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Distributed Adaptive Synchronization in Euler
Lagrange Networks with Uncertain Interconnections

Tian Tao, Spandan Roy, Bart De Schutter and Simone Baldi

Abstract—In this work we propose a new practical synchro-
nization protocol for multiple Euler Lagrange (EL) systems
without structural linear-in-the-parameters (LIP) knowledge of
the uncertainty and where the agents can be interconnected
before control design by unknown state-dependent interconnec-
tion terms. This setting is meant to overcome two standard
a priori assumptions in the literature concerning uncertainty
with LIP structure and absence of interaction among agents
before designing the synchronization protocol. To overcome
these assumptions, we propose an adaptive distributed control
mechanism having the purpose of estimating the coefficients of
the resulting state-dependent uncertainty structure.

Index Terms—Adaptive synchronization, heterogeneous net-
works, Euler Lagrange dynamics, bounded interconnections.

I. INTRODUCTION

Euler Lagrange (EL) dynamics can describe the motion of
various mechanical systems [1], [2], robotic manipulators [3],
[4], aerospace systems [5], and many more. Motivated by the
advances in multi-agent systems, the problem of controlling
a single EL system to track desired trajectories [6]–[8] has
been recently accompanied by the problem of controlling
multiple EL systems [9] toward a common behavior. The
problem becomes especially challenging in the presence of
uncertainty in the EL dynamics. Developments in this field
use adaptive control tools and are often referred to as adaptive
synchronization of multiple uncertain EL systems [10]–[12].
Recent developments consider sinusoidal leader signals or
sinusoidal disturbances that guarantee persistence of excitation
for proper estimation of uncertainties [13]–[15] (see also [16],
[17] for the importance of persistence of excitation in adaptive
control and recent efforts to relax this condition).

Crucial aspects worth considering in uncertain EL systems
include the a priori assumptions on the uncertainty: a typical
assumption is the linear-in-the-parameters (LIP) structure [18],
[19], which however is rarely met in practical situations. In
particular, except for viscous friction, most friction models do
not satisfy the LIP structure [20].

Another crucial aspect worth considering in multiple uncer-
tain EL systems includes the assumptions made on the a priori
structure of the interaction, i.e. how the EL systems interact
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before the control design. In all aforementioned literature (cf.
also [21]–[23]), interconnections between agents are assumed
nonexistent before control design. That is, the agents interact
with each other only as the result of the synchronization
protocol. Before the control design, each agent is assumed to
be unaffected by neighboring agents. When a priori interac-
tion is considered, such as in [9], [24], the control strategy
is decentralized (i.e. it assumes each agent can access the
leader information). These assumptions on the interaction
among agents restrict the applicability of synchronization to
many practical cases in which agents interact in some state-
dependent way. For example, in power systems [25], [26],
or in the recently proposed open multi-agent systems [27],
interconnections exist before the control design, coming from
the state difference between neighboring agents (e.g. power
flow between neighboring areas).

Therefore, despite the progress in the field, most approaches
rely on two important a priori assumptions concerning uncer-
tainty with LIP structure and absence of interaction among
agents before protocol design. These a priori assumptions on
structure of the uncertainty and structure of the interaction
motivate us towards a novel adaptive distributed design for
synchronization of EL networks. First, we consider state-
dependent uncertainty (not necessarily LIP). Then, differently
from standard literature, we consider that the interaction terms
among agents exist before control design, which are also
state-dependent. Summarizing, this work addresses and solves
the leader-following synchronization for multiple uncertain
EL systems with state-dependent uncertainty and without a
priori bounded interconnections. As a result of removing the
a priori bounded structure [28], we must seek for practical
synchronization instead of asymptotic synchronization. To ad-
dress the presence of state-dependent uncertainty and uncertain
state-dependent interconnections, we propose an adaptive dis-
tributed control mechanism having the purpose of estimating
the coefficients of the resulting uncertainty structure.

The paper is organized as follows: Sect. II introduces basic
notation; synchronization problem is formulated in Sect. III.
Adaptive synchronization laws are in Sect. VI, with Lyapunov
stability analysis in Sect. V. Simulations are in Sect. VI.

II. BASIC NOTATION

We will adopt standard notation, such as IN for the identity
matrix of dimension N , 1N for the N -dimensional vector of
ones, λ(·) and λ(·) for the minimum and maximum singular
value of a matrix, ∥ · ∥ for the 2-norm.

We use graphs to represent a network of nodes (or agents).
A directed graph G is described by the pair (V, E), comprising
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the node set V ≜ {v1, . . . , vN} and the edge set E ⊆ V × V .
The node set does not include the leader node v0, due to its
special role. An edge is a pair of nodes (vj , vi) ∈ E , which
represents that agent i has access to the information from agent
j, i.e. agent j is a neighbor of agent i (not necessarily vice
versa). The neighbor set of agent i is denoted by Ni.

For those nodes i that can receive information from the
leader, we have bi > 0; otherwise, bi = 0. Let B =
diag (b1, . . . , bN ) ∈ RN×N . The edges in E are described
by the adjacency matrix A = [aij ] ∈ RN×N , where aij > 0
if (vj , vi) ∈ E and aij = 0 otherwise. The following is a
standard condition for achieving synchronization in directed
graphs [18], [29], [30] (existence of a directed path from the
leader to any follower node).

Assumption 1. The directed augmented graph representing
the connections between the graph G and the leader node v0
contains a directed spanning tree with the root being v0.

III. SYNCHRONIZATION PROBLEM

Let each node i ∈ {1, . . . , N} be represented by Euler
Lagrange (EL) dynamics (in the following, let us remove time
dependency for brevity):

Mi(qi(t))q̈i(t) + Ci(qi(t), q̇i(t))q̇i(t) +Gi(qi(t))

+ Fi(q̇i(t)) +Hi(ei(t), ėi(t)) + di(t) = τi(t) (1)

where qi, q̇i, q̈i ∈ Rn are the generalized coordinates and
their derivatives, and τi ∈ Rn is the control input. The
system dynamics (1) comprise the mass/inertia matrix Mi(qi),
the centripetal term Ci(qi, q̇i), the gravity term Gi(qi), the
friction term Fi(q̇i), and an external bounded disturbance
∥di(t)∥ ≤ d̄i ∀t (with possibly unknown d̄i). In addition, (1)
includes an interconnection term Hi(ei, ėi) depending on the
local synchronization error ei ∈ Rn and its derivative ėi ∈ Rn:

ei =
∑
j∈Ni

aij(qi − qj) + bi(qi − q0) (2a)

ėi =
∑
j∈Ni

aij(q̇i − q̇j) + bi(q̇i − q̇0) (2b)

where q0, q̇0 ∈ Rn represent the state of the leader and its
derivative. As common in EL literature, we consider ∥q̇0∥ ≤
q̄0, ∥q̈0∥ ≤ q̌0 [10], [14]. We take q̄0, q̌0 unknown constants.

Remark 1 (Interconnection before control design). The dy-
namics in (1) depart from considering a priori disconnected
dynamics, i.e. when the dynamics of each agent i are unaf-
fected by neighboring states qj , q̇j before control design [10]–
[13], [21]–[23]. In fact, the terms Hi(ei, ėi) in (1) are active
even before control design. These interconnection terms, which
cannot be designed nor bounded a priori (cf. Property 4),
require a new design not available in the literature.

The following properties for the dynamic terms in (1)
are taken or further extended from standard and recent EL
literature [31], [32]:

Property 1. There exist c̄i, ḡi, f̄i ∈ R+ such that
∥Ci(qi, q̇i)∥ ≤ c̄i∥q̇i∥, ∥Gi(qi)∥ ≤ ḡi, ∥Fi(q̇i)∥ ≤ f̄i∥q̇i∥.

Property 2. The matrix Mi(qi) is symmetric and uniformly
positive in qi. There exist positive constants m and m such
that 0 ≤ mIn ≤ Mi(qi) ≤ mIn, ∀qi,∀i.

Property 3. The matrix Ṁi(qi) − 2Ci(qi, q̇i) is skew sym-
metric, i.e. for any non-zero vector s, we have sT (Ṁi(qi) −
2Ci(qi, q̇i))s = 0.

Property 4. There exist h̄1i, h̄2i, h̄3i, h̄4i, h̄5i ∈ R+ such
that ∥Hi(ei, ėi)∥ ≤ h̄1i + h̄2i∥ei∥ + h̄3i∥ėi∥ + h̄4i∥ei∥2 +
h̄5i∥ėi∥2.

All the constants in Properties 1, 2, and 4 are possibly
unknown for the control design. In Property 4 we take the
interconnection term Hi(ei, ėi) with a quadratic upper bound.
This is a natural choice in view of the fact that the other
forces stemming from centripetal, gravity, or friction terms in
Property 1, have linear or quadratic upper bounds.

From (2) and defining e = [eT1 , . . . , e
T
N ]T , q =

[qT1 , . . . , q
T
N ]T , q

0
= 1N ⊗ q0, we can obtain

e = −(L+B)⊗ (q − q
0
) = −(L+B)⊗ δ (3)

where ⊗ denotes the Kronecker product and δ=(q−q
0
)∈RnN

represents the global synchronization error with the leader.
Note that δ cannot be used for control design as it includes

global leader state information (only available to some follow-
ers. The following lemma is known from literature:

Lemma 1. [23] The local and global synchronization error
are related by

∥δ∥ ≤ ∥e∥
λ(L+B)

(4)

with λ(L+B) being the minimum singular value of (L+B),
which is positive for a directed graph containing a directed
spanning tree with the root being the leader node.

Remark 2 (No structural knowledge). In Property 1-4, no
assumption is made on the LIP structure of the dynamic terms,
which marks another difference with standard EL literature,
since general friction terms are not in LIP form [20], [32].
The price to be paid as shown in [28], is that a bounded error
must be sought in place of asymptotic error.

Definition 1. (Uniform Ultimate Bounded (UUB)) The local
synchronization error e is uniformly ultimately bounded for
any i, if there exists a convex and compact set C such that
∀e(0) = e∗, there exists a finite time T (e∗) such that e ∈ C
for all t > T (e∗).

Problem Formulation. Under Assumption 1 and Properties
1-4, the adaptive synchronization problem is to design a dis-
tributed adaptive law for the EL network (1) that guarantees
the local synchronization error e to be UUB (implying the
global synchronization error δ to be UUB from Lemma 1).

IV. CONTROLLER DESIGN

A. Uncertainty Analysis

First, we rewrite (1) as

Miq̈i = Qi(qi, q̇i, ei, ėi) + τi (5)
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where Qi(qi, q̇i, ei, ėi) = −Ci(qi, q̇i)q̇i − Gi(qi) − Fi(q̇i) −
Hi(ei, ėi)− di. Using Property 1, we have

∥Qi(qi, q̇i, ei, ėi)∥ ≤ (ḡi + d̄i + h̄1i) + f̄i∥q̇i∥+ c̄i∥q̇i∥2

+ h̄2i∥ei∥+ h̄3i∥ėi∥+ h̄4i∥ei∥2 + h̄5i∥ėi∥2 (6)

We define a filtered tracking error

ri = ėi + Piei (7)

with Pi ∈ Rn×n a designed positive definite diagonal matrix.
Let us define ξi = [eTi , ė

T
i , q

T
i , q̇

T
i ]

T . The control mecha-
nism using local information is designed as

τi = −Kiri − τ̄i − K̄iP
−1
i ei (8a)

τ̄i = ωρi
ri√

∥ri∥2 + ε
(8b)

ρi = θ̂0i + θ̂1i∥ξi∥+ θ̂2i∥ξi∥2 + γi (8c)

where Ki ∈ Rn×n is a designed positive definite matrix,
K̄i ∈ Rn×n is a designed positive definite diagonal matrix,
ω> 1, ε are user-defined scalars, and θ̂0i, θ̂1i, θ̂2i are adaptive
parameters to be designed later.

The dynamics of ėi can be calculated as

ëi =ǎiq̈i −
∑
j∈Ni

aij q̈j − biq̈0 (9)

where ǎi = bi +
∑

j∈Ni

aij > 0. We multiply (9) with 1
ǎi
Mi,

and then add and subtract ei, and use (5) to obtain

1

ǎi
Miëi = Miq̈i −

∑
j∈Ni

aij
ǎi

(MiM
−1
j )Mj q̈j −

1

ǎi
Mibiq̈0

= −Kiri − K̄iP
−1
i ei − τ̄i+

∑
j∈Ni

Aij τ̄j +∆ij (10)

where Aij =
aij

ǎi
(MiM

−1
j ), and ∆ij is treated as an uncer-

tainty term of agent i and agent j:

∆ij ≜
[
Qi(qi, q̇i, ei, ėi)−

1

ǎi
Mibiq̈0

−
∑
j∈Ni

Aij

[
Qj(qj , q̇j , ej , ėj)−Kjrj

]
. (11)

According to (7), we have

1

ǎi
Miëi =

1

ǎi
Miṙi −

1

ǎi
MiPiėi. (12)

Substituting (12) into (10), we get the dynamics of ri:

1

ǎi
Miṙi = −Kiri − K̄iP

−1
i ei − τ̄i +

∑
j∈Ni

Aij τ̄j + ∆̄ij −
Ciri
ǎi

(13)

where ∆̄ij = ∆ij + 1
ǎi
MiPiėi +

1
ǎi
Ciri. The definition of

ξi implies that ∥ei∥ ≤ ∥ξi∥, ∥ėi∥ ≤ ∥ξi∥, ∥qi∥ ≤ ∥ξi∥ and
∥q̇i∥ ≤ ∥ξi∥. From (7), we can write ∥ri∥ ≤ (1 + ∥Pi∥)∥ξi∥.
The following bound on uncertainty ∥∆̄ij∥ can be obtained:

∥∆̄ij∥ ≤ (ḡi + d̄i + h̄1i) + f̄i∥q̇i∥+ c̄i∥q̇i∥2

+ h̄2i∥ei∥+ h̄3i∥ėi∥+ h̄4i∥ei∥2 + h̄5i∥ėi∥2

+
∑
j∈Ni

āij

[
(ḡj + d̄j + h̄1j) + f̄j∥q̇j∥

+ c̄j∥q̇j∥2 + h̄2j∥ej∥+ h̄3j∥ėj∥+ h̄4j∥ej∥2

+ h̄5j∥ėj∥2
]
+
∑
j∈Ni

āij∥Kj∥(1 + ∥Pj∥)∥ξj∥+
bi
ǎi
∥Mi∥∥q̈0∥

+
1

ǎi
∥Pi∥∥Mi∥∥ξi∥+

c̄i
ǎi
(1 + ∥Pi∥)∥ξi∥

≤ θ∗0i + θ∗1i∥ξi∥+ θ∗2i∥ξi∥2 +
∑
j∈Ni

φ∗
1j∥ξj∥+

∑
j∈Ni

φ∗
2j∥ξj∥2

(14)

where āij = ∥Aij∥, θ∗0i =
(
ḡi + d̄i + h̄1i

)
+

∑
j∈Ni

[
āij(ḡj +

d̄j + h̄1j

]
+ bi

ǎi
mq̌0, θ∗1i = h̄2i + h̄3i + f̄i +

1
ǎi
∥Pi∥∥Mi∥ +

c̄i
ǎi
(1 + ∥Pi∥), θ∗2i = h̄4i+h̄5i+c̄i, φ

∗
1j = āij

[
h̄2j+h̄3j+f̄j+

∥Kj∥(1 + ∥Pj∥)
]
, φ∗

2j = āij(h̄4j+h̄5j+ c̄j). Note that ∥Aij∥
can be bounded by a constant thanks to the uniform bounds
for the mass matrix in Property 2. Also, θ∗0i, θ

∗
1i, θ

∗
2i, φ

∗
1j , φ

∗
2j

are all unknown constants according to Properties 1 and 4.

B. Adaptive Synchronization Laws

According to the structure of the upper bounds of ∆̄ij in
(14), the adaptive laws for (8c) are designed as:

˙̂
θ0i = ∥ri∥ − α0θ̂0i (15a)
˙̂
θ1i = ∥ri∥∥ξi∥ − α1θ̂1i (15b)
˙̂
θ2i = ∥ri∥∥ξi∥2 − α2θ̂2i (15c)

γ̇i = −(ϵ0 + ϵ1∥ξi∥7 − ϵ2∥ξi∥5)γi + βi (15d)

where θ̂0i(0) > 0, θ̂1i(0) > 0, θ̂2i(0) > 0, γi(0) > 0 (15e)

ϵ0, ϵ1, ϵ2, αi, βi ∈ R+ (15f)
with ϵ0 ≥ 1 + ϵ2, ϵ1 ≥ ϵ2 (15g)

V. STABILITY ANALYSIS

Theorem 1. Under Properties 1-4 and Assumption 1, the
closed-loop trajectories of (1) employing control law (8) and
adaptive law (15) are UUB with the following ultimate bound
on the local synchronization error e:

U =

√√√√ 2χ

min
i∈Ω

λ(K̄iP
−1
i )(ζ − κ)

(16)

where χ =
N∑
i=1

(
α0θ

∗
0i

2

2 +
α1θ

∗
1i

2

2 +
α2θ

∗
2i

2

2

)
+

N∑
i=1

2ζγ̄i

γ
i

;

κ is a scalar satisfying 0 < κ < ζ with ζ =
min

{
min
i∈Ω

λ(Ki),min
i∈Ω

λ(K̄i), α0/2, α1/2, α2/2
}

max{m/2min
i∈Ω

{ǎi},max
i∈Ω

λ(K̄iP
−1
i )/2}

.

Proof: Construct a Lyapunov function defined by:

V (t) =
1

2

N∑
i=1

(
1

ǎi
ri

T (t)Mi(t)ri(t)+eTi (t)K̄iP
−1
i ei(t)

)

+
1

2

N∑
i=1

{
(θ̂0i(t)− θ∗0i)

2 + (θ̂1i(t)− θ∗1i)
2
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+ (θ̂2i(t)− θ∗2i)
2 +

2γi(t)

γ
i

}
. (17)

Note that (15d) has a stable linear time-varying structure in
the variable γi thanks to the inequalities (15g), since

a) for ∥ξ∥ ≥ 1: According to ϵ1 ≥ ϵ2, we have ϵ1∥ξ∥7 −
ϵ2∥ξ∥5 ≥ ϵ1

(
∥ξ∥7 −∥ξ∥5

)
≥ 0. Thus, according to ϵ0 ≥

1 + ϵ2 and ϵ2 > 0, we obtain

ϵ0 + ϵ1∥ξ∥7 − ϵ2∥ξ∥5 ≥ ϵ0 ≥ 1 + ϵ2 > 1

b) for ∥ξ∥ < 1: According to ϵ0 ≥ 1 + ϵ2, we have ϵ0 −
ϵ2∥ξ∥5 ≥ 1 + ϵ2

(
1 − ∥ξ∥5

)
> 1. Thus, according to

ϵ1 > 0, we obtain

ϵ0 − ϵ2∥ξ∥5 + ϵ1∥ξ∥7 > 1.

Then, ϵ0 − ϵ2∥ξ∥5 + ϵ1∥ξ∥7 > 1 always holds, i.e. the system
in (15d) can be seen as a stable linear time-varying system.

Based on the linear time-varying structure of (15d), the
positive input βi and positive initial condition (15e), it can
be verified that γi(t) ≥ γ

i
> 0 ∀t ≥ t0. This condition will

be used for subsequent stability analysis.
The proof is organized as follows: first, we calculate the

time derivative of the Lyapunov function. Then, based on
the structure of (8b), we study the behavior of the Lyapunov
function under the three standard [19] possible scenarios:

1) ω ∥ri∥2√
∥ri∥2+ϵ

≥ ∥ri∥ for all i;

2) ω ∥ri∥2√
∥ri∥2+ϵ

< ∥ri∥ for all i;

3) ω ∥ri∥2√
∥ri∥2+ϵ

≥ ∥ri∥ for i = 1, ..., k, and ω ∥ri∥2√
∥ri∥2+ϵ

<

∥ri∥ for i = k + 1, ..., N .

Finally, combining the results of the three scenarios, we obtain
the ultimate bound on the local synchronization error e. Using
(7) and (13), the time derivative of (17) satisfies

V̇ ≤ −
N∑
i=1

rTi Kiri +

N∑
i=1

rTi ∆̄ij −
N∑
i=1

rTi τ̄i

+

N∑
i=1

rTi
∑
j∈Ni

Aij τ̄j +
1

2

N∑
i=1

1

ǎi
ri

T
(
Ṁi − 2Ci

)
ri

+

N∑
i=1

{
γ̇i
γ
i

+

2∑
l=0

(θ̂li − θ∗li)
˙̂
θli

}
−

N∑
i=1

eTi K̄iei

≤−
N∑
i=1

rTi Kiri +

N∑
i=1

∥rTi ∥∥∆̄ij∥−
N∑
i=1

eTi K̄iei

+

N∑
i=1

{∑
j∈Nj

āijρjω
∥ri∥∥rj∥√
∥rj∥2 + ε

− ρiω
∥ri∥2√
∥ri∥2 + ε

}

+

N∑
i=1

{
γ̇i
γ
i

+

2∑
l=0

(θ̂li − θ∗li)
˙̂
θli

}
. (18)

According to (7), we have ∥ri∥ ≤ (1 + ∥Pi∥)∥ξi∥. Combined
with (13) and (14), we obtain the uncertainty structure as

N∑
i=1

∥ri∥∥∆̄ij∥ ≤
N∑
i=1

∥ri∥
{
θ∗0i + θ∗1i∥ξi∥+ θ∗2i∥ξi∥2

}

+

N∑
i=1

∥ri∥
{ ∑

j∈Ni

φ∗
1j∥ξj∥+

∑
j∈Ni

φ∗
2j∥ξj∥2

}
. (19)

Furthermore, the following two bounds hold
N∑
i=1

∥ri∥
∑
j∈Ni

φ∗
1j∥ξj∥ ≤

N∑
i=1

∑
j∈Ni

φ∗
1j(1 + ∥Pi∥)∥ξi∥∥ξj∥

(20)

N∑
i=1

∥ri∥
∑
j∈Ni

φ∗
2j∥ξj∥2≤

N∑
i=1

∑
j∈Ni

φ∗
2j(1 + ∥Pi∥)∥ξi∥∥ξj∥2

(21)

The bounded-input-bounded-output property of the stable lin-
ear time-varying system (15d) with positive constant input βi

guarantees that γi ∈ L∞, i.e. there exists γ̄i ∈ R+ such that
γi ≤ γ̄i. From ∥rj∥√

∥rj∥2+ε
≤ 1, we get

N∑
i=1

∑
j∈Ni

āijρjω
∥ri∥∥rj∥√
∥rj∥2 + ε

≤ ω

N∑
i=1

∑
j∈Ni

āijρj∥ri∥

≤ ω

N∑
i=1

∑
j∈Ni

{
2∑

k=0

āij θ̂kj∥ri∥∥ξj∥k + āij γ̄j∥ri∥

}
. (22)

Meanwhile, the fact that the following dynamics ˙̂
θ0j =

−α0θ̂0j , ˙̂
θ1j = −α1θ̂1j , ˙̂

θ2j = −α2θ̂2j , in the adaptive laws
(15a)-(15c) are first-order stable dynamics gives, the standard
input/output stability properties [33, Sect. 3.3] gives

θ̂0j ≤ θ̄0j + θ̌0j∥rj∥ (23a)

θ̂1j ≤ θ̄1j + θ̌1j∥rj∥∥ξj∥ (23b)

θ̂2j ≤ θ̄2j + θ̌2j∥rj∥∥ξj∥2 (23c)

with θ̄0j , θ̌0j , θ̄1j , θ̌1j , θ̄2j , θ̌2j ∈ R+. This in turn leads to

ω

N∑
i=1

∑
j∈Ni

āij θ̂2j∥ri∥∥ξj∥2

≤ ω

N∑
i=1

∑
j∈Ni

āij θ̄2j(1 + ∥Pi∥)∥ξi∥∥ξj∥

+ ω

N∑
i=1

∑
j∈Ni

āij θ̌2j(1 + ∥Pi∥)(1 + ∥Pj∥)∥ξi∥∥ξj∥5. (24)

Similarly, we obtain the overall terms from the neighboring
agents j ∈ Ni:

N∑
i=1

∑
j∈Ni

{
āijρjω

∥ri∥∥rj∥√
∥rj∥2 + ε

+ ∥ri∥
(
φ∗
1j∥ξj∥+ φ∗

2j∥ξj∥2
)}

≤
N∑
i=1

∑
j∈Ni

{
ωāij(1 + ∥Pi∥)(θ̄0j + γ̄j)∥ξi∥

+ (1 + ∥Pi∥)
[
ωāij(θ̌0j(1 + ∥Pj∥) + θ̄1j) + φ∗

1j

]
∥ξi∥∥ξj∥

+ (1 + ∥Pj∥)
(
ωāij θ̄2j + φ∗

2j

)
∥ξi∥∥ξj∥2
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+ ωāij(1 + ∥Pi∥)(1 + ∥Pj∥)∥ξi∥∥ξj∥3(θ̌1j + θ̌2j∥ξj∥2)

}
.

(25)

Using (15a)-(15c), we have

(θ̂li − θ∗li)
˙̂
θli = (θ̂li − θ∗li)∥ξi∥l∥ri∥+

(
αlθ̂liθ

∗
li − αlθ̂

2
li

)
(26)

for l = 0, 1, 2 and i = 1, · · · , N . The last term of (26) can be
rewritten as(

αlθ̂liθ
∗
li − αlθ̂

2
li

)
= −αl(θ̂li − θ∗li)

2

2
+

αlθ
∗
li
2

2
. (27)

Similarly, with γi(t) ≥ γ
i
> 0, (15d) leads to

γ̇i(t)

γ
i

=
1

γ
i

[
− (ϵ0 + ϵ1∥ξi∥7 − ϵ2∥ξi∥5)γi + βi

]
≤
[
−
(
ϵ0 + ϵ1|ξi∥7 − ϵ2∥ξi∥5

)
+ (βi/γi

)
]

(28)

According to (19)-(28), from (18) we have

V̇ ≤ −min
i∈Ω

λ(Ki)

N∑
i=1

∥ri∥2−min
i∈Ω

λ(K̄i)

N∑
i=1

∥ei∥2

+

N∑
i=1

∑
j∈Ni

{
ωāij(1 + ∥Pi∥)(θ̄0j + γ̄j)∥ξi∥

+ (1 + ∥Pi∥)
[
ωāij(θ̌0j(1 + ∥Pj∥) + θ̄1j) + φ∗

1j

]
∥ξi∥∥ξj∥

+ (1 + ∥Pj∥)
(
ωāij θ̄2j + φ∗

2j

)
∥ξi∥∥ξj∥2

+ ωāij(1 + ∥Pi∥)(1 + ∥Pj∥)∥ξi∥∥ξj∥3(θ̌1j + θ̌2j∥ξj∥2)

}

−
N∑
i=1

ρiω
∥ri∥2√
∥ri∥2 + ε

+

N∑
i=1

2∑
l=0

θ∗li∥ξi∥l∥ri∥

+

N∑
i=1

2∑
l=0

{
(θ̂li − θ∗li)∥ξi∥l∥ri∥ −

[αl(θ̂li − θ∗li)
2

2
− αlθ

∗
li
2

2

]}

−
N∑
i=1

[(
ϵ0 + ϵ1|ξi∥7 − ϵ2∥ξi∥5

)
+ (βi/γi

)

]
. (29)

We study the behavior of the Lyapunov function for the three
aforementioned scenarios:
Scenario 1: We have ω ∥ri∥2√

∥ri∥2+ε
≥ ∥ri∥ for all i = 1, . . . , N .

Then, according to (8c), we obtain

−
N∑
i=1

ρiω
∥ri∥2√
∥ri∥2 + ε

≤ −
N∑
i=1

ρi∥ri∥

≤ −
N∑
i=1

2∑
l=0

[
θ̂li∥ξi∥l + γi

]
∥ri∥. (30)

Substituting (30) into (29), yields

V̇ ≤−min
i∈Ω

λ(Ki)

N∑
i=1

∥ri∥2−min
i∈Ω

λ(K̄i)

N∑
i=1

∥ei∥2

−
N∑
i=1

2∑
l=0

{
αl(θ̂li − θ∗li)

2

2
− αlθ

∗
li
2

2

}
+ Z1(∥ξ∥) (31)

where Ω = {1, . . . , N} and ξ = [ξT1 , . . . , ξ
T
N ]T with

Z1(∥ξ∥) ≜ −ϵ1

N∑
i=1

∥ξi∥7 + ϵ2

N∑
i=1

||ξi∥5 +
N∑
i=1

(
− ϵ0 +

βi

γ
i

)
+

N∑
i=1

∑
j∈Ni

{
ωāij(1 + ∥Pi∥)(θ̄0j + γ̄j)∥ξi∥

+ (1 + ∥Pi∥)
[
ωāij(θ̌0j(1 + ∥Pj∥) + θ̄1j) + φ∗

1j

]
∥ξi∥∥ξj∥

+ (1 + ∥Pj∥)
(
ωāij θ̄2j + φ∗

2j

)
∥ξi∥∥ξj∥2

+ ωāij(1 + ∥Pi∥)(1 + ∥Pj∥)∥ξi∥∥ξj∥3(θ̌1j + θ̌2j∥ξj∥2)

}
.

Using Descartes’ rules of sign change and Bolzano’s Theorem
[34], the polynomial Z1 has a unique positive real root η1 ∈
R+. The coefficient of the highest degree of Z1 is negative:
−ϵ1. Therefore, Z1(∥ξ∥) ≤ 0 when ∥ξ∥ ≥ η1.

Since the first-order differential equations as in (15a)-(15c)
with positive initial conditions give θ̂0i(t) > 0, θ̂1i(t) >
0, θ̂2i(t) > 0, ∀t ≥ 0, the Lyapunov function (17) satisfies

V ≤m

2â

N∑
i=1

∥ri∥2 +
max
i∈Ω

λ(K̄iP
−1
i )

2

N∑
i=1

||ei||2

+
1

2

N∑
i=1

{
2∑

l=0

(θ̂li − θ∗li)
2 +

2γi
γ
i

}
. (32)

Substituting (32) into (31) yields

V̇ ≤ −ζV +

N∑
i=1

{
2∑

l=0

αlθ
∗
li
2

2
+

2ζγ̄i
γ
i

}
+ Z1(∥ξ∥). (33)

Defining a scalar 0 < κ < ζ, (33) is further simplified to

V̇ ≤ −κV − (ζ − κ)V + χ (34)

where Z1(∥ξ∥) is defined as in (16).

Scenario 2: In this case, we have 0 ≤ ω∥ri∥2√
∥ri∥2+ϵ

≤ ∥ri∥ for

all i = 1, . . . , N . Then,

−
N∑
i=1

ρiω
∥ri∥2√
∥ri∥2 + ε

≤ 0 (35)

Substituting (35) into (29), the time derivative of V satisfies

V̇ ≤ −min
i∈Ω

λ(Ki)

N∑
i=1

∥ri∥2−min
i∈Ω

λ(K̄i)

N∑
i=1

∥ei∥2

+

N∑
i=1

∑
j∈Ni

{
ωāij(1 + ∥Pi∥)(θ̄0j + γ̄j)∥ξi∥

+ (1 + ∥Pi∥)
[
ωāij(θ̌0j(1 + ∥Pj∥) + θ̄1j) + φ∗

1j

]
∥ξi∥∥ξj∥

+ (1 + ∥Pj∥)
(
ωāij θ̄2j + φ∗

2j

)
∥ξi∥∥ξj∥2

+ ωāij(1 + ∥Pi∥)(1 + ∥Pj∥)∥ξi∥∥ξj∥3(θ̌1j + θ̌2j∥ξi∥2)

}
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+

N∑
i=1

2∑
l=0

θ∗li∥ξi∥l∥ri∥+
N∑
i=1

2∑
l=0

(θ̂li − θ∗li)∥ξi∥l∥ri∥

−
N∑
i=1

2∑
l=0

{
αl(θ̂li − θ∗li)

2

2
− αlθ

∗
li
2

2

}

−
N∑
i=1

[(
ϵ0 + ϵ1|ξi∥7 − ϵ2∥ξi∥5

)
+ (βi/γi

)

]
. (36)

Then, following a similar reasoning as in Scenario 1, we have

V̇ ≤ −min
i∈Ω

λ(Ki)

N∑
i=1

∥ri∥2−min
i∈Ω

λ(K̄i)

N∑
i=1

∥ei∥2 + Z1(∥ξ∥)

+

N∑
i=1

2∑
l=0

{
θ̂li∥ξi∥l∥ri∥ −

[αl(θ̂li − θ∗li)
2

2
− αlθ

∗
li
2

2

]}
.

(37)

According to (23), with ∥ri∥ ≤ (1 + ∥Pi∥)∥ξi∥, if follows that
N∑
i=1

2∑
l=0

θ̂li∥ξi∥l∥ri∥ ≤
N∑
i=1

(
θ̄li + θ̌li∥ri∥∥ξi∥l

)
∥ξi∥l∥ri∥

≤
N∑
i=1

θ̄li(1 + ∥Pi∥)∥ξi∥l+1 + θ̌li(1 + ∥Pi∥)2∥ξi∥2(l+1).

(38)

Substituting (38) into (37), yields

V̇ ≤−min
i∈Ω

λ(Ki)

N∑
i=1

∥ri∥2−min
i∈Ω

λ(K̄i)

N∑
i=1

∥ei∥2

−
N∑
i=1

2∑
l=0

{
αl(θ̂li − θ∗li)

2

2
− αlθ

∗
li
2

2

}
+ Z2(∥ξ∥) (39)

where Z2(∥ξ∥) = Z1(∥ξ∥) +
N∑
i=1

θ̄0i(1 + ∥Pi∥)∥ξi∥ +

N∑
i=1

θ̄li(1 + ∥Pi∥)∥ξi∥l+1 + θ̌li(1 + ∥Pi∥)2∥ξi∥2(l+1). Simi-

larly, there exists a unique positive real root η2 ∈ R+ so that
Z2(∥ξ∥) ≤ 0 when ∥ξ∥ ≥ η2. The coefficient of Z2 with the
highest degree is still −ϵ1. Finally, we get

V̇ ≤ −κV − (ζ − κ)V + χ. (40)

Scenario 3: ω ∥ri∥2√
∥ri∥2+ε

≥ ∥ri∥ for i = 1, ..., k, and

ω ∥ri∥2√
∥ri∥2+ε

< ∥ri∥ for i = k + 1, ..., N . Then, following the

steps as in Scenario 1 and Scenario 2, we derive

V̇ ≤ −min
i∈Ω

λ(Ki)

N∑
i=1

∥ri∥2−min
i∈Ω

λ(K̄i)

N∑
i=1

∥ei∥2 + Z1(∥ξ∥)

+

N∑
i=k+1

2∑
l=0

θ̂li∥ξi∥l∥ri∥−
N∑
i=1

2∑
l=0

{
αl(θ̂li − θ∗li)

2

2
− αlθ

∗
li
2

2

}
.

≤ −min
i∈Ω

λ(Ki)

N∑
i=1

∥ri∥2−min
i∈Ω

λ(K̄i)

N∑
i=1

∥ei∥2 + Z3(∥ξ∥)

−
N∑
i=1

2∑
l=0

{
αl(θ̂li − θ∗li)

2

2
− αlθ

∗
li
2

2

}
(41)

where Z3(∥ξ∥) = Z1(∥ξ∥)+
N∑

i=k+1

N∑
i=1

θ̄li(1 + ∥Pi∥)∥ξi∥l+1+

θ̌li(1 + ∥Pi∥)2∥ξi∥2(l+1). There will exist a unique root η3
such that Z3(∥ξ∥) ≤ 0 when ∥ξ∥ ≥ η3. Similarly, it is obtained

V̇ ≤ −κV − (ζ − κ)V + χ. (42)

Combining (34), (40) and (42) from Scenarios 1, 2 and 3
respectively, it can be concluded that V̇ ≤ −κV when V ≥ Y
and ∥ξ∥ ≥ max{η1, η2, η3} where

Y =
χ

(ζ − κ)
(43)

and thus, the closed-loop system remains UUB with the bound

V (t) ≤ max{V (0), Y }, ∀t ≥ 0 (44)

The definition of the Lyapunov function (17) satisfies

V (t) ≥
min
i∈Ω

λ(K̄iP
−1
i )

2
∥e∥2 (45)

where e = [eTi , . . . , e
T
N ]T . Using (44) and (45), it can be

obtained that ∥e∥2 ≤ 2

min
i∈Ω

λ(K̄iP
−1
i )

max{V (0), Y }, ∀t ≥ 0,

giving the uniform ultimate bound U in (16).

Remark 3 (Ultimate bound and gain tuning). Owing to the
user-defined diagonal matrices K̄i and Pi, one can notice that
the ultimate bound U in (16) reduces by tuning K̄i and Pi (i.e.
with large values of K̄iP

−1
i ). However, the fact that m̄, θ∗li are

completely unknown prevents reduction of the bound to user-
defined levels: this is consistent with robust adaptive control
literature with leakage terms αi as in (15a)-(15c) [33]. In
addition, it can be noticed from (31), (37) and (41) that
higher values of Ki, ϵ1, ϵ0 and lower values of ϵ2 lead to
faster convergence of the Lyapunov function, which may in
turn cause a larger control effort. Therefore, tuning choices
have to be made according to application requirements.

VI. NUMERICAL VALIDATION

We will consider six EL systems (cf. Fig. 1), representing
two-link robot arms with equations of motion as [35]:[

M11
i M12

i

M12
i M22

i

] [
q̈i1
q̈i2

]
+

[
ciq̇i2 ci(q̇i1 + q̇i2)
−ciq̇i1 0

] [
q̇i1
q̇i2

]
+ di

(a) Interconnection 1 (b) Interconnection 2

Figure 1: Networks used for simulations.
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(a) Local position errors (b) Adaptive parameters θ̂li, l = 0, 1, 2
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(c) Control inputs τi

Figure 2: Adaptive synchronization behavior for interconnection 1.

(a) Local position errors (b) Adaptive parameters θ̂li, l = 0, 1, 2
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(c) Control inputs τi

Figure 3: Adaptive synchronization behavior for interconnection 2.

+

[
mi4g cos(qi1) + gi

gi

]
+

[
Fi1(q̇i)
Fi2(q̇i)

]
+Hi(ei, ėi) =

[
τi1
τi2

]
(46)

where ci = −mi3 sin(qi2) and

M11
i = mi1 +mi2 + 2mi3 cos(qi2),

M12
i = mi2 +mi3 cos(qi2),

M22
i = mi2, gi = mi5g cos(qi1 + qi2).

The friction term is taken in non-LIP form as [20]:
Fi1(q̇i1) = fi1(tanh(fi2q̇i1)−tanh(fi3q̇i1))+fi4 tanh(fi5q̇i1)+
fi6q̇i1, Fi2(q̇i) = fi1(tanh(fi2q̇i2) − tanh(fi3q̇i2)) +
fi4 tanh(fi5q̇i2)+fi6q̇i2. The parameters are compactly repre-
sented as Θi = [mi1 mi2 mi3 mi4 mi5 fi1 fi2 fi3 fi4 fi5 fi6]

T

with

Θ1 = col(0.6, 1.1, 0.1, 0.6, 0.3, 0.5, 0.8, 0.9, 1.2, 0.5, 0.4),

Θ2 = col(0.8, 1.2, 0.1, 0.9, 0.5, 0.5, 0.8, 0.9, 1.2, 0.5, 0.4),

Θ3 = col(0.9, 1.3, 0.2, 1.3, 0.6, 0.5, 0.8, 0.9, 1.2, 0.5, 0.4),

Θ4 = col(1.1, 1.4, 0.3, 1.7, 0.7, 0.5, 0.8, 0.9, 1.2, 0.5, 0.4),

Θ5 = col(1.1, 1.4, 0.3, 1.7, 0.7, 0.5, 0.8, 0.9, 1.2, 0.5, 0.4),

Θ6 = col(1.1, 1.4, 0.3, 1.7, 0.7, 0.5, 0.8, 0.9, 1.2, 0.5, 0.4)

(all these values, inspired by [13], are used for simulation
but are unknown for control design). We select di(t) =
0.1 sin(0.001it)[1 1]T .

Inspired by the viscoelasticity model in [36], [37], the
interconnections among some agents in the form of springs-
dampers

Hi =

N∑
j=0

sij(qi − qj) +

N∑
j=0

δij(q̇i − q̇j) (47)

where sij is the stiffness parameter, δij is the damping factor
(which are s10 = s01 = 0.48, s12 = s21 = 1.21, s25 = s52 =
0.085, s36 = s63 = 0.37, s46 = s64 = 0.29 and δ01 = δ10 =
40, δ12 = δ21 = 20, δ25 = δ52 = 25, δ36 = δ63 = 19, δ46 =
δ64 = 9 (all these values, inspired by [36], [37], are used for
simulation and are unknown for control design).

To test the robustness, we consider two different intercon-
nected structures as shown in Fig. 1. Let us remark that each
local controller is only aware of which agents are its neighbors:
it does not know neither the dynamics of the neighbors, nor
whether there are spring-damper interconnections.

The controller is as in (8) with Ki = 7.5I2, K̄i = I2, ω =
2, ε = 0.1, Pi = 33I2. The parameters in the adaptive law
(15) are ϵ0 = 1, ϵ1 = 3 · 10−4, ϵ2 = 7.5 · 10−5, α0i = α1i =
α2i = 3000, βi = 10.

Figs. 2a and 3a show that the synchronization error con-
verges close to zero for both interconnection structures and,
consequently, the adaptive gains in Figs. 2b and 3b also
converge close to zero. The inputs are in Figs. 2c and 3c,
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where it can be noticed that input oscillations are in a bounded
range caused by the sinusoidal disturbance d.

VII. CONCLUSIONS

A new adaptive synchronization protocol for Euler Lagrange
networks has been proposed addressing problems usually
neglected in related literature. The main feature of the pro-
tocol is to cope with reduced structural knowledge, i.e. not
requiring linear-in-the-parameter structure of the uncertainty
and allowing the agents to be interconnected before control
design by unknown state-dependent terms with no a priori
bound.
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