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Real-Time Train Scheduling with Uncertain

Passenger Flows: A Scenario-Based Distributed

Model Predictive Control Approach
Xiaoyu Liu, Azita Dabiri, Yihui Wang, and Bart De Schutter, Fellow, IEEE

Abstract—Real-time train scheduling is essential for passenger
satisfaction in urban rail transit networks. This paper focuses on
real-time train scheduling for urban rail transit networks con-
sidering uncertain time-dependent passenger origin-destination
demands. First, a macroscopic passenger flow model we proposed
before is extended to include rolling stock availability. Then, a
distributed-knowledgeable-reduced-horizon (DKRH) algorithm is
developed to deal with the computational burden and the commu-
nication restrictions of the train scheduling problem in urban rail
transit networks. For the DKRH algorithm, a cost-to-go function
is designed to reduce the prediction horizon of the original
model predictive control approach while taking into account the
control performance. By applying a scenario reduction approach,
a scenario-based distributed-knowledgeable-reduced-horizon (S-
DKRH) algorithm is proposed to handle the uncertain passenger
flows with an acceptable increase in computation time. Numerical
experiments are conducted to evaluate the effectiveness of the
developed DKRH and S-DKRH algorithms based on real-life
data from the Beijing urban rail transit network. The simulation
results indicate that DKRH can be used to achieve real-time train
scheduling for the urban rail transit network, while S-DKRH can
handle the uncertainty in the passenger flows with an acceptable
sacrifice in computation time.

Index Terms—Urban rail transit networks, Time-dependent
passenger origin-destination demands, Uncertain passenger flows,
Distributed model predictive control, Scenario approach.

I. INTRODUCTION

URBAN rail transit plays an increasingly prominent role

in public transportation of big cities due to its stability,

high transport capacity, and energy efficiency. Real-time train

scheduling is recognized as an effective way to improve pas-

senger satisfaction and to reduce the operational costs under

the infrastructure limitations of urban rail transit networks.

With the rapid expansion of network scale and the growing

passenger demands in urban rail transit systems, it becomes

increasingly challenging to achieve real-time train scheduling

while considering uncertain time-dependent passenger origin-

destination (OD) demands and operational costs.
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A. Passenger-Oriented Train Scheduling for a Single Line

Several methods are reported in the literature to optimize

arrival and departure times of trains at each platform in a

single line. One important trend is to develop more practically

implementable train scheduling strategy by including more

attributes of train operation and infrastructure restrictions,

e.g., train speed profiles [1], [2], rolling stock circulation

[3], [4], train stopping plan [5]. Wang et al. [1] explored

the train scheduling problem of a metro line while taking

train capacity and speed profiles into account, and then an

iterative convex programming approach is proposed to solve

the resulting nonlinear nonconvex optimization problem. Shi

et al. [6] investigated a flexible train capacity allocation

strategy for a metro line where carriages are reserved for

different stations based on time-dependent passenger demands,

and the resulting nonlinear integer programming problem is

solved through a variable neighborhood search algorithm.

Zhou et al. [7] incorporated rolling stock circulation into the

train scheduling problem considering passenger demands on

a tidal oversaturated metro line, so that passenger demands in

different phases can be satisfied.

The above studies are limited to passenger-oriented train

scheduling problems of a single line. For an urban rail transit

network, different lines typically interact with each other

through transfer passengers. Therefore, train scheduling con-

sidering detailed passenger origin-destination (OD) demands

in urban rail transit networks is regarded as an important

direction to further improve passenger satisfaction [8].

B. Passenger-Oriented Train Scheduling for Networks

Train scheduling in urban rail transit networks with time-

dependent passenger OD demands is challenging due to the

requirement for network coordination and the scale of the

resulting problem. In order to minimize the energy consump-

tion of trains and the total travel time of passengers, Wang

et al. [9] formulated time-dependent passenger OD demands

in an urban rail transit network by an event-driven model,

where arrival events, departure events, and passenger arrival

rates change events are proposed to describe the movement of

trains and passengers. Yin et al. [10] proposed a mixed-integer

linear programming (MILP) formulation to handle the over-

crowdedness of stations in an urban rail transit network, and

a decomposition-based adaptive large neighborhood search

approach was developed to improve the computational effi-

ciency. Luan and Corman [11] included the train scheduling
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and passenger routing process in an integrated model, and

the resulting mixed-integer nonlinear programming (MINLP)

problem is reformulated as an MILP problem to minimize

passenger disutility (i.e., passenger delay, travel time, and the

number of stranded passengers) and total train delay.

Considering the computational complexity of explicitly in-

tegrating departure and arrival times in an urban rail network

with time-dependent passenger OD demands, optimizing train

departure frequencies of each line has become a promising

direction in passenger-oriented train scheduling [12], [8].

Canca et al. [8] optimized line frequencies and capacities by

solving an MINLP problem. Liu et al. [13] developed a novel

passenger flow model to determine train departure frequencies,

i.e., the number of trains per unit time in each line, where time-

dependent passenger OD demands and train capacities are

included. The resulting optimization problem can be exactly

transformed into an MILP problem, which can be solved

efficiently by state-of-the-art MILP solvers [13]. Nevertheless,

most existing studies in passenger-oriented train scheduling of

urban rail networks do not include rolling stock availability

due to the computational complexity issue, leaving an open

gap for generating a practically implementable timetable.

C. MPC for Real-Time Railway Traffic Management

The train scheduling problem is a typical constrained control

problem [14]. Model predictive control (MPC) is a method-

ology for addressing real-time constrained control problems

[15], [16]. Based on a switching max-plus-linear model, a

real-time train scheduling method was developed in [17] to

minimize train delays and operational costs. Caimi et al. [18]

dealt with train rescheduling problems for complex railway

station areas by using MPC. However, as it is an optimization-

based control approach, centralized MPC can be difficult to

implement in real-life railway networks because of its com-

putational complexity and global information requirements.

These issues become more challenging in the case of large-

scale networks.

For general large-scale systems, many researchers have been

developing non-centralized methods that coordinate subsys-

tems in a decentralized, distributed, or hierarchical manner

to achieve fast and effective solutions for the overall system

[19], [20], [21]. Non-centralized control methods have also

been used in railway train scheduling problems. Kersbergen

et al. [22] developed several distributed MPC methods for

the railway traffic management problem where the arrival

and departure times, breaking connections, and train orders

in the railway network were jointly optimized. Luan et al.

[23] applied three distributed optimization approaches, i.e.,

an alternating direction method of multipliers approach, a

priority-rule-based approach, and a cooperative distributed

robust safe but knowledgeable (CDRSBK) algorithm for real-

time traffic management of railway networks. Numerical

experiments show that the CDRSBK approach with train-

based decomposition performs best on the basis of feasibility,

optimality, and computational efficiency.

The train scheduling of urban rail transit networks with

time-dependent passenger OD demands is challenging be-

cause of the large computational burden. The advanced non-

centralized control methods [19], [20], [21] and their success-

ful applications in railway [22], [23] have open opportuni-

ties to develop a new efficient distributed MPC method for

passenger-oriented train scheduling problems.

D. Train Scheduling under Uncertainties

There are many uncertain attributes in railway networks,

e.g., uncertain passenger flows and uncertain delays, that could

influence the performance of train schedules. Cacchiani et al.

[24] developed three different MILP formulations based on

light robustness (where uncertainty is handled by inserting

different protection levels) to reduce passenger inconvenience

caused by uncertain passenger demands in a high-speed rail-

way line. The scenario approach [25], [26] is a general data-

driven decision-making methodology that can deal with uncer-

tainties of a system. The scenario approach typically captured

uncertainties by a collection of representative scenarios, and

the decision is then made by considering these representative

scenarios. By using different scenarios to capture the uncertain

train operation time in the network, Yang et al. [27] developed

a two-stage stochastic integer programming model to minimize

the expected passenger travel time and transfer activities,

where the potential transfer stations are found at the first stage

while the least time paths are provided at the second stage.

Gong et al. [28] formulated an MINLP problem to optimize

the operational costs on an urban rail transit line where passen-

ger distribution is represented via several different scenarios.

However, most research only considered uncertain passenger

demands for a single line. Passenger demands in urban rail

transit networks exhibit highly dynamic and random charac-

teristics because trains typically operate with high density, and

passengers can choose different routes and different trains to

reach their destinations. Therefore, efficient approaches that

can explicitly include uncertain passenger demands in urban

rail networks still require further research.

E. Paper Contributions and Structure

The current paper deals with the real-time train schedul-

ing problem considering uncertain time-dependent passenger

origin-destination demands in urban rail transit networks. By

extending the passenger absorption model developed in [13],

the train scheduling problem with rolling stock availability

can be addressed by using model predictive control where

the optimization problem at each time step is formulated

as a mixed-integer linear programming problem. Considering

the computational issues, we develop a distributed model

predictive control approach where each line is regarded as

one subsystem. Furthermore, as passenger flows generally

exhibit some degree of uncertainty, a scenario-based approach

is incorporated into the distributed model predictive control

approach to deal with these uncertainties.

The main contributions of the paper are as follows:

1) A novel distributed-knowledgeable-reduced-horizon

(DKRH) algorithm is developed for the train scheduling

problem, where a new cost-to-go function is proposed
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considering computational complexity, prediction

horizon, and future performance.

2) We incorporate a scenario-based distributed control

scheme into the DKRH algorithm, and a scenario-based

distributed-knowledgeable-reduced-horizon algorithm is

developed to handle uncertain passenger flows in large-

scale urban rail transit networks.

3) The passenger absorption model of [13] is extended to

include rolling stock availability by taking into account

the total number of available trains so as to generate

practically implementable control strategies.

The remaining part of the paper is organized as follows:

Section II introduces the mathematical model used in this

paper. In Section III, a distributed knowledgeable-reduced-

horizon algorithm is developed. In Section IV, we propose

a scenario-based distributed knowledgeable-reduced-horizon

algorithm. In Section V, the effectiveness of the developed

approaches is evaluated based on real-life data from a part of

the Beijing urban rail transit network. The paper is concluded

with final remarks in Section VI.

II. MATHEMATICAL MODEL

This section starts with the description of the mathematical

model proposed by the authors in [13], followed by an

extension of the model to include rolling stock availability.

Some general explanations for the research problem of this

paper are as follows:

1) This paper aims to adjust train schedules for urban rail

transit networks online based on real-time passenger

demands. We assume the routes of passengers are given

a priori. Disturbances and disruptions are not in the

scope of this paper.

2) The current paper is based on the passenger absorption

model developed in [13], which has been developed to

determine train departure frequencies (i.e., the number

of trains departing from each platform per unit time) for

urban rail transit networks.

3) After obtaining the departure frequency of each plat-

form, a dedicated lower-level controller [29] can de-

termine the detailed departure and arrival times of

trains, where the departure interval during each phase

is determined according to the corresponding departure

frequency.

We start with introducing the notations for the model

formulation in Section II-A. Then, the passenger absorption

model is summarized in Section II-B. Section II-C introduces

the constraints for the model and further extends the model to

include rolling stock availability.

A. Notations

Indices and Input Parameters

o, d Index of stations, o, d ∈ S, S is the set of stations
p Index of platforms, p ∈ P , P is the set of platforms
k Index of phases
spla (p) Succeeding platform of platform p
ppla (p) Preceding platform of platform p
T Length of a phase

hmin
p Minimum departure-arrival headway at platform p

τmin
p Minimum dwell time of train at platform p
rp Average running time of trains from platform p to its

succeeding platform
γp Average time for a train from the first platform of a

line to platform p
Ctrain Maximum capacity of a train
αp,d(k) Fraction of passengers absorbed by trains at platform

p with destination d during phase k
χp,q,d Proportion of passengers transferring from platform p

to q with station d as their destination
ttransfp,q Average time for passengers walking from platform p

to platform q
ρstationo,d (k) Passenger origin-destination demands with o as origin

station and d destination station during phase k
λo,p,d (k) Proportion of passengers at origin station o choosing

platform p for their travel to destination d

Decision variables

fp(k) The number of trains departing from platform p
during phase k

Output variables

ρp,d (k) Passenger arrival rate at platform p with station d
as destination during phase k

np,d (k) Number of passengers waiting at platform p with
station d as their destination at the beginning of
phase k

nabsorb
p,d (k) Number of passengers at platform p with station

d as their destination absorbed by trains during
phase k

Cp (k) Total remaining capacity of trains visiting plat-
form p during phase k

nwant
p (k) Total number of passengers that want to board

trains at platform p during phase k
non−board
p,d (k) Number of passengers on board of trains, when

trains arrive at platform p, with destination d
during phase k

n
alight
p,d (k) Number of passengers alighting from trains at

platform p with station d as their destination
during phase k

ntransf
p,q,d (k) Number of passengers transferring from platform

p to q with station d as their destination during
phase k

n
trans,arrive
p,d (k) Number of transfer passengers arriving at plat-

form p with station d as their destination during
phase k

gp (k) Total number of transfer passengers arriving at
platform p during phase k

n
depart
p,d (k) Number of passengers departing from platform p

with station d as destination during phase k
mp (k) Total number of passengers departing from plat-

form p during phase k

B. Passenger Absorption Model

In the passenger absorption model, the number of passen-

gers np,d (k) waiting at platform p with station d as their

destination at the start of each phase is updated by:

np,d (k + 1) =np,d (k) + ρp,d (k)T

+ ntrans,arrive
p,d (k)− nabsorb

p,d (k) ,
(1)

where ρp,d (k) is the average passenger arrival rate at platform

p with station d as their destination during phase k; T is the

length of a phase; ntrans,arrive
p,d (k) is the number of transfer

passengers arriving at platform p with destination d during
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phase k, and nabsorb
p,d (k) is the number of passengers at

platform p with destination d absorbed by trains during phase

k. Then, ρp,d (k), ntrans,arrive
p,d (k), and nabsorb

p,d (k) can be

computed by

ρp,d (k) = λo,p,d (k) ρ
station
o,d (k) , ∀p ∈ Psta

o , (2)

ntrans,arrive
p,d (k)=

∑

q∈cop(p)\{p}

(

T − ttransfq,p

T
ntransf
q,p,d (k)

+
ttransfq,p

T
ntransf
q,p,d (k − 1)

)

,

(3)

nabsorb
p,d (k) = αp,d(k)n

absorb
p (k) , (4)

where ρstationo,d (k) denotes passenger origin-destination de-

mands at phase k with o and d as the origin station and the

destination station, respectively; Psta
o defines a set of platforms

at station o; and λo,p,d (k) is the proportion1 of passengers at

station o who choose platform p for their travel to destination

d; cop(p) defines a set of platforms located at the same station

as platform p; ttransfq,p denotes the average transfer time for

passengers from platform q to platform p; ntransf
p,q,d (k) is the

number of passengers transferring from platform p to platform

q with destination d during phase k; αp,d(k) is the fraction of

passengers absorbed by trains at platform p with destination

d during phase k; nabsorb
p (k) denotes the total number of

passengers absorbed by trains at platform p during phase k.

For the variable nabsorb
p (k) in (4), we have

nabsorb
p (k) = min

(

nwant
p (k) , Cp (k)

)

, (5)

nwant
p (k) = np (k) + ρp (k)T + gp (k) , (6)

Cp(k)=fp(k) · Ctrain−
∑

d∈S

(

non−board
p,d (k)−nalight

p,d (k)
)

,

(7)

with

np(k) =
∑

d∈S

np,d(k), ρp(k) =
∑

d∈S

ρp,d(k),

gp (k) =
∑

d∈S

narrive,transf
p,d (k),

(8)

where nwant
p (k) is the total number of passengers that want

to board trains at platform p during phase k; Cp(k) is the

total remaining capacity of trains that visit platform p during

phase k; fp(k) is the number of trains that visit platform p
during phase k; Ctrain is the maximum capacity of a train, S
denotes the set of stations in the urban rail transit network,

non−board
p,d (k) is the number of passengers on board of trains

at platform p with destination d during phase k, and nalight
p,d (k)

is the number of passengers alighting from trains at platform

p with destination d during phase k.

The number of passengers ndepart
p,d (k) departing from plat-

form p with destination d during phase k is

ndepart
p,d (k) = non−board

p,d (k)− nalight
p,d (k) + nabsorb

p,d (k) , (9)

1As passenger route choices observed from metro data collection systems
typically exhibit consistent patterns, we assume that the proportions of
passengers choosing each route are given a priori. Thus, λo,p,d(k) can be
estimated from historical data or obtained according to the shortest paths.

and we have

n
on−board
p,d (k)=

T−rppla(p)

T
n
depart

ppla(p),d
(k)+

rppla(p)

T
n
depart

ppla(p),d
(k−1) ,

(10)

nalight
p,d (k)=











∑

q∈cop(p)/{p}

ntransf
p,q,d (k) , if d ∈ S\{sta(p)},

non−board
p,d (k) , if d = sta(p),

(11)

ntransf
p,q,d (k) = χp,q,d non−board

p,d (k), ∀q ∈ cop(p)\{p},

(12)

mp(k) =
∑

d∈S

ndepart
p,d (k), (13)

where rppla(p) refers to the average running time of trains

from the preceding platform ppla(p) to platform p, and T ≫
rppla(p); sta(p) defines the station of platform p; χp,q,d is

the proportion for passengers transferring from platform p to

q ∈ cop(p) with station d as their destination; cop(p) defines

a set of platforms located at the same station as platform p;

mp(k) denotes the total number of passengers departing from

platform p during phase k.

C. Constraints for the Absorption Model

1) Departure Frequency Constraints: In this paper, we only

consider the case that each line has one depot to accommodate

trains. In general, each train at a line will visit every platform

of the line before it returns to deport or starts as a new train

service. In this context, the number of trains running on a line

can be determined by the number of trains departing from the

depot. Therefore, the number of trains fp(k) departing from

platform p can be calculated by

fp(k)=
T−φp

T
ffst(p)(k−βp) +

φp

T
ffst(p)(k−βp−1) , (14)

βp = ⌊γp/T ⌋ , φp = γp − βpT, (15)

where fst (p) defines the first platform of the line correspond-

ing to platform p, i.e., the platform connected with the depot of

the line, γp denotes the average time for a train from platform

fst (p) to platform p.

To ensure the safe operation of urban rail transit systems,

the number of trains departing from platform p during phase

k should be constrained by

fp(k)
(

hmin
p + τmin

p

)

≤ T, (16)

where hmin
p and τmin

p are the minimum headway and the

minimum dwell time at platform p, respectively.

2) Rolling Stock Availability Constraints: In real-life op-

erations, the number of trains used for each line is restricted

by the total number of available trains, i.e., the total number

of trains running on the line should be smaller than or equal

to the total number of available trains. Therefore, the rolling

stock availability should be included in order to generate

a practically implementable timetable. Considering p as the

platform connected with a depot, the train departing from

platform p typically visits every platform of the line and

requires an average time interval cp to return to the depot, and
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we define cp as the circulation time. Then, for the passenger

absorption model, the trains departing from a depot during the

circulation time should satisfy

fp(k)+

σp−1
∑

i=1

fp(k−i)+
ωp

T
fp(k−σp) ≤ N rs

p , ∀p ∈ dep(p),

(17)

σp = ⌊cp/T ⌋ , ωp = cp − σpT, (18)

where dep(p) is the set of platforms that use the same depot

with platform p; N rs
p is the total number of available trains

for the line corresponding to platform p.

III. DISTRIBUTED KNOWLEDGEABLE-REDUCED-HORIZON

ALGORITHM FOR TRAIN SCHEDULING

Based on the model predictive control (MPC) framework,

in this section, we first develop a knowledgeable-reduced-

horizon (KRH) approach where a novel cost-to-go function

is designed to shorten the prediction horizon. A distributed

control framework is then proposed to further reduce the com-

putational burden of solving the MPC optimization problem,

thereby achieving real-time train scheduling in the urban rail

transit network. In the distributed control framework, each

local agent generates its control decisions based on its local

information and information from its neighbor agents. Such a

framework is in accordance with the real-life situation where

global information is typically not available in large-scale

urban rail transit networks.

A. Problem Formulation in MPC Set-Up

In an urban rail transit network, passenger satisfaction is

strongly related to the total time spent in the network. Based

on the absorption model, the total travel time of passengers

in the urban rail transit network during phase k is represented

by

Jpass(k) =
∑

p∈P

(

np(k)T +mp(k)rp + gp(k)t
transf
p

)

, (19)

where np(k)T represents the total waiting time at platform p
during phase k, mp(k)rp denotes the total running time until

the next platform for passengers departing from platform p
during phase k, and gp(k)t

transf
p represents the total transfer

time of passengers at platform p during phase k.

The operational cost of an urban rail transit system is highly

related to the energy consumption of trains. Based on the

absorption model, the total energy consumption for trains

departing from the platform during phase k is computed by

J roll(k) =
∑

p∈P

fp(k)Ep, (20)

where Ep represents the average energy consumption for a

train to run from platform p to its succeeding platform.

Therefore, the MPC optimization problem PMPC
k0

for real-

time train scheduling of urban rail transit networks is formu-

lated as

min
f(k)

J(k0) =
k0+N0−1
∑

k=k0

(

Jpass(k) + ξJ roll(k)
)

,

subject to (1)− (14), (16)− (17),

(21)

where N0 is the prediction horizon, and ξ is a weight balancing

the objectives.

As explained in [13], the nonlinear optimization problem

PMPC
k0

can be transformed into a mixed-integer linear pro-

gramming (MILP) problem PMILP
k0

with the following form,

which is exactly equivalent to the original optimization prob-

lem:

min
x(k),f(k)
δ(k),z(k)

J(k0) =

k0+N0−1
∑

k=k0

(

Jpass(k) + ξJ roll(k)
)

(22)

subject to

x(k+1) = Akx(k)+B1,kf(k)+B2,kδ(k)+B3,kz(k), (23)

E2,kδ(k) + E3,kz(k) ≤ E1,kf(k) + E4,kx(k) + E5,k, (24)

f(k) ≤ D0 +

K
∑

i=1

Dif(k − i), (25)

k = k0, . . . , k0 +N0 − 1,

where x(k) and f(k) respectively concatenate the state vari-

ables (i.e., the variables related to the passengers) and decision

variables (i.e., the number of trains) of all platforms in the

network in phase k; δ(k) and z(k) respectively represent the

vector of auxiliary binary variables and auxiliary continuous

variables in phase k. The compact equation (23) represents the

linear and mixed-integer linear formulations of the equations

in (1)-(14). Constraint (24) collects all the linear and mixed-

integer linear model constraints and operational constraints

in a matrix form. Constraint (25) collects the constraints of

decision variables, i.e., (14) and (17), in a matrix form, where

K = max
p∈P

σp.

For detailed information of transforming nonlinear terms of

the model into mixed-integer linear inequalities, we refer the

interested readers to [30], [31].

B. Knowledgeable-Reduced-Horizon Algorithm for Train

Scheduling

The computational complexity of solving MILP problem

PMILP
k0

increases rapidly with the prediction horizon N0 due

to the increasing number of variables. Solving PMILP
k0

at

every MPC step is not tractable for large prediction horizons

because of the real-time feasibility restriction. Shortening

the prediction horizon to reduce the computational burden;

however, a short prediction horizon may negatively affect the

performance of the controller as less future information can

be included in the decision-making process.

Inspired by the robust-safe-but-knowledgeable (RSBK) al-

gorithm proposed in [20], [32], we develop a knowledgeable-

reduced-horizon (KRH) algorithm to shorten the prediction

horizon of the original MPC controller by a customized cost-

to-go function. The optimization problem PKRH
k0

for the KRH

algorithm is defined as

min
x(k),f(k)
δ(k),z(k)

J(k0)=

k0+N−1
∑

k=k0

(

Jpass(k) + ξJ roll(k)
)

+ LN (k0)

(26)
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subject to

x(k+1) = Akx(k)+B1,kf(k)+B2,kδ(k)+B3,kz(k), (27)

E2,kδ(k) + E3,kz(k) ≤ E1,kf(k) + E4,kx(k) + E5,k, (28)

f(k) ≤ D0 +

K
∑

i=1

Dif(k − i), (29)

k = k0, . . . , k0 +N − 1,

where LN (k0) denotes the cost-to-go function associated with

the terminal states of passengers at the end of the shortened

horizon.

As the target of the controller is to minimize the total travel

time of the passengers, the cost-to-go function is designed to

determine the cost associated with the passengers that remain

at the platforms at the end of the reduced prediction window,

i.e., a reasonable estimate of the remaining travel time for

passengers waiting at the platforms at the end of the prediction

time window.

The cost-to-go function for the remaining passengers at the

platforms is defined as:

LN (k0) =
∑

p∈P

∑

d∈S

(

np,d(k0 +N)
∑

j∈Rp,d

ηp,d,jt
total
p,d,j

)

, (30)

where Rp,d represents the set of possible routes for passengers

from platform p to their destination d (see Remark 3.1 below

for an example of Rp,d), ηp,d,j is defined as the percentage of

passengers at platform p that will travel to station d through

route j, and we have

ηp,d,j =
∏

(q,q′)∈Ppair

j

χq,q′,d, ∀j ∈ Rp,d, (31)

where Ppair
j represents the set of platform pairs at a transfer

station in route j, and χq,q′,d is the proportion for passengers

transferring from platform q to q′. As the route of passengers

can be represented by several pairs of platforms, (31) calcu-

lates the percentage of passengers that intend to travel from

p to d through route j. Since χq,q′,d is estimated based on

historical data, ηp,d,j can be calculated offline.

Then, ttotalp,d,j represents the average travel time for passengers

from platform p to their destination d through route j, and

ttotalp,d,j can be calculated offline based on the average dwell

times, the average running times, and the average transfer

times related to the platforms in route j:

ttotalp,d,j = tavrgp,j +
∑

(q,q′)∈Ppair

j

(

ttransfq,q′ + tavrgq′,j

)

, ∀j ∈ Rp,d, (32)

where tavrgp,j denotes the average time for passengers from

platform p to reach either the next transfer station or the

destination station in route j.

The construction of the sets Rp,d and Ppair
j is now illus-

trated in Remark 3.1 through an example.

Remark 3.1 An example network is shown in Fig. 1. For

passengers waiting at platform a with destination h at the end

of the prediction window, there are two possible routes in the

example network of Fig. 1. Thus, the set of possible routes

for passengers from platform a with destination h is Ra,h =

a

Platform of Line 1

Platform of Line 2

Station

Transfer station

Train running

direction

Transfer channel

Line 3

Line 1c1 d

c2

i

j

Platform of Line 3

b1

e

f

b2

Line 2g1 h

g2

Fig. 1. Example network

{a−b1−b2−f−g1−h, a−b1−c1−c2−g2−g1−h}. The

set of platform pairs for route a−b1−b2−f−g1−h (named

as route 1) is Ppair
1 = {(b1,b2)}, and the set of platform pairs

for route a − b1 − c1 − c2 − g2 − g1 − h (named as route

2) is Ppair
2 = {(c1, c2), (g2,g1)}. Then, the corresponding

cost-to-go function can be calculated according to (30)-(32).

Comparing PKRH
k0

and PMPC
k0

, we can find that the number

of variables and constraints in (27) and (28) are reduced as

the prediction horizon is reduced from N0 to N . Similar

to PMILP
k0

, the optimization problem PKRH
k0

for the KRH

algorithm is an MILP problem.

C. Distributed KRH Algorithm for Train Scheduling in Urban

Rail Transit Network

For large-scale urban rail transit networks, it may not be

feasible to solve problem PKRH
k0

in a centralized manner

due to the computational burden and the communication

restrictions for collecting global information. In the urban

rail transit network, different lines typically interact with their

neighbor lines through transfer passengers as described in (3).

In this section, a distributed-knowledgeable-reduced-horizon

(DKRH) algorithm is developed for passenger-oriented real-

time train scheduling of urban rail transit networks.

In urban rail transit networks, we can regard each line

as a subsystem, where different subsystems interact with

each other through transfer passengers. The corresponding

objective functions associated with the travel time and energy

consumption of subsystem l during phase k are

Jpass
l (k) =

∑

p∈Pline
l

(

np(k)T +mp(k)rp + gp(k)t
transf
p

)

,

(33)

J roll
l (k) =

∑

p∈Pline
l

fp(k)Ep, (34)

where P line
l is the set of platforms of line l. The cost-to-go

functions corresponding to the terminal states of passengers

of subsystem l is

LN,l(k0) =
∑

p∈Pline
l

∑

d∈S

(

np,d(k0 +N)
∑

j∈Rp,d

ηp,d,jt
total
p,d,j

)

.

(35)

The proposed DKRH algorithm is an iterative algorithm.

In every control step of the proposed DKRH algorithm,

different subsystems exchange information with their neighbor

several times over several iterations. In each iteration, different

subsystems solve their local problems in parallel, and then
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they exchange the new computed solution for the next iter-

ation until the stopping criterion is met. At iteration step ϑ,

the l-th subsystem calculates its control inputs through the

following optimization problem, denoted as PD
l,k0

, by setting

the variables of other subsystems as the corresponding values

of the last iteration ϑ− 1:

min
δl(k),fl(k)
xl(k),zl(k)

Jl(k0) =

k0+N−1
∑

k=k0

(

J
pass
l (k) + ξJ

roll
l (k)

)

+ LN,l(k0)

(36)
subject to

xl(k+1)=Al,kxl(k)+B1l,kfl(k)+B2l,kδl(k)+B3l,kzl(k),

(37)

E2l,kδl(k) + E3l,kzl(k) ≤ E1l,kfl(k) + E4l,kxl(k) + E5l,k,
(38)

fl(k) ≤ Dl,0 +

K
∑

i=1

Dl,ifl(k − i), (39)

k = k0, . . . , k0 +N − 1.

Algorithm 1 describes the DKRH algorithm, where lmax is

the total number of lines in the network; ε is a small positive

value which can be the machine precision. An initial estimate

for the decision variable can be that of the basic timetable,

i.e., the timetable with regular departure frequencies, which

is typically used in the daily operation. As each line is

independent from the other lines, i.e., they do not share track

and/or platforms with the other lines, trains in different lines

will not conflict with each other. In this context, the regular

departure frequencies are always feasible.

Algorithm 1 DKRH for real-time train scheduling

Input: kend; ϑmax; lmax; ε; initial estimate for the decision

variable: f0
l (k), l = 1, . . . , lmax;

Output: optimal value fl(k), Jl
1: repeat

2: k ← k0
3: repeat

4: ϑ← 1
5: for l = 1, . . . , lmax do

6: solve problem PD
l,k0

and get fϑ
l (k) and Jϑ

l

7: update (37), (38), and (39) for l by using fϑ
l (k)

8: end for

9: ϑ← ϑ+ 1
10: until ϑ = ϑmax or

∣

∣Jϑ
l − Jϑ−1

l

∣

∣ ≤ ε
11: apply control decision fl(k) to each subsystem l
12: k ← k + 1
13: until k = kend

Lemma 3.1: As we start with a feasible solution of the

overall system and as the initial values of the decision variables

are always feasible at every step, a feasible solution of problem

PD
k0

can always be found.

IV. SCENARIO-BASED DKRH ALGORITHM

In this section, a scenario-based distributed-knowledgeable-

reduced-horizon (S-DKRH) algorithm is developed to improve

service quality in the presence of uncertain passenger flows.

For a large-scale urban rail transit network, the uncertainties

generally consist of global uncertainties (e.g., the uncertainties

caused by different weather conditions), and local uncertainties

of each subsystems (i.e., the uncertainties due to different line

conditions). Both global uncertainties and local uncertainties

can be captured as several representative scenarios over the

prediction window, which can be defined as global scenarios

and local scenarios, respectively, based on historical data [33],

[34]. If we include all combinations of global scenarios and

local scenarios, the total number of combinations Ncom is

Ncom = Nglo

lmax
∏

l=1

Nloc,l, (40)

where Nglo denotes the number of global scenarios; Nloc,l

is the number of scenarios for subsystem l; lmax is the total

number of subsystems in the network; In this context, each

subsystem should consider the complete set of scenarios, i.e.,

Ncom scenarios, when generating its decision variables, which

would rapidly increase the computational burden.

In order to address the computational complexity issue

arising from the increasing number of scenarios for urban

rail transit networks, we adopt a scenario reduction approach

[35] into the DKRH algorithm. For subsystem l, the Nloc,l

scenarios will be directly used for subsystem l in the scenario-

based approach. However, when considering the impact from

subsystem l′ (l′ 6= l) on subsystem l, we use the scenario

reduction approach to reduce the number of representative

scenarios of subsystem l′ from Nloc,l′ to Nl′,l, i.e., Nl′,l ≪
Nloc,l′ . In this context, subsystem l only needs to consider

Ntotal,l = NgloNloc,l

∏

l′ 6=l

Nl′,l representative scenarios, which

can be much smaller than that of original scenario approach

with Nglo

lmax
∏

l=1

Nloc,l representative scenarios. For example,

Fig. 2 has three subsystems, and subsystem 2 only considers

Nglo · Nloc,2 · N1,2 · N3,2 representative scenarios instead of

Nglo · Nloc,1 · Nloc,2 · Nloc,3 representative scenarios, where

N1,2 ≪ Nloc,1, N3,2 ≪ Nloc,3. Therefore, the computational

burden of each subsystem is reduced significantly.

Local scenarios 

for subsystem 1

Local scenarios 

for subsystem 2

Local scenarios 

for subsystem 3

Subsystem 2

Nloc,2 local 

scenariosN1,2 representive 

scenarios

Global scenarios 

for overall network

Nglo global 

scenarios

N3,2 representive 

scenarios

Fig. 2. Reduced scenarios for agent 2 in an example with 3 agents.

Based on the above scenario reduction approach, we develop

the S-DKRH algorithm. For subsystem l with scenario s, the



8

corresponding objective functions are

Jpass
l,s (k)=

∑

p∈Pline
l

(

np,s(k)T+mp,s(k)rp+gp,s(k)t
transf
p

)

,

(41)

J roll
l,s (k) =

∑

p∈Pline
l

fp(k)Ep,s, (42)

where np,s(k), mp,s(k), gp,s(k), and Ep,s respectively repre-

sent the values of np(k), mp(k), gp(k), and Ep under scenario

s. The corresponding cost-to-go functions is

LN,l,s(k0)=
∑

p∈Pline
l

∑

d∈S

(

np,d,s(k0 +N)
∑

r∈Rp,d

ηp,d,rt
total
p,d,r

)

,

(43)

with np,d,s(k0+N) denoting the variable np,d(k0+N) under

scenario s.

In the S-DKRH algorithm, subsystem l considers only one

representative scenario for each neighbor subsystem, and the

variables of the neighbor subsystems are set as the corre-

sponding values of the last iteration. At phase k0, the l-
th subsystem generates its control decisions by solving the

following chance-constraint optimization problem PS
l,k0

:

min
xl(k),fl(k)
δl(k),zl(k)

Ntotal,l
∑

s=1

P {s}

(

k0+N−1
∑

k=k0

(

J
pass
l,s (k)+ξJ

roll
l,s (k)

)

+LN,l,s(k0)

)

(44)

subject to

xl,s(k+1) = Al,s,kxl,s(k) +B1l,s,kfl(k)

+B2l,s,kδl,s(k) +Bs
3l,s,kzl,s(k), (45)

Ehard
2l,s,kδl,s(k) + Ehard

3l,s,kzl,s(k) ≤

Ehard
1l,s,kfl(k) + Ehard

4l,s,kxl,s(k) + Ehard
5l,s,k, (46)

Ntotal
∑

s=1

P{s}1
(

Esoft
2l,s,kδl,s(k) + Esoft

3l,s,kzl,s(k) ≤

Esoft
1l,s,kfl(k) + Esoft

4l,s,kxl,s(k) + Esoft
5l,s,k

)

≥ θl,

(47)

fl(k) ≤ Ds
l,0 +

K
∑

i=1

Ds
l,ifl(k − i), (48)

k = k0, . . . , k0 +N − 1,

where P {s} denotes the probability of s, and Ntotal,l is

the total number of scenarios for agent l after scenario

reduction. Eq. (45) represents the linear and mixed-integer

linear formulations of the model explained in (1)-(14) for

subsystem l under scenario s; (46) collects the corresponding

hard constraints; (47) denotes the chance constraints, i.e., the

constraints related to operational performance, 1(·) defines the

indicator function2, and θl ∈ (0, 1) indicates the minimally

required probability that there is no constraint violation; (48)

collects the hard constraints of decision variables, i.e., (14)

and (17), for subsystem l with scenario s. By solving PS
l,k0

,

we minimize the expected value of objective function (44)

while including the corresponding constraint satisfaction in

2
1(·) = 1 if the corresponding constraint is satisfied, otherwise 1(·) = 0.

(46). Problem PS
l,k0

for the S-DKRH algorithm is also an

MILP problem and can be solved efficiently by using existing

MILP solvers.

Algorithm 2 provides the process of the S-DKRH algorithm,

where Ll represents the neighboring subsystems of l, i.e., lines

connected with line l via transfer stations.

Algorithm 2 S-DKRH algorithm for real-time train scheduling

Input: kend; ϑmax; Nglo; Nloc,l; Nl′,l; ε; initial estimate for

the decision variable: f0
l (k), l = 1, . . . , lmax;

Output: optimal value fl(k), Jl
1: for l = 1, . . . , lmax do

2: construct Nlocal,l scenarios for local controller

3: construct 1 combined scenario for its neighbors

4: end for

5: repeat

6: k ← k0
7: repeat

8: ϑ← 1
9: for l = 1, . . . , lmax do

10: solve problem (44) and get fϑ
l (k) and Jϑ

l

11: update constraints in problem PS
l,k0

for l ∈ Ll

12: end for

13: ϑ← ϑ+ 1
14: until ϑ = ϑmax or

∣

∣Jϑ
l − Jϑ−1

l

∣

∣ ≤ ε
15: apply control decision fl(k) to each subsystem l
16: k ← k + 1
17: until k = kend

V. CASE STUDY

To evaluate the performance of the developed approaches,

numerical experiments are conducted based on real-life data

of the Beijing urban rail transit network. First, we present the

urban rail transit network and some basic settings we use in the

case study. Then, simulations are conducted to illustrate the

effectiveness of the developed KRH and DKRH algorithms.

Finally, we include uncertainty in the passenger flows in the

simulation to show the performance of the S-DKRH algorithm.

A. Setup

The network we consider includes four bidirectional lines

of the Beijing urban rail transit network, i.e., Changping Line,

Line 8, Line 13, and Line 15 (see Fig. 3). Therefore, we have

four subsystems for the distributed control approaches. The

main parameters for the case study are shown in TABLE I,

where the circulation time cp mentioned in (17) and (18) is

estimated based on the average running time and the regular

dwell time. The basic timetable is generated by implementing

the regular headway and the regular dwell time in TABLE I.

The passenger OD demands are obtained based on the real-

life passenger data of the Beijing urban rail transit network. In

particular, we use the real-life data on passengers entering and

exiting flows of each station in the network of Fig. 3. The data

is updated every 30 minutes. In the case study, we consider

passenger flows from 7:00-12:00, which includes situations

of both peak hours and off-peak hours. We directly use the
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down direction

up direction

up direction

down direction

WJ WDDD GZALBSTLDKQHX

Line 15
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down direction

Fig. 3. Layout of the considered urban rail transit network (with 4 lines).

TABLE I
PARAMETERS OF THE NETWORK FOR THE CASE STUDY

Parameters
Changping
Line

Line 8 Line 13 Line 15

Minimum headway 120 s 120 s 120 s 120 s
Regular headway 180 s 180 s 180 s 180 s
Maximum dwell time 360 s 360 s 360 s 360 s
Minimum dwell time 30 s 30 s 30 s 30 s
Regular dwell time 60 s 60 s 60 s 60 s
Train capacity 2400 2400 2400 2400
Average transfer time 60 s 60 s 60 s 60 s
Phase time T 1800 s 1800 s 1800 s 1800 s
Total available trains 24 trains 28 trains 32 trains 24 trains
Circulation time 5407.5 s 6227.6 s 7101.9 s 3315.9 s

passenger OD demands for the simulation of the deterministic

case. For the uncertain case, we generate uncertain passenger

OD demands using Poisson distribution [36] based on the

passenger flow data with an additional variation within 30%

for simulations and the scenario-based approach to simulate

the over-crowdedness cases. The number of representative

scenarios for each local subsystem is 5, while both the number

of global scenarios and scenarios for neighbor subsystems are

1. In this context, each subsystem only needs to consider 5

scenarios in total.

After generating the number of trains departing from each

platform during each phase, we generate the detailed departure

and arrival times of each train by a lower-level controller

(e.g., the controller developed in [29]). We use the passenger

absorption model as the prediction model and an elaborate

model from the literature (i.e., the model in [9], [37]) as

the simulation model to evaluate the effectiveness of the

developed approaches. In each MPC step, the resulting mixed-

integer linear programming problem is solved by the gurobi

solver called from MATLAB (R2019b). The simulations are

performed on a computer with an Intel Xeon W-2223 CPU

and 8GB RAM.

B. Real-Time Train Scheduling for the Deterministic Case

We conduct simulations for the deterministic case to show

the effectiveness of the developed knowledgeable-reduced-

horizon (KRH) algorithm and the distributed knowledgeable-

reduced-horizon (DKRH) algorithm. For comparison, we also

perform simulations for the basic timetable as well as the

original MPC approach.

According to the circulation time of each line, the prediction

horizon of all MPC approaches should be N ≥ 4 (i.e., the

length of the prediction time window satisfies t ≥ 7200 s)
to ensure that the MPC optimization problem can cover

every station in the network. The prediction horizon of the

original MPC approach is set as N = 6, while the prediction

horizon for KRH and DKRH is reduced to N = 4. For the

DKRH approach, we use three subsystems, where each line

in Fig. 3 is regarded as one subsystem. Considering the real-

time implementation, we set the maximum solution time for

each MPC step to 3600 s to meet the real-time feasibility

requirement.

TABLE II
SIMULATION RESULTS FOR DIFFERENT APPROACHES UNDER THE

DETERMINISTIC CASE

Approach Objective Improvement
CPU time (s)
tavrg tmax

Basic timetable 8.4607 · 104 - - -

MPC (N=6) 7.0633 · 104 16.52% 3600.0 3600.0

KRH (N=4) 7.1614 · 104 15.36% 250.7 636.0

DKRH (N=4) 7.1174 · 104 15.88% 35.5 37.8
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Fig. 4. Value of the objective function at each time step.

The simulation results are displayed in TABLE II, where

the value of objective function and computation time of each

approach are collected. The value of objective function in

each MPC step is shown in Fig. 4. These results show that

MPC, KRH, and DKRH can improve the performance of the

basic timetable, with an improvement of 16.52%, 15.36%, and

15.88%, respectively. As a real-time control approach, the

online computational burden is an essential issue for MPC,

which is significantly influenced by the prediction horizon.

The original MPC approach with prediction horizon N = 6
cannot calculate its optimal solution within 3600 s. By using

the cost-to-go function in the developed KRH algorithm, the

prediction horizon and the solution space are reduced. Thus,

the CPU time of the KRH algorithm is reduced significantly

while ensuring an acceptable level of solution quality.
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As we divide the original problem into three smaller sub-

problems in the DKRH algorithm, the computational burden of

each subproblem is further reduced. Compared with the KRH

algorithm, the average CPU time for the DKRH algorithm

is reduced from 250.7 s to 35.5 s, and the maximum CPU

time is reduced from 636.0 s to 37.8 s. The solution time of

the DKRH algorithm is further reduced while maintaining the

same level of control performance.
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Fig. 5. Total travel time of passengers at each time step.
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Fig. 6. Number of trains departing from the depot of Line 13.

The total travel time of passengers is shown in Fig. 5. To

further illustrate the results, the number of trains departing

from the depot of Line 13 is given in Fig. 6. In Fig. 5 and

Fig. 6, time steps 1-3 represent the morning peak hours at

7:00-8:30. Compared with the basic timetable, more trains are

scheduled to attend the large passenger demand in the morning

peak hours. Since the maximum number of available trains

for Line 13 is 32, and the circulation time for Line 13 is

7101.9 s, which is approximately equal to the length of 4

phases, the maximum number of trains scheduled for each

phase is restricted. Compared with peak hours, fewer trains are

scheduled in off-peak hours to reduce operational costs with an

acceptable increase in the total passenger travel time. Based

on the developed approaches, we can obtain the number of

trains departing from each platform during each phase, and the

corresponding timetable can be further generated. Examples of

the timetable are shown in Appendix A.

The simulation results indicate that both KRH and DKRH

can be used for real-time train scheduling for urban rail transit

networks. In particular, when there are no communication

restrictions between different lines, KRH can be used to get

a high-quality solution; otherwise, especially for large-scale

networks when centralized control for the whole network is

not possible due to the communication restrictions, DKRH can

be used to achieve real-time train scheduling for the urban rail

transit network.

C. Real-Time Train Scheduling Considering Uncertain Pas-

senger Flows

In general, passenger demands in urban rail transit networks

satisfy a Poisson distribution [36]. In this section, we per-

form simulations when there exists uncertainty in passenger

flows to evaluate the effectiveness of the developed scenario-

based distributed knowledgeable-reduced-horizon (S-DKRH)

algorithm.

We first start simulations for one uncertain scenario. To

have a baseline, we also conduct a simulation with perfect

knowledge of the uncertainties, which is indicated as P-DKRH

below. It is worth noting that P-DKRH is not realistic as it is

not possible to have perfect knowledge of the uncertainties in

real life. For the DKRH algorithm, we use the expected value

of the passenger demands to calculate the timetable. Using the

simulation results in Section V-B, the prediction horizon for

P-DKRH, DKRH, and S-DKRH is set as N = 4.

TABLE III
SIMULATION RESULTS FOR DIFFERENT APPROACHES UNDER THE

UNCERTAIN CASE

Approach Objective Improvement
CPU time (s)
tavrg tmax

Basic timetable 9.7262 · 104 - - -

P-DKRH 8.4282 · 104 13.35% 35.4 40.9

DKRH 8.7171 · 104 10.38% 34.4 37.7

S-DKRH 8.4718 · 104 12.90% 347.6 385.9

TABLE III and Fig. 7 show the simulation results of dif-

ferent approaches under uncertain passenger flows. Compared

with the basic timetable, an improved performance can be

observed for both DKRH and S-DKRH, with an improvement

of 10.38% and 12.90%, respectively. Compared with DKRH,

the objective function value of S-DKRH is closer to that of

P-DKRH, which implies the effectiveness of the scenario-

based approach. Both DKRH and S-DKRH satisfy the real-

time feasibility requirement for the given case study. The com-

putational burden of S-DKRH is larger than that of DKRH,

and the average CPU time increases from 34.4 s to 347.6 s for

S-DKRH. The simulation results demonstrate that a suitable

choice is required in real-life applications, i.e., when the CPU

power is sufficient, S-DKRH is a better choice to obtain a

higher-quality solution; otherwise, when the CPU power is not
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Fig. 7. Value of the objective function at each time step.

sufficient, DKRH can be used to calculate a timetable within

a shorter period of time with acceptable performance.
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Fig. 8. Number of trains departing from the depot of Line 13 in the uncertain
case.

The number of trains departing from the depot of Line

13 in the uncertain case is shown in Fig. 8. Time steps 1-

3 are associated with the morning peak hours at 7:00-8:30,

and it can be observed that more trains are scheduled at time

steps 1-3 to attend the large passenger demands. We can also

obtain a timetable based on the above results; the timetables

of DKRH and S-DKRH for Line 13 at 7:00-8:00 are given in

Appendix B.

TABLE IV
COMPARISON OF THE OBJECTIVE FUNCTION VALUES FOR DIFFERENT

APPROACHES

Average Standard deviation

Basic timetable 9.3997 · 104 6.6490 · 103

P-DKRH 8.0825 · 104 6.5604 · 103

DKRH 8.2794 · 104 7.7432 · 103

S-DKRH 8.1147 · 104 7.2378 · 103

To further demonstrate the effectiveness of the developed S-

DKRH algorithm, simulations are carried out in 10 different

scenarios. The 10 scenarios are generated based on Poisson

distribution with the real-life passenger entering and exiting

flow data as the expected value. The average value and the

standard deviation of the objective function values for the basic

timetable, and the timetable obtained by P-DKRH, DKRH, and

S-DKRH are calculated. Compared with the average objective

function value of the basic timetable, P-DKRH, DKRH, and S-

DKRH yield an improvement of 14.01%, 11.92%, and 13.67%,

respectively. Although P-DKRH outperforms DKRH and S-

DKRH with respect to both the average value and the standard

deviation, as stated before, P-DKRH is not realizable in real

life3. It can be observed in Table IV that the average objective

function value and the standard deviation of S-DKRH are

smaller than that of DKRH. The simulation results imply

that S-DKRH can be a suitable choice to handle uncertain

passenger flows.

VI. CONCLUSIONS

In this paper, we have investigated the real-time train

scheduling problem for urban rail transit networks consid-

ering uncertain time-dependent passenger OD demands. The

passenger absorption model of [13] has been extended to

include the rolling stock availability to generate more practi-

cally implementable timetables by considering the total num-

ber of available trains. To reduce the prediction horizon of

the real-time train scheduling problem, a novel cost-to-go

function has been developed. By considering different lines

as different subsystems, a distributed-knowledgeable-reduced-

horizon (DKRH) algorithm has been proposed considering

the computational complexity and communication restric-

tions in practical urban rail transit networks. Furthermore, a

scenario-based distributed-knowledgeable-reduced-horizon al-

gorithm (S-DKRH) has been developed to deal with uncertain

passenger flows. Numerical experiments have been conducted

to illustrate that 1) DKRH can be used for real-time train

scheduling of urban rail transit networks and 2) the S-DKRH

algorithm yields better performance than DKRH with an

acceptable increase in computation time for uncertain cases.

The results in this paper can help the operator to optimize

train schedules to handle uncertain time-dependent passenger

demands. Future research includes developing efficient solu-

tion approaches for the resulting optimization problems to

further improve the real-time feasibility of the approach. In

particular, integrating learning-based strategies to learn integer

variables can be a possible choice to speed up the optimization

process. Furthermore, next to optimizing the train departure

frequencies, adjusting train composition can also be a choice

to handle time-dependent passenger demands.

3As we use the absorption model as the prediction model and the model in
[9] as the simulation model, there exists a model mismatch issue, which may
yield the objective function value of P-DKRH larger than that of DKRH and
S-DKRH in some scenarios.
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APPENDIX A

TIMETABLES OBTAINED BY DIFFERENT APPROACHES

UNDER THE DETERMINISTIC CASE

The basic timetable and the timetables generated by MPC,

KRH, and DKRH for Line 13 in 7:00-8:00 are given in

Figures 9-12, respectively. The time slot 7:00-8:00 corresponds

to time step 1-2 in Fig. 6. It can be observed from Figures 9-12

that all timetables are feasible, i.e., the departure and arrival

times of trains in each station satisfy the minimum dwell time

and headway constraints. The simulation results show that

the developed KRH and DKRH approaches can be used to

generate a feasible timetable in real time.
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Fig. 9. Basic timetable for Line 13.
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Fig. 10. Timetable for Line 13 generated by MPC (N=6) under the
deterministic case.
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Fig. 11. Timetable for Line 13 generated by KRH (N=4) under the
deterministic case.
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Fig. 12. Timetable for Line 13 generated by DKRH (N=4) under the
deterministic case.

APPENDIX B

TIMETABLES OBTAINED BY DIFFERENT APPROACHES

UNDER THE UNCERTAIN CASE

Fig. 13 and Fig. 14 presents the timetable of Line 13

generated by DKRH and S-DKRH under the uncertain case

in Section V-C. The timetables correspond to time steps 1-2

in Fig. 8.
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