while the constraint r ≥ 0 is responsible for
maintaining convexity of Ĵ(·, θ).

Problem (6) is a nonlinear least-squares problem, which
can be successfully solved by the gradient descent
method [24]. The constraints on the NN parameters
can be handled by constraint elimination, i.e., by let-

ting r =
(

r̄21, r̄
2
2, . . . , r̄

2
M

)T
, which can always guarantee

r ≥ 0, penalizing the constraint violation in the loss
function, or reducing the number of hidden units if
constraint violation is detected.

After the NN is trained, the system can be run and the
control signals are computed by solving a DP problem.
With a specific structure, our proposed NN allows to
produce a convex function Ĵ(·, θ) so that any locally
optimal point is also globally optimal. Suppose that the
output of the proposed approximator has the following
PWQ form:

Ĵ(x, θ)= Ĵj(x)=xT P̂jx+q̂Tj x+v̂j , if x ∈ R̂j , j=1, . . . , N̂r

(7)

where R̂j are polyhedra defined by the hyperplanes
{Wl,·x + bl = 0}Ml=1. Define R̄ = diag(r) and we can

rewrite (5) as Ĵ(x, θ) = xTP ∗x + κT R̄κ, where κ, the
output of the hidden layer, is PWA w.r.t. x. In the fol-
lowing, we will show that any feasible solutions to (6)
can ensure the positive semi-definiteness of R̄.

Proposition 1 Consider the PWQ NN (5). With a

non-negative r and a negative b, the function Ĵ(·, θ)
that the NN produces is continuously differentiable and
convex w.r.t. its input.

The proof of Proposition 1 and of subsequent theorems
and lemmas can be found in the appendices of the paper.

3.3 Suboptimal control law based on DP

With a well-fitted Ĵ(·, θ) available, at each time step
t ∈ N, we can obtain a suboptimal control policy by
solving the one-step DP problem

min
ut

Q̂(xt, ut) , xT
t Qxt + uT

t Rut + Ĵ (Axt +But, θ)

s.t. ut ∈ U , Axt +But ∈ C (8)

where Q̂(xt, ut) can be viewed as the approximated op-
timal Q-function [23] for (1). Denote the solution to (8)
by û∗

t . Here, we use another subscript (·)t to indicate
that (8) is solved online at each time step t.

In (8), C is chosen as X̄ or Rn, depending on whether X̄
is computable. In particular, if the iterative algorithm
for computing X̄, e.g., Algorithm 10.3 in [9] does not
terminate in finite time, we drop the constraint onAxt+
But. This could happen, e.g., when there is no state
constraint in (1). In both cases problem (8) is recursively
feasible since X̄ is a control invariant set (CIS) [9].

The objective function in (8) is nonlinear and contains
an NN. Standard solvers such as the ellipsoid algorithm
or the interior-point algorithm require the computation
of the Hessian ∇2

uQ̂(x, u) or the gradient ∇uQ̂(x, u) in
each iteration. Such computation can only be carried out
by visiting all units in the hidden layers and extracting
the activated ones. The advantage of low computational
complexity brought by DP will then inevitably diminish.

In view of this, we intend to avoid frequently calculat-
ing ∇2

uQ̂(x, u) and ∇uQ̂(x, u) by decomposing the Q-

function Q̂(xt, ut) into some quadratic functions. In par-
ticular, we develop an optimization algorithm in which
problem (8) is reduced to a QP problem in each itera-
tion. For a given xt, t ∈ N, consider the set of activated
ReLU units in Ĵ (Ax+Bu, θ):

Ā(u) = {i ∈ {1, . . . ,M} |Wi,·(Axt +Bu) + bi > 0}
(9)

With (9), Q̂(xt, u) can thus be computed as

Q̂(xt, u) = uT P̄ (Ā(u))u+ q̄T (Ā(u))u+ v̄(Ā(u)) (10)

where

P̄ (Ā(u)) = R+BT (P ∗ +
∑

i∈Ā(u)

riW
T
i,·Wi,·)B

q̄T (Ā(u)) = 2xT
t A

TP ∗B + 2(
∑

i∈Ā(u)

ri (Wi,·Axt + bi)Wi,·)B

v̄(Ā(u)) = xT
t (Q+ATP ∗A)xt +

∑

i∈Ā(u)

ri (Wi,·Axt + bi)
2

(11)
Since P̄ (Ā(u)) > 0, the right-hand side of (10) is a con-
vex quadratic function if Ā(u) is fixed. An algorithm
that can effectively solve general piecewise convex pro-
grams (PCP) is proposed in [25], called the PCP Al-
gorithm. We adapt it to solving problem (8). For extra
details see [18]. On the other hand, the PCP Algorithm
is not the ideal choice for solving our DP problem, be-
cause it needs to iteratively compute the intersection of
some sets and one of the auxiliary QPs contains numer-
ous constraints if the NN has a large number of hidden
units. This motivates us to consider the following de-
sign. In each iteration s, s ∈ N

+, let u(s) be an initial
input (for s = 1) or the input calculated from the last
iteration (for s > 1). We compute the set of activated
units Ā(u(s)) at u(s), and thereby get P̄ (Ā(u(s))) and
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q̄T (Ā(u(s))) from (11). Then, we solve the QP:

u(s+1) = argmin
u

uT P̄ (Ā(u(s)))u+ q̄T (Ā(u(s)))u

s.t. u ∈ U , Axt +Bu ∈ C
(12)

which returns u(s+1) for the next iteration. In the next
iteration, after computing Ā(u(s+1)), we can terminate
and output u(s+1) if Ā(u(s+1))=Ā(u(s)). If a cycle oc-
curs, i.e., Ā(u(s+1))=Ā(u(k)), ∃k ∈ {1, . . . , s − 1}, we
arbitrarily choose another Ā(u(s+1)) that has not been
involved in previous iterations. The proposed method is
summarized in Algorithm 1.

Algorithm 1 Decomposition algorithm for solving (8)

Input: State xt at time step t, input ut−1 at the last
time step t − 1 (if t > 0), the optimal Q-function

Q̂ (·, ·), C
Output: Control input ut

Initialize a starting point u(1) ← ut−1

for s = 1, 2, . . . do .
Update the set of activated units Ā(u(s)) by (9).
if Ā(u(s)) = Ā(u(s−1)) and s > 1 then let sm ← s,

return ut ← u(sm), and break.
else

if Ā(u(s)) = Ā(u(k)), ∃k ∈ {1, . . . , s − 2} and
s > 2 then reset Ā(u(s)) to be a new set of activated
units that never occurred previously.

end if
Compute the coefficients P̄ (Ā(u(s))) and

q̄T (Ā(u(s))) associated with Ā(u(s)) through (11).
Update the policy through (12) and get u(s+1).

end if
end for

In Algorithm 1, the starting point u(1) = ut−1 is initial-
ized with the last control input, which can be viewed as
a warm start for the algorithm.

Compared to the PCP Algorithm, Algorithm 1 only
needs to solve one QP per iteration, in which the con-
straints are the same as those in (8). Additionally, Algo-
rithm 1 circumvents the calculations of some sets that
are necessary in the PCP Algorithm. Meanwhile, Algo-
rithm 1 can achieve finite termination as well as the op-
timality for problem (8).

Theorem 4 Consider the DP problem (8). For any
xt that makes (8) feasible, the decomposition algo-
rithm (Algorithm 1) terminates in a finite number
of iterations, i.e, there exists a finite sm such that
Ā
(

u(sm)
)

= Ā
(

u(sm−1)
)

. If Ā
(

u(sm)
)

= Ā
(

u(sm−1)
)

,

then u(sm) is the solution to (8).

In general, the amount of data needed in our method is
in general less than that in policy-based methods [12]
because the value function is a scalar, but the policy may
be multi-dimensional.

4 Analysis of the proposed method

4.1 Stability analysis

Recursive feasibility of (8) is inherently guaranteed.
In this section, we investigate the stability of the pro-
posed control law. Since both J∗

∞(·) and Ĵ (·, θ) are
PWQ on polyhedra, the intersection of any Ri and
R̂j , i = 1, . . . , Nr, j = 1, . . . , N̂r is still polyhedral. Let
Ri,j denote this intersection if such intersection repre-

sents a full-dimensional region, i.e., Ri,j , Ri ∩ R̂j , i ∈

{1, ..., Nr} , j ∈ {1, ..., N̂r} and dim(Ri ∩ R̂j) = n. It is
clear that all Ri,j constitute a partition of X0.

To certify the stability, we need to know the upper bound
of the approximation error for all x belonging toX0, i.e.,
we will compute a positive constant ζ such that

|e(x)| ,

∣

∣

∣

∣

∣

Ĵ (x, θ)

J∗
∞ (x)

− 1

∣

∣

∣

∣

∣

≤ ζ, ∀x ∈ X0. (13)

We propose to leverage the Lipschitz continuity of
∇Ĵ(·, θ) and ∇J∗

∞(·). Before doing this, we need the
following assumption to ensure the density of samples.

Assumption A2: For the partition Ri,j of X0, there
exists at least one training point in each int(Ri,j).

Since we can compute the approximation error of the
proposed NN at the training points, it is possible to ob-
tain an upper bound of the approximation error for all
x in X0. In the interior of each Ri,j , both J∗

∞(·) and

Ĵ (·, θ) are quadratic and hence twice continuously dif-
ferentiable. According to [9, Lemma 3.2], ∇xJ

∗
∞(·) and

∇xĴ (·, θ) are locally Lipschitz on int(Ri,j), i.e., there

exist non-negative constants Li and L̂j such that for all
(x, y) ∈ int(Ri,j)× int(Ri,j), we have

J∗
∞ (y) ≤ J∗

∞ (x) +∇TJ∗
∞ (x) (y − x) +

Li

2
‖y − x‖

2
2

Ĵ (y, θ) ≤ Ĵ (x, θ) +∇T Ĵ (x, θ) (y − x) +
L̂j

2
‖y − x‖

2
2

(14)

where Li and L̂j can be chosen as the largest eigenvalue

of Pi and P̂j [9, Lemma 3.2], respectively.

We define a measure of the gradient error as egrad (x) ,
‖∇Ĵ(x,θ)−∇J∗

∞
(x)‖

2

J∗

∞
(x) , and let ē and ēgrad stand for the

maximum values of |e(·)| and egrad(·) over all samples.

Let R1 refer to the polyhedron where no constraints in
the mpQP derived from (2) are active, i.e., R1 = OLQR

∞ ,

and accordingly let R̂1 represents the polyhedron where
no ReLU units in Ĵ (·, θ) are activated. In the region

6



R1,1 = R1∩R̂1, we have |e(x)| ≡ 0 due to (5). For every
Ri,j exceptR1,1, the following lemma presents an upper
bound of |e(x)|

Lemma 1 With Assumption A2 satisfied, for any x ∈
int(Ri,j), (i, j) 6= (1, 1), |e (x)| is upper bounded by

ζi,j ,
1

1− β(y)di,j

(

ē+ ēgraddi,j +
(L̂j + Li)d

2
i,j

2J∗
∞ (y)

)

(15)
where y ∈ int(Ri,j) is the training or testing point closest
to x, β(y) =

∥

∥∇TJ∗
∞ (y)

∥

∥

2
/J∗

∞ (y), and di,j denotes the
maximum Euclidean distance between any nearest train-
ing or testing points in Ri,j.

Finally, since e(·) is continuous on the closure of Ri,j ,
the bound ζi,j applies to all x inRi,j . In addition, thanks
to Assumption A2, the value of ζ in (13) can be deter-
mined by computing the right-hand side of (15) at all
training/testing points and choosing the largest one.

With the property of boundedness for e(·) established,
we can assess the stability for the closed-loop system
with the approximate controller û∗. Corresponding to
the selection of C in (8), we consider two cases: (1) C = X̄
and (2) C = R

n.

Theorem 5 Let û∗
t be the solution to problem (19) with

C = X̄. Then, û∗
t is recursively feasible for the initial con-

dition x0 ∈ X̄. Furthermore, suppose that Assumptions
A1-A2 hold with X0 = X̄. If ζ in (13) satisfies

1− ζ2

ζ
> 2 sup

x∈X0\{0}

Ĵ (x, θ)

xTQx
, (16)

then the origin of the closed-loop system xt+1 = Axt +
Bû∗

t , t = 0, 1, . . . is asymptotically stable with domain of
attraction X̄.

In the case of X0 ⊂ X̄, where the set X0 may not be in-
variant for the closed-loop system xt+1 = Axt+Bû∗

t , t =
0, 1, . . . , the corresponding stability conditions are de-
scribed in the following corollary:

Corollary 1 Let û∗
t be the solution to problem (19) with

C = R
n. For a given X0 ⊂ X̄, suppose that Assump-

tions A1-A2 hold. Define a compact set as Ω , {x ∈

R
n| Ĵ (x, θ) ≤ χ} where χ , inf

x∈∂X0

Ĵ (x, θ). If ζ (13)

satisfies (16), then û∗
t is recursively feasible for the ini-

tial condition x0 ∈ Ω, and the origin of the closed-loop
system xt+1 = Axt +Bû∗

t , t = 0, 1, . . . is asymptotically
stable with domain of attraction Ω.

According to Theorem 5 and Corollary 1, asymptotic
stability is achieved if the condition in (16) holds. (16)

can be satisfied bymaking ζ small enough since the right-
hand side of (16) is upper bounded. Besides, in view of
(15), ζ is determined mainly by ē, ēgrad, and di,j . The
condition (16) can thereby be guaranteed in two ways.
One is to add more hidden units into the NN so that
ē and ēgrad could be smaller according to the universal
approximation theorem [26]. Another possibility is to
involve more state-value/gradient data to test the upper
bounds ē and ēgrad so that di,j is reduced.

4.2 Complexity analysis

We analyze the offline storage requirement as well as the
online computational complexity of the proposed control
scheme, and compare them with other methods, such as
implicit MPC, explicit MPC, and the policy approxima-
tion methods of MPC [12, 14]. Storage space is domi-
nated by the number of regions and control laws (for ex-
plicit MPC), or the structure of the NN (for approximate
MPC). The storage of some system’s parameters, such
as A, B, X , U , Q, and R, are neglected for consistency.

Explicit MPC requires the storage of Nr regions and
affine feedback laws. Suppose that each region Rj is

defined by n
(j)
c constraints. Then, explicit MPC needs

to store (n+ 1)
∑Nr

j=1 n
(j)
c +Nr (mn+m) real numbers.

As for the proposed method, it needs to construct a
PWQ NN before running the system. The NN contains
3 parameters: W, b, and r, so the storage of the pro-
posed NN requires nM + 2M real numbers in total. In
addition, as for the policy approximation methods re-
ported in [12, 14], the total storage demand of the NNs
is (n+ n0 + 1)M + (L− 1) (M + 1)M , with n0 = m
for [12] and n0 = N(m+ 2n+ nc +mc) for [14], respec-
tively. Here, L denotes the number of hidden layers, and
nc andmc denote the number of constraints specified by
X and U . In general, using an NN that requires much
smaller storage space than explicit MPC can get an ac-
ceptable performance.

Online computation time will be evaluated in terms of
floating point operations (flops) for the computations
that should be performed online. Implicit MPC needs
to solve the QP (2) at each time step. Solving (2) for
a given x requires fQP (Nm, N (mc + nc)) flops in the
worst case ((2) has no redundant constraints). Here,
fQP (nD, nI) represents the number of flops needed to
solve a QP with nD decision variables and nI linear in-
equalities. So in an interior-point method, solving (2) re-
quires O

(

N3m3
)

flops per iteration. In comparison, the

number of flops for explicit MPC is 2n
∑Nr

j=1 n
(j)
c [9].

In our proposed control scheme, solving the DP prob-
lem (8) causes computational complexity. In the PCP
Algorithm and Algorithm 1, the number of flops to
determine Ā

(

u(s)
)

and to compute the coefficients

P̄
(

Ā
(

u(s)
))

, q̄T
(

Ā
(

u(s)
))

is bounded by fact =
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M(2n2+n+m2+5m+2mn+2)+2mn+m(m+3)/2
in total. Then, in each iteration the PCP Algorithm
has to solve 2 different QPs, which need fQP (m, ns)
and fQP (m, M + nc + lc) flops. Here, ns stands for the
number of inequalities that define Us. Algorithm 1 needs
only fQP (m, nc + lc) flops to find u(s) in each iteration.
Besides, some other calculation includes the update of
Us (2m

2+2m−1 flops per iteration) and the comparison
of Ā(u(s)) and Ā(u(s−1)) (M flops per iteration). There-
fore, the total number of flops to implement the PCP
Algorithm is falgo1 = sm(fact+fQP (m, M+nc + lc) +
2m2 + 2m− 1) +

∑sm
s=1 fQP (m, ns) and the number of

flops to calculate the control input by using Algorithm 1
is falgo2 = sm(fact + fQP (m, nc + lc) +M), which can
be much less than those in the PCP Algorithm. Theo-
retically, the maximum value of sm can be the number
of polyhedral regions in the partition for the NN, and
thus can grow exponentially with the system’s dimen-
sion. However, the above analysis largely overestimates
the complexity, as it does not take into account that
most regions are never visited, and that we use a warm
start for the proposed algorithm.

5 Numerical example

A case study is presented to assess the feasibility and
effectiveness of the proposed control scheme. The sta-
bility result in Corollary 1 is verified. In addition, some
other methods including implicit MPC and the policy
approximation method of MPC [12], are also compared
with the proposed method. All the results have been ob-
tained in MATLAB R2021a on an AMD Core R7-5800H
CPU @3.20GHz machine.

Consider a 2-dimensional linear system with A =
[

1 0.1

−0.1 1

]

, B =

[

1 0.05

0.5 1

]

and input constraints

U = {u ∈ R
2 | ||u||∞ ≤ 0.5}. We are interested in

stabilizing the system at the origin and meanwhile min-
imizing the cost

∑∞
k=0 x

T
kQxk + uT

kRuk with Q = I2
and R = 0.1I2. We choose the region of interest
X0 =

{

x ∈ R
2 | ‖x‖∞ ≤ 3

}

. By applying the algorithm
in [10], it can be verified that the vertices of X0 can be
steered to an ellipsoidal subset of OLQR

∞ with the hori-
zon N = 10. By solving the explicit MPC problem with
N = 10, the partition of the state space for the optimal
control law on the region X0 can be obtained, and is
depicted in Fig. 1(a).

To illustrate that the proposed PWQ NN has a good
approximation performance, different types of NNs are
compared in Fig. 1(c). Besides, a strictly global archi-
tecture without the quadratic term xTP ∗x is also com-
pared. 4410 state samples are selected to train the NNs.
We use multi-start local optimization [27] with 20 start-
ing points to reduce sub-optimality. Choosing the learn-
ing rate α = 0.1, we compare the absolute mean square

(a) Regions of optimal ex-
plicit MPC.
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Local-global PWQ NN (width 25)

(c) Comparison of the dif-
ferent types of NNs.

(d) The comparison of
the approximated and real
value functions.

Fig. 1. Performance of the proposed PWQ NN.

errors in Fig. 1(c). From Fig. 1(c), it is observed that
the training objectives for the NNs decrease consistently
over epochs, while the proposed approach has the small-
est mean square error during the training process. Ad-
ditionally, increasing the width does not necessarily im-
prove the approximation ability of the proposed NN.

Fig. 1(b) depicts the polyhedral partition for the pro-
posed NN with width 15. It is noticed that the partition
of the NN concentrates in the areas where the explicit
MPC law changes rapidly. We also compare the output
of the PWQ NN with the real optimal value function in
Fig. 1(d), from which one can observe that the proposed
method is able to closely approximate the optimal value
function with a very simple network architecture.

To verify the stability of the closed-loop system, we note
that the maximal stabilizable set X̄ is open and thereby
not computable. So, we concentrate on checking (16)
withX0 replaced by Ω. The approximation error bounds
at the samples are ē = 0.122 and ēgrad = 0.395. Based
on (15), ζ = 0.188. Next, the value of the right-hand side
of (16) is 4.904. As a result, it can be readily verified
that (16) holds.

In the closed-loop simulation, the proposed method, im-
plicit MPC, and the policy-approximation method of
[12] are compared. The implementation details are given
in [18]. From Fig. 2(a), it can be seen that the proposed
method can properly approximate the MPC controller,
and that the corresponding trajectory is stabilized at the
origin. In comparison, the policy-approximation method
experiences some fluctuations when the state is close to
the origin. This is probably because the value of the op-
timal control input is small if x is around the origin,
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Fig. 2. Closed-loop simulation. In (b), the white region rep-
resents Ω, the colored lines refer to the trajectories, and the
colored points are the starting state points.

so a slight approximation error of the policy may lead
to drastic changes in the dynamic response. Besides, we
can verify the stability by illustrating the invariance of
the sub-level set Ω , {x ∈ R

n| Ĵ (x, θ) ≤ χ}. We select
some initial states that are at the boundary of Ω, and
plot the behavior of the closed-loop system with the pro-
posed controller in Fig. 2(b). It is seen that the trajec-
tories starting from the boundary of Ω will always stay
in Ω, which is computed by Corollary 1.

To illustrate the computational performance of the pro-
posed method on larger-size examples we consider the
problem of regulating a system of oscillating masses [28],
which is an 8-D system. For the detailed setup, see [18].
Table 1 shows the average CPU time of the different
methods, as well as their total cost after running the
system for 100 time steps. The policy-approximation
method needs the least simulation time since it just
needs to compute a single projection (solve a QP) at
each time step. The proposed method with Algorithm
1 requires shorter computation time than online MPC.
Besides, compared with the nonlinear solver and the
PCP Algorithm, Algorithm 1 significantly reduces the
computational complexity. In other aspects, the control
law generated by the proposed method is nearly optimal
since its total cost is very close to that of MPC, while
the total cost of the policy-approximation method is the
largest (about 140% of that of MPC), due to the fluctua-
tions near the origin. Besides, one can refer to [18] for the
comparison of the storage demand in both examples.

Moreover, in [18], the stability conditions in Theorem 5
and the comparison between the proposed method and
another ADP method in [7] are illustrated through an-
other problem with both state and input constraints.
The results in [18] can clearly show that the proposed
controller is stabilizing and feasible even for those ini-
tial states on the boundary of X̄. Combined with Algo-
rithm 1, the proposed method takes less total computa-
tion time (0.142 s) than the ADP method (0.270 s) in [7]
and implicit MPC (0.161 s).

Table 1
Comparison of different methods regarding the average CPU
time and the total cost in the 8-D system.

Methods CPU time Total cost

Proposed + PCP Algorithm 1.2300 2004.2

Proposed + Algorithm 1 0.2225 2004.2

Proposed + nonlinear solver 0.7309 2004.2

Online MPC 1.7279 1857.3

Policy-approximation method 0.1845 2607.5

6 Conclusions

We have developed an ADP control framework for
infinite-horizon optimal control of linear systems sub-
ject to state and input constraints. Compared to some
common NNs such as ReLU NNs, the proposed NN
maintains the PWQ property and convexity of the
real value function and has a much better approxi-
mation performance. These properties and superiority
contribute to the reduction of the online computation
as well as the construction of explicit stability crite-
ria. Therefore, advantages of our method include low
computational requirements, stability assurance, and
excellent approximation of the optimal control law.

A Proof of Proposition 1

In the interior of any R̂j , j = 1, . . . , N̂r, continu-

ous differentiability of Ĵ(·, θ) is clear since Ĵ(·, θ)

has a quadratic form, and convexity of Ĵ(·, θ) fol-
lows from the positive semi-definiteness of R̄. Then,
we have P̂j − P ∗ ≥ 0 for all j = 1, . . . , N̂r. At the

boundary of any neighboring R̂i and R̂j , without loss

of generality, suppose that R̂i, R̂j are partitioned
by the hyperplane W1,·x + b1 = 0. It follows from

(7) that Ĵj(x) = Ĵ i(x) + r1(W1,·x + b1)
2. Differen-

tiating both sides yields ∇xĴj(x, θ) = ∇xĴi(x, θ),
∀x ∈ {x ∈ R

n|W1,·x+ b1 = 0} which proves continuous

differentiability of Ĵ(x, θ) at the boundary.

Furthermore, since Ĵ(x, θ) is differentiable, convexity of

Ĵ(x, θ) at the boundary can be checked through the first-
order condition [29]. Without loss of generality, let x1 ∈

R̂i and x2 ∈ R̂j , then we have

Ĵ (x2, θ)− Ĵ (x1, θ)−∇xĴ (x1, θ)
T
(x2 − x1)

=xT
2 Pix2 + qTi x2 + r1 (W1,·x2 + b1)

2

− xT
1 Pix1 + qTi x1 −

(

xT
1 Pi + qTi

)

(x2 − x1)

= (x2−x1)
T
Pi (x2−x1) + r1 (W1,·x2 + b1)

2
≥ 0

which demonstrates that Ĵ(·, θ) satisfies the first-order
condition at the boundary. ✷
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B Proof of Theorem 4

We first show that if Algorithm 1 stops, it outputs a so-
lution to (8). According to Algorithm 1, u(sm) minimizes

Q̄u(sm) (xt, u) , uT P̄ (Ā(u(sm)))u + q̄T (Ā(u(sm)))u +
v̄(Ā(u(sm))) subject to u ∈ U , Axt + Bu ∈ C∞ if
Ā(u(sm)) = Ā(u(sm−1)). In this case, the inequality

∇T
u Q̄u(sm)(xt, u

(sm))(u− u(sm)) ≥ 0 (B.1)

holds for all u ∈ U1 , {u|u ∈ U , Axt + Bu ∈ C. Using

the fact that ∇T
u Q̄u(sm)

(

xt, u
(sm)

)

= ∇T
u Q̂

(

xt, u
(sm)

)

,
the gradient inequality for the convex PWQ func-
tion Q̂ (xt, ·) can be applied at u(sm): Q̂(xt, u) ≥

Q̂(xt, u
(sm)) + ∇T

u Q̂u(sm)(xt, u
(sm))(u − u(sm)), which,

combinedwith (B.1), shows that Q̂ (xt, u) ≥ Q̂
(

xt, u
(sm)

)

∀u ∈ U1. Thus, optimality of u(sm) is proven.

If a cycle occurs, i.e., ∃k ∈ {1, 2, . . . , s − 2} such that
Ā(u(s)) = Ā(u(k)) for some s, according to Algorithm 1,
we select another set of activated units that has never
been considered in problem (12). As the number of com-
binations of activated units is finite, the algorithm must
stop in a finite number iterations. ✷

C Proof of Lemma 1

Consider the following three cases:

Case 1: e (x) ≥ 0, ∀x ∈ int(Ri,j). In this case, for any
x ∈ int(Ri,j), let y ∈ int(Ri,j) denote the training or
testing point closest to x. Then (14) results in

|e (x)| ≤
Ĵ (y, θ) +∇T Ĵ (y, θ) (x− y) + L̂j ‖x− y‖22 /2

J∗
∞ (y) +∇TJ∗

∞ (y) (x− y)
− 1

≤
Ĵ(y, θ)−J∗

∞ (y)+(∇Ĵ (y, θ)−∇J∗
∞ (y))

T
(x−y)+L̂j‖x−y‖22/2

J∗
∞ (y)−‖∇TJ∗

∞ (y)‖2 ‖x− y‖2

≤
|e (y)|+ egrad (y) ‖x− y‖2 + L̂j ‖x− y‖22 / (2J

∗
∞ (y))

1− β(y) ‖x− y‖2

where β(y) =
∥

∥∇TJ∗
∞ (y)

∥

∥

2
/J∗

∞ (y). The first inequal-
ity is true due to the second inequality of (14) and
the convexity of J∗

∞ (·). Using the fact that |e(y)| ≤
ē, egrad (y) ≤ ēgrad , we have

|e (x)| ≤
1

1− β(y)di,j

(

ē+ ēgraddi,j +
L̂jd

2
i,j

2J∗
∞ (y)

)

(C.1)
holds for any x ∈ int(Ri,j). Note that β(y) is bounded
on all Ri,j except R1,1, since J

∗
∞ (·) can only equal 0 at

origin, which is in R1,1. Therefore, one can always make
di,j sufficiently small so that 1− β(y)di,j > 0.

Case 2: e (x) ≤ 0, ∀x ∈ int(Ri,j). Similarly to Case
1, we can readily get almost the same expression of the
upper bound as the right-hand side of (C.1), and the

only difference is that L̂j is replaced by Li.

Case 3: ∃x1, x2 ∈ int(Ri,j) such that e(x1) > 0 and
e(x2) < 0. In this case, for all x ∈ int(Ri,j) subject to

Ĵ (x, θ) ≥ J∗
∞ (x), we can get the same upper bound for

|e(x)| as in (C.1), and for all x ∈ int(Ri,j) subject to

Ĵ (x, θ) < J∗
∞ (x), (C.1) holds with L̂j replaced by Li.

D Proofs of Theorem 5 and Corollary 1

In Theorem 5, C = X̄. First consider the solution to (2).
For every xt, t = 0, 1, . . . , theMPC control law u∗

t , which
contains the firstm elements ofU∗(xt), will be applied to
the system. From the equivalence in Theorem 1, {u∗

t }
∞
t=0

is also a solution to the (1). As a result, Axt + Bu∗
t ∈

X̄ for any xt ∈ X̄, (else, J∗
∞(Axt + Bu∗

t ) = ∞ and
J∗
∞(xt) =∞, which contradicts the claim that xt ∈ X̄).

Suppose that xt ∈ X̄\{0}. Applying the Bellman Opti-
mality Equation [23] for (1) leads to

J∗
∞ (Axt +Bu∗

t ) = J∗
∞ (xt)− xT

t Qxt − u∗T
t Ru∗

t

< J∗
∞ (xt)− xT

t Qxt (D.1)

Combining (D.1) with (13), we have

xT
t Qxt + û∗T

t Rû∗
t + Ĵ (Axt +Bû∗

t , θ)

≤xT
t Qxt + u∗T

t Ru∗
t + Ĵ (Axt +Bu∗

t , θ)

≤xT
t Qxt+u∗T

t Ru∗
t+J∗

∞ (Axt+Bu∗
t )+ζJ∗

∞ (Axt+Bu∗
t )

<J∗
∞ (xt) + ζJ∗

∞ (xt)− ζxT
t Qxt

<Ĵ (xt, θ) + 2ζJ∗
∞ (xt)− ζxT

t Qxt

The first inequality is true since û∗
t is a minimizer of

(8). The second and last inequalities hold due to (13),
and the third line is true thanks to the optimal Bellman
equation in (D.1). Then, combining (13) and (16) yields

1 + ζ

ζ
> 2 sup

x∈X̄\{0}

Ĵ (x, θ)

(1− ζ)xTQx
> 2 sup

x∈X̄\{0}

J∗
∞ (x)

xTQx

which implies

Ĵ (Axt +Bû∗
t , θ)− Ĵ (xt, θ)

<−(1+ζ)xT
t Qxt−û

∗T
t Rû∗

t+2ζJ∗
∞ (xt)<0, ∀xt∈X̄\{0}

Let x0 ∈ X̄\{0} and x1, x2, . . . be the trajectory of the
closed-loop system xt+1 = Axt + Bû∗

t , t = 0, 1, ... The

sequence Ĵ (x0, θ) , Ĵ (x1, θ) , . . . is strictly decreasing.

Besides, it is easy to check that Ĵ (0, θ) = 0, Ĵ (x, θ) >

0, ∀x ∈ X̄\{0}, and Ĵ (·, θ) is continuous at the origin,
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finite in X̄. Then, Ĵ (·, θ) is therefore a Lyapunov Func-
tion according to [9, Theorem 7.2]. So, the asymptotic
stability of the origin for any x ∈ X̄ follows. ✷

For the proof of Corollary 1, from the definition of Ω
and the continuity of Ĵ (·, θ), we know that Ω ⊆ X0.
Following the proof of Theorem 5, we can show that for
all xt ∈ Ω, Ĵ (Axt +Bû∗

t , θ) − Ĵ (xt, θ) < 0 holds. As a
result, the set Ω is positively invariant w.r.t. the closed-
loop system xt+1 = Axt+Bû∗

t . The recursive feasibility
thus follows from Ω ⊆ X0 ⊆ X . Similar to the proof of
Theorem 5, it can be shown that Ĵ(·, θ) is a Lyapunov
function and the stability of the origin follows. ✷
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