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Adaptive synchronization of uncertain
underactuated Euler-Lagrange agents

Tian Tao, Spandan Roy, Bart De Schutter, Fellow, IEEE, and Simone Baldi, Senior member, IEEE

Abstract—This work proposes a framework for adaptive syn-
chronization of uncertain underactuated Euler-Lagrange (EL)
agents. The designed distributed controller can handle both
state-dependent uncertain system dynamics terms and state-
dependent uncertain interconnection terms among neighboring
agents. No structural knowledge of such terms is required other
than the standard properties of EL systems (positive definite
mass matrix, bounded gravity, velocity-dependent friction bound,
etc.). The study of stability relies on a suitable analysis of the
non-actuated and the actuated synchronization errors, resulting
in stable error dynamics perturbed by parametrized state-
dependent uncertainty. This uncertainty is tackled via appro-
priate adaptation laws, giving stability in the uniform ultimate
boundedness sense, in line with the available literature on state-
dependent uncertain system dynamics and/or state-dependent
uncertain interconnections. An example with a network of boom
cranes is used to validate the proposed approach.

Index Terms—Underactuated systems, Euler-Lagrange dynam-
ics, adaptive synchronization, distributed control.

I. INTRODUCTION

Underactuated systems have fewer control inputs than de-
grees of freedom. Lower cost or more tolerance to faults can
make underactuated robots [1], underactuated cranes [2], [3],
underactuated vehicles [4], [5] etc. preferable to their fully-
actuated versions. Although approaches to control underactu-
ated systems span from feedback linearization [6]–[8], pas-
sivity [9]–[11], and optimal control [12], [13], the inevitable
system uncertainties put most of these approaches at stake and
call for appropriate adaptive designs [14]. One such class of
designs relies on extending sliding mode control [15]–[18] in
an adaptive sense, giving adaptive-robust methods originally
developed for fully-actuated systems [19]–[21]. These methods
only require the knowledge of an uncertainty bound around a
nominal mass matrix, while all other system terms (Coriolis,
gravity, friction) can be unknown [22], [23].

A. Challenges and related works

Nowadays, adaptive-robust methods constitute a mature and
general framework for fully-actuated systems. Unfortunately,
such maturity and generality are missing for underactuated
systems, where it is common to consider special classes of
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dynamics [24], specific applications [25], [26] or ad-hoc struc-
tural assumptions on the system terms [7]–[9], [17], [18], [27].
The most adopted of these structural assumptions requires the
mass matrix to depend on the actuated states only [18], or on
the non-actuated states only [9], [27]. This assumption turns
out to be falsified in several scenarios, such as biped robots
[1], boom cranes [3], surface vessels [5], [26], among others.

When considering interconnected dynamics as in multi-
agent systems literature, an additional source of uncertainty
arises from the interconnection terms among the agents, which
may take a state-dependent form analogous to the state-
dependent system terms. Power systems are a representative
example, where power flows across different areas create state-
dependent uncertain interconnections that might result in inter-
area oscillations or other problems [28]–[31]. When designing
distributed approaches to synchronization/consensus, the pres-
ence of these uncertain interconnection terms is traditionally
overlooked. In most approaches, the interconnection is only the
result of the synchronization/consensus protocol, i.e., no intrin-
sic interconnection is considered before such protocol is de-
signed [32]–[34]. Notable exceptions appear in fully-actuated
dynamics controlled in a decentralized fashion, i.e., without
communication among the agents: here, state-dependent and
possibly uncertain interconnection terms have been considered
[35], [36]. For underactuated dynamics, distributed control was
considered in [5] without uncertainty on the system dynamics
and on the interconnection terms, whereas the adaptive method
in [37] and the non-adaptive ones in [9]–[11] are for single
agents, i.e., the issue of uncertain interconnections does not
arise. These works on underactuated systems still rely on the
aforementioned structural assumptions on the system terms.

B. Contributions of this work

The overview above shows that distributed approaches for
underactuated dynamics impose crucial structural assumptions
e.g., on the mass matrix and on the existence of intercon-
nections. The design of a general underactuated adaptive-
robust framework with reduced structural assumptions is still
an open problem in the field. This motivates a research on new
distributed approaches for underactuated systems with limited
knowledge of the system dynamics and of the interconnection
terms. The main contributions of this work are:

• A distributed adaptive protocol for synchronization of
underactuated Euler-Lagrange (EL) systems is designed
in the presence of uncertain system terms.

• No structural assumptions are imposed other than the
standard properties of EL systems (positive definite
mass matrix, bounded gravity, velocity-dependent friction
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bound, etc.). We do not impose the mass matrix to depend
on the actuated states only, or on the non-actuated states
only. We just require the mass matrix to satisfy the Strong
Inertial Coupling [8] (see Assumption 2), a well-known
condition for controllability;

• State-dependent uncertain interconnections among the
underactuated agents are considered to exist before the
control design, instead of only being a result of coupling
caused by the control. Recall that, even for fully-actuated
systems, the literature has shown that state-dependent
uncertainties prevent asymptotic tracking [29]–[31], [36],
[38], seeking stability as uniform ultimate boundedness,
which is the approach we also follow.

The proposed approach provides a convenient underactuated
extension of adaptive-robust methods, with the following dis-
tinguishing contributions that make this extension possible:

a) Suitable dynamics are derived for the actuated and the
non-actuated errors so as to fit the adaptive control goal
(cf. the parametrized state-dependent perturbations in
Sect. IV-B). As state-dependent uncertainties appear in
both the actuated and the non-actuated part, a dedicated
uncertainty analysis is carried out in Sect. V-A.

b) A novel stability analysis is presented that, in addition
to handling state-dependent uncertainties, can handle dis-
tributed information and the different state space regions
arising from the control law (cf. the proof of Theorem 1
in the appendix).

c) The proposed adaptive laws in Sect. V-B depart from
standard adaptive-robust laws, as they are not designed
using a standard leakage, but based on an appropriate
state-dependent leakage (cf. the discussion in Remark 6).

The rest of the paper is organized as follows. Section II gives
the basic notation, followed by the problem formulation in
Section III. Section IV gives key steps about the distributed
control law and the error dynamics, leading to the uncertainty
analysis and stability result in Section V. Using a network
of boom cranes as a numerical case study, simulations and
comparisons with the state-of-the-art are in Section VI.

II. NOTATION AND BASIC GRAPH THEORY

We adopt a standard notation, with R+ for the set of positive
real numbers, ⊗ for the Kronecker product, IN for the identity
matrix of dimension N , 1N for the N -dimensional vector of
ones, λmin(·) and λmax(·) for the minimum and maximum
singular value of a matrix, and ∥ · ∥ for the Euclidean norm.

We use graphs to represent a network of nodes (or agents).
A directed graph G is described by the pair (V, E), comprising
the node set V ≜ {v1, . . . , vN} and the edge set E ⊆ V × V .
An edge is a pair of nodes (vj , vi) ∈ E representing that agent
i has access to the information from agent j, i.e., agent j is a
neighbor of agent i (not necessarily vice versa). The neighbor
set of agent i is denoted by Ni.

Weighted edges in E are described by the adjacency matrix
A = [aij ] ∈ RN×N , where aij > 0 if (vj , vi) ∈ E and aij = 0
otherwise. The Laplacian matrix L = [lij ] ∈ RN×N associated
with G is defined as lii =

∑N
j=1 aij and lij = −aij , i ̸= j.

The node set V does not include the leader node v0: for
those agents i that can receive information from v0, we have an
edge with bi > 0; otherwise, bi = 0. The following assumption
is standard in multi-agent systems literature [32], [33]:

Assumption 1. The directed augmented graph comprising G
and edges from the leader node contains a spanning tree with
the root being the leader node.

Remark 1. Assumption 1 implies that there exists a commu-
nication path from the leader to any follower node: it is a
condition to make synchronization over a network feasible, cf.
Remark 4 and Lemma 1 later on.

III. SYNCHRONIZATION PROBLEM

Consider the following network of underactuated Euler-
Lagrange (EL) agents (i = 1, . . . , N ) :

Mi(qi)q̈i + Ci(qi, q̇i)q̇i +Gi(qi) + Fi(q̇i)

+Hi(ei, ėi) + di = [0T(n−m) τ
T
i ]T (1)

where qi, q̇i ∈ Rn are the generalized coordinates and their
derivatives, di ∈ Rn is an external bounded disturbance
with ∥di∥ ≤ d̄i (d̄i an unknown constant), τi ∈ Rm with
n −m ≤ m < n is the control input. The system dynamics
(1) comprises the mass matrix Mi(qi) ∈ Rn×n, the Coriolis
matrix Ci(qi, q̇i) ∈ Rn×n, the gravity term Gi(qi) ∈ Rn,
the friction term Fi(q̇i) ∈ Rn, and the interconnection term
Hi(ei, ėi) ∈ Rn which depends on the local synchronization
error and its derivative. For convenience of analysis, arrange
the generalized coordinates according to non-actuated and
actuated dynamics as qi = [qTui q

T
ai]

T with qui ∈ Rn−m and
qai ∈ Rm. Accordingly, the local synchronization error ei can
be decomposed as ei = [eTui e

T
ai]

T , resulting in

eui(t) =
∑
j∈Ni

aij
[
qui(t)− quj(t)

]
+ bi

[
qui(t)− qu0

]
(2a)

eai(t) =
∑
j∈Ni

aij
[
qai(t)− qaj(t)

]
+ bi(qai(t)− qa0) (2b)

and analogously for ėi = [ėTui ė
T
ai]

T

ėui(t) =
∑
j∈Ni

aij
[
q̇ui(t)− q̇uj(t))

]
+ biq̇ui(t) (3a)

ėai(t) =
∑
j∈Ni

aij
[
q̇ai(t)− q̇aj(t)

]
+ biq̇ai(t). (3b)

In principle, one could consider time-varying leader trajecto-
ries (cf. [22], [23], [36], [38] for fully-actuated and [24] for
a class of underactuated EL systems): however, this poses the
challenging problem of how to define a feasible trajectory for
a general underactuated system. Because this problem goes
beyond the scope of this work, we consider a fixed-point leader
position q0 = [qTu0, q

T
a0]

T ∈ Rn in (2a)-(2b), as common in
the literature (cf. [7], [10], [11], [15]–[17], [27], [37]).

In line with standard EL literature [19], [39], [40], the
following system properties are assumed:

Property 1. There exist constants c̄i, ḡi, f̄i, h̄1i, h̄2i, h̄3i, h̄4i,
h̄5i ∈ R+ such that the following upper bound structures hold
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∥Ci(qi, q̇i)∥ ≤ c̄i∥q̇i∥, ∥Gi(qi)∥ ≤ ḡi, ∥Fi(q̇i)∥ ≤ f̄i∥q̇i∥,
∥Hi(ei, ėi)∥ ≤ h̄1i+ h̄2i∥ei∥+ h̄3i∥ėi∥+ h̄4i∥ei∥2+ h̄5i∥ėi∥2.

Property 2. The mass matrix Mi(qi) is symmetric, positive
definite and there exist positive constants m and m such that
0 ≤ mIn ≤Mi(qi) ≤ mIn, ∀qi, ∀i.

Remark 2. The interconnection term Hi represents the uncer-
tain interaction between agents, existent before the design of
the synchronization protocol. Literature on multi-agent systems
typically neglects this term [32]–[34]: its presence requires a
novel synchronization protocol.

The upper bounds of Ci, Gi, Fi, Hi, di in Property 1 will
be taken to be unknown, i.e., not used in the control design.
The upper bound structure of Hi is taken to be quadratic
in accordance with the quadratic effect of the term Ciq̇i in
(1). Note that, although some terms (e.g., di and Gi) can
reasonably be assumed to be bounded a priori by constants,
other terms (e.g., Ci, Fi and Hi) are state-dependent. Indeed,
the constants ci, f i, h̄1i, h̄2i, h̄3i, h̄4i, h̄5i in Property 1 multi-
ply state-dependent terms, so that one cannot assume a priori
boundedness of these uncertain terms.

For brevity, let us omit the dependence of the system
dynamics terms on the state variables, and let us organize the
system dynamics terms as

Mi ≜

[
Muui Maui

Muai Maai

]
, (4a)

Ei ≜ Ciq̇i +Gi + Fi +Hi + di = [ET
ui E

T
ai]

T (4b)

where Muui ∈ R(n−m)×(n−m), Maui ∈ R(n−m)×m, Maai ∈
Rm×m, Eui ∈ Rn−m, Eai ∈ Rm. Therefore, the dynamics
(1) for each agent can be represented as

q̈ui = −M−1
uuiMauiq̈ai −Rui (5a)

q̈ai =M−1
si τi +Rai (5b)

with

Rui ≜M−1
uuiEui,

Rai ≜M−1
si (MuaiM

−1
uuiEui − Eai),

Msi ≜Maai −MuaiM
−1
uuiMaui.

As Mi in (4a) is positive definite, Msi and Muui are positive
definite (thus invertible). The following assumption, known as
Strong Inertial Coupling, ensures controllability of underactu-
ated EL dynamics in line with standard literature [6]–[8].

Assumption 2. (Strong Inertial Coupling [6]–[8]) The fol-
lowing rank condition holds:

rank(Maui(qi)) = n−m ≤ m, ∀qi ∈ Rn. (6)

Remark 3. The name ’Strong Inertial Coupling’ comes from
the coupling created by Maui between the actuated and the
non-actuated states. As the non-actuated states cannot be
directly controlled, (6) ensures controllability as it allows
to design a virtual control for the non-actuated states. This
condition appears in most works about underactuated EL
systems (also cf. [40]–[42]) and has been mostly used in the
framework of backstepping.

Due to the block structure in (4a), the uncertainty in the
mass matrix Mi is addressed in a different way from the
other dynamic terms. It is assumed that Msi ∈ Rm×m can be
decomposed as Msi = M̂si+∆Msi where M̂si is the nominal
part (used for control design) and ∆Msi is the unknown part
satisfying the following bound conditions:

Assumption 3. Define the matrix Ti =M−1
si M̂si − Im. Then

there exists a known scalar T̄ ∈ R+ such that

∥Ti∥ ≤ T̄ < 1. (7)

Assumption 3 implies that an upper bound on the uncer-
tainty of Msi is known. It is often adopted in the literature to
describe uncertainty in mass matrix [19]–[21].

Let B = diag (b1, . . . , bN ) ∈ RN×N . From (2), we obtain

eu = −(L+B)⊗ (qu − q
u0
) = −(L+B)⊗ δu

ea = −(L+B)⊗ (qa − q
a0
) = −(L+B)⊗ δa

where eu = [eTu1, . . . , e
T
uN ]T , ea = [eTa1, . . . , e

T
aN ]T , qu =

[qTu1, . . . , q
T
uN ]T , qa=[qTa1, . . . , q

T
aN ]T , q

a0
=1N ⊗qa0, qu0 =

1N⊗qu0. The errors δa = (qa−qa0) ∈ RnN , δu = (qu−qu0) ∈
RnN represent the global synchronization error with the leader
in actuated and non-actuated states, respectively.

Remark 4. In a distributed control setting, the leader’s state
contained in δa, δu is not directly accessible to all followers.
The existence of a directed spanning tree, as in Assumption 1,
allows even those agents without direct access to the leader’s
information to track the leader’s state by synchronizing ea and
eu with the neighbors with which they can communicate.

The directed spanning tree property implies the following.

Lemma 1. [32] Under Assumption 1, the local and global
synchronization errors are related by

∥δu∥ ≤ ∥eu∥
λmin(L+B)

(9a)

∥δa∥ ≤ ∥ea∥
λmin(L+B)

(9b)

with λmin(L+B) the minimum singular value of L+B.

Due to the presence of state-dependent uncertainties, it has
been shown in the literature that asymptotic tracking is hard
to achieve even for fully-actuated system. Therefore, stability
is sought as uniform ultimate boundedness, which is in line
with the existing literature [29]–[31], [36].

Definition 1. (Uniform Ultimate Boundedness (UUB) [43]) A
signal is uniformly ultimately bounded if there exists a convex
and compact set C such that for ∀δ(0) = δ0, there exists a
finite time T (δ0) such that δ ∈ C for all t > T (δ0).

Problem Formulation. Let δi = [δTui δ
T
ai]

T . Design a dis-
tributed (i.e., using state information from neighboring agents)
adaptive mechanism for the network of underactuated sys-
tems (1) guaranteeing that the global synchronization error
δ = [δT1 , . . . , δ

T
N ]T is uniformly ultimately bounded.
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IV. PRELIMINARY DESIGN STEPS

We give the distributed control law (Sect. IV-A) and the
dynamics of the synchronization error (Sect. IV-B). These
steps are useful to derive the proposed adaptation in Sect. V.

A. Distributed Control Law

Define a tracking error variable:

ri = Θaiėai + Ξaieai +Θuiėui + Ξuieui (10)

where Θai, Ξai ∈ Rm×m are user-defined positive definite
matrices, and Θui, Ξui ∈ Rm×(n−m) are user-defined full
rank matrices. The distributed controller is designed as

τi =
M̂si

ǎi

(
− ri − τ̄i

)
, τ̄i = ρi sat(Si, φ) (11)

where sat(Si, φ) =

{
Si

∥Si∥ , ∥Si∥ ≥ φ
Si

φ , ∥Si∥ < φ
is a saturation term

with Si = BT
1 Paiωai, B1 = [0 Im]T , ωai = [eTai ė

T
ai]

T ,
φ > 0 a user-defined scalar, and Pai > 0 the solution
to the Lyapunov equation AT

aiPai + PaiAai = −Qai where

Aai =

[
0 Im

−Ξai −Θai

]
is Hurwitz by design, and Qai > 0

is user-designed; ρi will be defined later in Sect. V-B to deal
with the uncertainty in the system dynamics.

B. Synchronization Error Dynamics

Using (3b) and (5b), we obtain the synchronization error
dynamics in the actuated dynamics as

ëai = ǎi
(
M−1

si τi +Rai

)
−

∑
j∈Ni

aij
(
M−1

sj τj +Raj

)
(12)

where ǎi = bi +
∑

j∈Ni

aij . Substituting (11) into (12) gives

ëai =
(
M−1

si M̂si − Im
)(

− ri − τ̄i
)
−
(
ri + τ̄i

)
+ ǎiRai

−
∑
j∈Ni

āij

[(
M−1

sj M̂sj − Im
)(

− rj − τ̄j
)

−
(
rj + τ̄j

)]
− aijRaj

=− ri − (Im + Ti)τ̄i +
∑
j∈Ni

āij(Im + Tj)τ̄j + ϕij (13)

where āij =
aij

ǎj
and ϕij = −Tiri+ǎiRai+

∑
j∈Ni

[
āij(Im+

Tj)rj − aijRaj

]
. According to (10), (13) can be rewritten as

ëai =−Θaiėai − Ξaieai − (Im + Ti)τ̄i

+
∑
j∈Ni

āij(Im + Tj)τ̄j + ψij (14)

with ψij = ϕij −
(
Θuiėui + Ξuieui

)
. Using (14), we have

ω̇ai = Aaiωai +B1

[
− (Im + Ti)τ̄i + ψij

+
∑
j∈Ni

āij(Im + Tj)τ̄j

]
. (15)

Similarly, using (3a) and (5a), the synchronization error in the
non-actuated dynamics turns out to be

ëui =− ǎi
(
M−1

uuiMauiq̈ai +Rui

)
+

∑
j∈Ni

aij
(
M−1

uujMauj q̈aj +Ruj

)
=− ǎi

[
M−1

uuiMaui

(
M−1

si τi +Rai

)
+Rui

]
+

∑
j∈Ni

aij

[
M−1

uujMauj

(
M−1

sj τi +Raj

)
+Ruj

]
. (16)

Similar to (13), substituting (11) into (16), gives

ëui =−M−1
uuiMaui

[(
M−1

si M̂si − Im
)(

− ri − τ̄i
)
−

(
ri + τ̄i

)]
+

∑
j∈Ni

āijM
−1
uujMauj

[(
M−1

sj M̂sj − Im
)(

− rj − τ̄j
)

−
(
rj + τ̄j

)]
+ ǎi

(
M−1

uuiMauiRai +Rui

)
+

∑
j∈Ni

aij
(
M−1

uujMaujRaj +Ruj

)
= M−1

uuiMaui

(
Im + Ti

)
τ̄i + ϕ′ij

−
∑
j∈Ni

āijM
−1
uujMauj

(
Im + Tj

)
τ̄j (17)

where

ϕ′ij =M−1
uuiMaui

(
Im + Ti

)
ri −

∑
j∈Ni

āijM
−1
uujMauj

(
Im + Tj

)
rj

− ǎi
(
M−1

uuiMauiRai +Rui

)
+
∑
j∈Ni

aij
(
M−1

uujMaujRaj +Ruj

)
.

Design a full-rank matrix Γi ∈ R(n−m)×m such that Λ1i =
ΓiΘui > 0, Λ2i = ΓiΞui > 0. Add and subtract Γiri to (17),

ëui = M−1
uuiMaui

(
Im + Ti

)
τ̄i−

∑
j∈Ni

āijM
−1
uujMauj

(
Im + Tj

)
τ̄j

+ ϕ′ij − Γi

(
Θaiėai + Ξaieai +Θuiėui + Ξuieui

)
+ Γiri

=− ΓiΘuiėui − ΓiΞuieui +M−1
uuiMaui

(
Im + Ti

)
τ̄i

−
∑
j∈Ni

āijM
−1
uujMauj

(
Im + Tj

)
τ̄j + ψ′

ij (18)

where ψ′
ij = ϕ′ij−

(
Θaiėai+Ξaieai

)
+Γiri. Arrange the non-

actuated state error as ωui = [eTui ė
T
ui]

T . Using (18), we have

ω̇ui =Auiωui +B2

[
M−1

uuiMaui

(
Im + Ti

)
τ̄i

−
∑
j∈Ni

āijM
−1
uujMauj

(
Im + Tj

)
τ̄j + ψ′

ij

]
(19)

where we have defined Aui =

[
0 I(n−m)

−Λ1i −Λ2i

]
, which is

Hurwitz by design, and B2 = [0 I(n−m)]
T .

Remark 5. The analysis of the error dynamics has led to (15)
and (19), which are stable dynamics (due to the Hurwitz state
matrices Aai and Aui) perturbed by state-dependent terms.

The state-dependent terms in Property 1 make the perturba-
tions in (15) and (19) also state-dependent, so that they cannot
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be bounded a priori by a constant. In the rest of the analysis,
the idea is to find an upper bound for such perturbations and
define an appropriate ρi for stabilizing the error dynamics.

V. DESIGN OF THE ADAPTIVE PROTOCOL

In the following, we provide the uncertainty analysis (Sect.
V-A), leading to the adaptive synchronization laws (Sect. V-B).

A. Uncertainty Analysis
Define ξi = [eTi ė

T
i q

T
i q̇

T
i ]

T , ξ = [ξT1 , . . . , ξ
T
N ]T . Therefore,

∥eai∥ ≤ ∥ξi∥, ∥eui∥ ≤ ∥ξi∥, ∥ėai∥ ≤ ∥ξi∥, ∥ėui∥ ≤ ∥ξi∥.
According to (10), we have

∥ri∥ ≤ ϑi∥ξi∥ (20)

with ϑi = ∥Θai∥+∥Ξai∥+∥Θui∥+∥Ξui∥. Using Assumption 3
and (14), the following bound for ψij in (15) can be obtained:

∥ψij∥ ≤ ∥Tiri∥+
∑
j∈Ni

āij∥Tjrj∥+ ǎi∥Rai∥

+ aij∥Raj∥+ ∥Θuiėui∥+ ∥Ξuieui∥

≤ T̄ ϑi∥ξi∥+ T̄
∑
j∈Ni

āijϑj∥ξj∥+ ǎi∥M−1
si ∥

(
∥Eai∥

+∥MuaiM
−1
uui∥∥Eui∥

)
+

∑
j∈Ni

āij∥M−1
sj ∥

(
∥Eaj∥

+∥MuajM
−1
uuj∥∥Euj∥

)
+∥Θuiėui∥+∥Ξuieui∥. (21)

According to the definition of ξi, ∥qi∥ ≤ ∥ξi∥ can be
obtained. Using Property 1, we have

∥Ei(qi, q̇i, ei, ėi)∥ ≤
(
ḡi + di + h̄1i

)
+ f̄i∥q̇i∥+ c̄i∥q̇i∥2

+ h̄2i∥ei∥+ h̄3i∥ėi∥+ h̄4i∥ei∥2 + h5i∥ėi∥2

≤ (ḡi + d̄i + h̄1i) + (f̄i + h̄2i + h̄3i)∥ξi∥
+
(
c̄i + h̄4i + h̄5i

)
∥ξi∥2. (22)

From (4b), ∥Eai∥ ≤ ∥Ei∥, ∥Eui∥ ≤ ∥Ei∥. Then, (21) yields

∥PaiB1∥∥ψij∥ ≤ ∥PaiB1∥
[
T̄ ϑi∥ξi∥+ T̄

∑
j∈Ni

āijϑj∥ξj∥

+ ǎi∥M−1
si ∥

(
1 + ∥MuaiM

−1
uui∥

)
∥Ei∥+

∑
j∈Ni

āij∥M−1
sj ∥

(
1

+ ∥MuajM
−1
uuj∥

)
∥Ej∥+

(
∥Θui∥+ ∥Ξui∥

)
∥ξi∥

]
≤ θ0i+ θ1i∥ξi∥+ θ2i∥ξi∥2 +

∑
j∈Ni

(
φ1j∥ξj∥+ φ2j∥ξj∥2

)
(23)

where

θ0i = ∥PaiB1∥
[
µi

(
ḡi + d̄i + h̄1i

)
+
∑
j∈Ni

µ̄ij

(
ḡj + d̄j + h̄1j

)]
θ1i = ∥PaiB1∥

[
µi

(
f̄i + h̄2i + h̄3i

)
+T̄ ϑi+

(
∥Θui∥+ ∥Ξui∥

)]
θ2i = ∥PaiB1∥µi

(
c̄i + h̄4i + h̄5i

)
φ1j = ∥PaiB1∥

[
µ̄ij

(
f̄j + h̄2j + h̄3j

)
+ T̄ āijϑj

]
φ2j = ∥PaiB1∥µ̄ij

(
c̄j + h̄4j + h̄5j

)
µi = ǎi∥M−1

si ∥
(
1 + ∥MuaiM

−1
uui∥

)
µ̄ij =

∑
j∈Ni

āij∥M−1
sj ∥

(
1 + ∥MuajM

−1
uuj∥

)
.

Similar to (21), the upper bound on ψ′
ij from (19) is obtained

∥ψ′
ij∥ ≤ ∥ϕ′ij∥+ ∥Θaiėai∥+ ∥Ξaieai∥+ ∥Γiri∥

≤
[(
1 + T̄

)
∥M−1

uuiMaui∥+ 1
]
ϑi∥ξi∥+ ǎi∥M−1

uui∥∥Eui∥

+ ǎi∥M−1
uuiMaui∥∥M−1

si ∥
(
∥Eai∥+ ∥MuaiM

−1
uui∥∥Eui∥

)
+
(
1 + T̄

) ∑
j∈Ni

āijϑj∥M−1
uujMauj∥∥ξj∥

+
∑
j∈Ni

āij∥M−1
uujMauj∥∥M−1

sj ∥
(
∥Eaj∥

+ ∥MuajM
−1
uuj∥∥Euj∥

)
+

∑
j∈Ni

āij∥M−1
uuj∥∥Euj∥

+ ∥Θaiėai∥+ ∥Ξaieai∥. (24)

Let Pui > 0 be the solution to the Lyapunov equation AT
uiPui+

PuiAui = −Qui, with Qui a user-designed positive definite
matrix. Then, we finally obtain

∥PuiB2∥∥ψ′
ij∥ ≤ ∥PuiB2∥

{[(
1 + T̄

)
∥M−1

uuiMaui∥

+ 1
]
ϑi∥ξi∥+ǎi∥M−1

uui∥
[
∥Maui∥∥M−1

si ∥
(
1+∥MuaiM

−1
uui∥

)
+ 1

]
∥Ei∥+

(
1 + T̄

) ∑
j∈Ni

āijϑj∥M−1
uujMauj∥∥ξj∥

+
∑
j∈Ni

āij∥M−1
uuj∥

[
∥Mauj∥∥M−1

sj ∥
(
1 + ∥MuajM

−1
uuj∥

)
+ 1

]
∥Ej∥+

(
∥Θai∥+ ∥Ξai∥

)
∥ξi∥

}
≤ θ′0i+θ

′
1i∥ξi∥+θ′2i∥ξi∥2 +

∑
j∈Ni

(
φ′
1j∥ξj∥+ φ′

2j∥ξj∥2
)

(25)

where

θ′0i = ∥PuiB2∥
[
µ′
i

(
ḡi + d̄i + h̄1i

)
+
∑
j∈Ni

µ̄′
ij

(
ḡj + d̄j + h̄1j

)]
θ′1i = ∥PuiB2∥

[
µ′
i

(
f̄i + h̄2i + h̄3i

)
+

(
∥Θui∥+ ∥Ξui∥

)]
+

[(
1 + T̄

)
∥M−1

uuiMaui∥+ 1
]
ϑi

θ′2i = ∥PuiB2∥µ′
i

(
c̄i + h̄4i + h̄5i

)
φ′
1j = ∥PuiB2∥

[
µ̄′
ij

(
f̄j + h̄2j + h̄3j

)
+

(
1 + T̄

)
āijϑj∥M−1

uujMauj∥
]

φ′
2j = ∥PuiB2∥µ̄′

ij

(
c̄j + h̄4j + h̄5j

)
µ′
i = ǎi∥M−1

uui∥
[
∥Maui∥∥M−1

si ∥
(
1 + ∥MuaiM

−1
uui

)
+ 1

]
µ̄′
ij = āij∥M−1

uuj∥∥
[
∥Mauj∥∥M−1

sj ∥
(
1 + ∥MuajM

−1
uuj

)
+ 1

]
.

Let us stress that the structures of the uncertainty bounds
in (23) and (25) are not imposed as per assumption, but a
consequence of Property 1. As Property 1 is generally valid
for EL dynamics, the upper bounds in (23) and (25) hold
generally. These upper bounds put us in the position to design
an appropriate ρi in (11), as explained later.
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B. Adaptive Synchronization Laws

According to the structure of the upper bounds of ψij in
(23) and ψ′

ij in (25), ρi is designed as

ρi =
1(

1− T̄
)(θ̂0i + θ̂1i∥ξi∥+ θ̂2i∥ξi∥2 + γi

)
(26)

with the adaptive laws (l = 0, 1, 2)

˙̂
θli =χli

(
∥ωai∥+ ∥ωui∥+ ∥Si∥

)
∥ξi∥l

− αli

(
∥ωai∥+ ∥ωui∥

)
∥ξi∥lθ̂li (27a)

γ̇i =ϵ0
(
∥Si∥+ ∥ξi∥) + βi

−
[
ϵ0 + ϵ1(∥ξi∥7 − ∥ξi∥5) + ϵ2∥ξi∥

]
γi (27b)

where θ̂0i(0) > 0, θ̂1i(0) > 0, θ̂2i(0) > 0, γi(0) > 0 (27c)
ϵ0, ϵ1, ϵ2, χli, αli, βi ∈ R+ (27d)

with ϵ2 ≥ ϵ1. (27e)

Remark 6. The proposed adaptive law uses a leakage de-
pendent on the synchronization error. This is useful in the
Lyapunov analysis of the derivative of (θ̂li− θ̄li)2, as the com-
mon factor

(
∥ωai∥+∥ωui∥

)
∥ξi∥l can be extracted to construct

negative square terms of θ̂li, cf. (39)-(40) in the appendix. The
parameters in (27), namely χli, αli, ϵ0, ϵ1, ϵ2, βi, determine the
rate of variation of the gains. For example, αli/χli represents
the ratio between the decreasing effect of leakage and the
increasing effect of the first part of the adaptive law. Compared
to standard leakage in the literature (cf. [31], [36], [44,
Chapter 8]), the proposed leakage leads to a more concise
UUB condition for ωai and ωui in (47), (52) and (54).

Theorem 1. Under Properties 1-2 and Assumptions 1-3, the
closed-loop trajectories of (1) employing the distributed con-
trol law (11) with adaptive law (27) are uniformly ultimately
bounded.

Proof: See the appendix.

Remark 7. Although the proposed framework shares some
points with sliding mode control (e.g., the saturation in (11)),
crucial features make it depart from such methods: sliding
mode control of underactuated EL dynamics imposes struc-
tural restrictions on the variables the mass matrix depends on
(cf. [7, Def. 1] used in most of the literature) and structural
restrictions on the uncertainties (cf. [16, Assump. 4-8] impos-
ing invertibility). In the proposed framework, none of these
structural restrictions are imposed.

Remark 8. The uncertainties considered in this work cre-
ate another crucial difference with available sliding mode
methods for underactuated EL dynamics. There, uncertainties
are typically a priori bounded, where the constant bound
can be unknown a priori in the adaptive sliding mode
literature. The adaptive laws involve either monotonically
increasing gains, or increasing-decreasing rules [20], [21].
Our method involves neither a priori bounded uncertainties
(state-dependent perturbations in (23) and (25) cannot be
bounded a priori), nor increasing gains/increasing-decreasing
rules (cf. the discussion about leakage in Remark 6). These
aspects require a dedicated stability analysis (cf. Appendix)

(a) Schematic boom crane on ship (b) Network

Figure 1: System used for simulations.

departing significantly from analyses available in the sliding
mode literature.

Remark 9. The appendix provides estimates for the uniform
ultimate bounds, which can be tuned as follows. Larger βi
and ϵ1 leads to more negative −γ2

i
ϵ̄1, which is the fifth degree

coefficient of the polynomials Z1(∥ξ∥), Z2(∥ξ∥), Z3(∥ξ∥) in
(46), (51), and (53). Making this coefficient more negative
makes the roots η1, η2, η3 closer to zero, which in turn
contributes to reducing the ultimate bound on the error. Larger
χli and smaller ζ, which can be obtained from larger Pui, Pai,
result in ι1, ι2, ι3 being closer to zero. A larger ϵ2 leads to
a smaller ι4. This also contributes to reducing the ultimate
bound on the error. Let us mention that a smaller error might
require a larger input: this is a standard trade-off, which might
be seen from the fact that larger χli and βi leads to larger ρi.

VI. SIMULATION EXAMPLE

A network of underactuated systems is considered, where
each system has boom crane dynamics as in [3]: the network
can be thought as an abstraction of a cooperative lifting
scenario where the boom cranes are mounted on one or more
ships (cf. Fig. 1). In addition to the sensors, actuators and
micro-controllers for crane control, a distributed implementa-
tion of such a control scenario would require to put in place
a communication network among the cranes, e.g. via wireless
nodes. Let us consider a graph as in Fig. 1b where the directed
spanning tree property in Assumption 1 holds.

For the system in Fig. 1, ϱi is the payload swing with respect
to Ys, ϑi is the ship roll angle caused by sea waves, µi is the
luffing angle of the boom, and L denotes the length of the
rope. The length, mass, and moment of inertia of the boom
are PL,m, and J . The distance between the barycenter of the
boom and the origin is denoted by ds. The states of the crane
system are q1i = ϱi − ϑi, q2i = µi − ϑi, and q3i = L (q1i is
the non-actuated state, q2i, q3i are the actuated states), leading
to the dynamics as (1) with n = 3,m = 2, and

Mi =

 mpiq
2
3i −mpiPLq3iS21,i 0

−mpiPLq3iS21,i Ji +mpiP
2
L −mpiPLC21,i

0 −mpiPLC21,i mpi


Ci =

 mpiq3iq̇3i −mpiPLq3iC21,iq̇2i mpiq3iq̇1i
U3i 0 −mpiPLS21,iq̇1i

−mpiq3iq̇1i mpiPLS21,iq̇2i 0
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U3i = −mPPL(S21,iq̇3i − C21,iq3iq̇1i), τi = [τ1i τ2i]

Gi =

 mpigaq2i sin(q1i)
(mpiPL +midsi)ga cos(q2i)

−mpiga cos(q1i)

 , qi =
 q1i
q2i
q3i


Hi =

N∑
j=0

sij(qi − qj) +

N∑
j=0

δij(q̇i − q̇j)

with S21,i ≜ sin(q2i − q1i), C21,i ≜ cos(q2i − q1i) and
Fi = [Fi1 Fi2 Fi3]

T where Fi1(q̇1i) ≜ fi1 tanh(fi2q̇i1) −
tanh(fi3q̇i1)) + fi4 tanh(fi5q̇i1) + fi6q̇i1, Fi2(q̇2i) ≜
fi1 tanh(fi2q̇i2) − tanh(fi3q̇i2)) + fi4 tanh(fi5q̇i2) +
fi6q̇i2, Fi3(q̇3i) ≜ fi1 tanh(fi2q̇i3) − tanh(fi3q̇i3)) +
fi4 tanh(fi5q̇i3) + fi6q̇i3. The friction term Fi is taken in
non-linear-in-the-parameters form according to [45], whereas
the interconnection term Hi follows a standard spring-damper
model where sij is the stiffness parameter, and δij is the
damping factor (this can represent some interconnection
among the cranes via the crane wires due to the load).

It is possible to verify, cf. [3], that Properties 1-2 hold for the
system dynamics terms reported above. In addition, the Strong
Inertial Coupling condition as in Assumption 2 is verified as
the term Maui = [0 −mpiPLC21,i] does not lose rank in the
operating range of interest (note that cos(µi − ϱi) = 0 never
occurs for luffing angles and swing angles of interest). The
goal is to bring the payload to a desired position defined by

q01 = 0, q02 = arccos(aL/PL), q03 =
√
P 2
L − a2L − bL.

A. System parameters (uncertain) and design parameters

The following system parameters are only used for simu-
lation purpose, but they are unknown for control design. The
vector of (unknown) parameters in friction term is compactly
represented as Θi = [fi1 fi2 fi3 fi4 fi5 fi6]

T , where

Θ1 = [0.5 0.8 0.9 1.2 0.5 0.4]T

Θ2 = [0.5 0.7 0.9 1.0 0.5 0.4]T

Θ3 = [0.3 0.7 0.7 1.0 0.7 0.3]T

Θ4 = [0.5 0.9 0.7 1.2 0.4 0.5]T

Θ5 = [0.5 0.8 0.6 1.3 0.5 0.6]T

Θ6 = [0.6 1.0 0.9 1.5 0.2 0.5]T

Θ7 = [0.4 1.0 0.8 1.2 0.4 0.8]T .

According to interconnection network in Fig. 1b, the spring-
damper parameters are chosen as s16 = s61 = 0.37, s46 =
s64 = 0.29 and δ16 = δ61 = 25, δ46 = δ64 = 9. The
disturbance is di(t) = 0.1 sin(0.001it)[1 1 1]T .

To test the effect of heterogeneity in the agents, the physical
parameters are chosen to be different for different agents:

[m1 m2 m3 m4 m5 m6 m7] = [20 18 15 22 17 19 16]

[mp1 mp2 mp3 mp4 mp5 mp6 mp7] = [0.5 0.6 0.8 0.6

(a) States q1i, q2i, q3i (b) Synchronization errors e1i, e2i, e3i

(c) Control inputs τ1i and τ2i (d) Adaptive gains θ̂li, l = 0, 1, 2

Figure 2: Performance with proposed adaptive method.
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(c) αli/χli = 500

Figure 3: Evolution of adaptive gains for different ratios of αli/χli.

Table I: Tracking error L2 norm and input L2 norm
for different sinusoidal disturbances

Disturbance Norm of error Norm of input
di(t) = 0.1 sin (0.001it) 82.73 2.56 ×104

di(t) = 0.1 sin (it) 82.60 2.56 ×104

di(t) = 0.1 sin (100it) 82.72 2.56 ×104

0.4 0.3 0.5]

[J1 J2 J3 J4 J5 J6 J7] = [6.5 7.8 5.3 6.2 7.2 6.8 6.6]

[ds1 ds2 ds3 ds4 ds5 ds6 ds7] = [0.4 0.6 0.3 0.1 0.5 0.2 0.4].

The parameters aL = 0.4m, bL = 0.2m, PL = 0.8m give
the desired position q01 = 0, q02 = 1.05, q03 = 0.5.

The nominal parameters (used for control design of M̂s)
are selected as [m̂p1 m̂p2 m̂p3 m̂p4 m̂p5 m̂p6 m̂p7] =
[0.45 0.55 0.75 0.55 0.35 0.25 0.45], [Ĵ1 Ĵ2 Ĵ3 Ĵ4 Ĵ5 Ĵ6 Ĵ7] =
[6 7 5 6 7 6 8]. It can be verified these nominal parameters
make Assumption 3 hold with T̄ = 0.5.

The control design parameters are Θai = 335I2, Ξai =
0.003I2, Θui = 0.03[1 1]T , Ξui = 0.01[1 1]T , Γi =
0.01[1 1]T , Qai = 0.015I2, Qui = 560I2, αli = 3.15, χli =
0.01, ϵ0 = 0.001, ϵ1 = 0.003, ϵ2 = 0.015, βi = 3150.

B. Simulation Results and Sensitivity Analysis

To validate the robustness of the proposed method in a
statistical way, Fig. 2 provides the evolution of the closed-loop
signals, averaged over 20 runs with random initial states q1i ∼
N (0.1, 0.1752), q2i ∼ N (0.2, 0.22), q3i ∼ N (0.1, 0.012).
The states (with the angles reported in degrees for better
understanding) and the corresponding synchronization errors
are shown in Fig. 2a and Fig. 2b, from which it can be seen
that the errors converge to a neighborhood of zero for all runs.
The control inputs are in Fig. 2c, with the adaptive gains
θ̂li, l = 0, 1, 2 in Fig. 2d. The control inputs converge to
different values for different systems, due to the heterogeneity
of the systems in terms of mass, inertia, friction, etc.

To validate the effect of choosing different parameters as
in Remark 6, let us choose different ratios for αli/χli in the
adaptive law. Fig. 3 shows that the gains θli tend to grow larger
as the ratio αli/χli decreases (i.e. as the leakage decreases).

We then perform a sensitivity analysis with different dis-
turbances di, namely, sinusoidal disturbances with different
frequencies and Gaussian disturbances with different variances
(with 100 realizations of the disturbances). For sinusoidal
disturbances, Table I shows minor differences in terms of error
and state norm. For Gaussian disturbances, Table II shows a
slight increase in the error norm as the variance increases. This
validates the robustness of the proposed approach.

C. Comparisons with State-of-the-Art Methods
To validate the discussions in Remarks 7 and 8, we provide

comparisons with state-of-the-art sliding mode control and
adaptive sliding mode control. The former is obtained by
fixing the gains θ̂li to be constant, whereas the latter is
obtained by removing the leakage from the adaptive law,
so as to have monotonically increasing gains. Similar to the
simulation results of proposed method, Fig. 4 and Fig. 5
provide the evolution of the closed-loop signals, averaged over
20 runs with random initial states q1i ∼ N (0.1, 0.1752), q2i ∼
N (0.2, 0.22), q3i ∼ N (0.1, 0.012). Fig. 4c shows that slid-
ing mode control requires unrealistically large control effort
(10195), while still getting large synchronization errors in Fig.
4b (except for the visible shading error in this plot, there are
some agents whose error is too large to be seen due to out of
scale in the plot). That is, sliding mode control fails to achieve
stability with reasonable control input.

Meanwhile, differently from the proposed method that is
stable for every run, the state-of-the-art adaptive sliding mode
control results in many unstable runs, so that we report only
the stable runs. Thus, the errors reported in Fig. 5b are selected
from the stable runs, showing that the performance of these
selected runs is still not better than the proposed method. Most
importantly, state-of-the-art adaptive sliding mode control re-
quires large inputs, cf. Fig. 5c and the increasing adaptive
gains θ̂li in Fig. 5d. Thus, we conclude that the proposed
method overcomes state-of-the-art sliding mode and adaptive
sliding mode methods in dealing with the problem at hand.

VII. CONCLUSIONS

This work has proposed for the first time an adaptive
distributed protocol for synchronization of uncertain underac-
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(a) States q1i, q2i, q3i (b) Synchronization errors e1i, e2i, e3i

(c) Control inputs τ1i and τ2i
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0.045

1 2 3 4 5 6 7 8 9 10
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(d) Fixed gains θ̂li, l = 0, 1, 2

Figure 4: Performance with state-of-the-art sliding mode method.

Table II: Tracking error L2 norm and input L2 norm
for different Gaussian disturbances

Disturbance Norm of error Norm of input
di(t) ∼ N (0, 0.03) 82.73 2.56 ×104

di(t) ∼ N (0, 0.9) 82.82 2.56 ×104

di(t) ∼ N (0, 10) 83.22 2.56 ×104

tuated EL systems. The protocol can tackle not only unknown
system terms, but also uncertain state-dependent interconnec-
tions among agents. Handling all these aspects required a new
stability analysis and a new design approach departing from
state-of-the-art results not considering unknown parameters,
unstructured uncertainty in the mass matrix, in the system
terms and in the interconnections. In future work, it is of
interest to further improve the method by considering non-
holonomic constraints or by tackling more uncertainties in the
mass matrix and in the network topology.

APPENDIX

Proof: Construct a Lyapunov function:

V (t) =
1

2

N∑
i=1

{
ωT
ai(t)Paiωai(t) + ωT

ui(t)Puiωui(t)

}

+
1

2

N∑
i=1

{ 2∑
l=0

1

χli
(θ̂li(t)− θ̄li)

2 +
γ2i (t)

ϵ0

}
(28)

where θ̄li = max{θli, θ′li}, l = 0, 1, 2.
The proof is organized in three steps as follows:

a) the bound of uncertainty for the overall network is
calculated;

b) based on such overall uncertainty bound, we calculate the
time derivative of the Lyapunov function;

c) based on different regions of saturation function
sat(Si, φ), we study the behavior of the Lyapunov func-
tion for three possible scenarios.

Combining all the results, we finally obtain a uniform ultimate
bound on the actuated error ωai and on the non-actuated error
ωui.

a) The overall uncertainty term
According to (15), we obtain

ωT
aiPaiω̇ai = ωT

aiPai

{
Aaiωai +B1

[
− (Im + Ti)τ̄i

+
∑
j∈Ni

āij(Im + Tj)τ̄j + ψij

]}
≤ −1

2
ωT
aiQaiωai + ∥ωT

ai∥∥PaiB1∥∥ψij∥

− ωT
aiPaiB1(Im + Ti)ρi sat(Si, φ)

+
∑
j∈Ni

āijω
T
aiPaiB1(Im + Tj)ρj sat(Sj , φ). (29)
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(a) States q1i, q2i, q3i (b) Synchronization errors e1i, e2i, e3i

(c) Control inputs τ1i and τ2i (d) Adaptive gains θ̂li, l = 0, 1, 2

Figure 5: Performance with state-of-the-art adaptive sliding mode method.

Analogously, according to (19), we obtain

ωT
uiPuiω̇ui = ωT

uiPui

{
Auiωui +B2

[
M−1

uuiMaui

(
Im

+ Ti
)
τ̄i −

∑
j∈Ni

āijM
−1
uujMauj

(
Im + Tj

)
τ̄j + ψ′

ij

]}
≤ −1

2
ωT
uiQuiωui + ∥ωT

ui∥∥PuiB2∥∥ψ′
ij∥

+
∑
j∈Ni

āijω
T
uiPuiB2M

−1
uujMauj(Im + Tj)ρj sat(Sj , φ)

+ ωT
uiPuiB2M

−1
uuiMaui(Im + Ti)ρi sat(Si, φ). (30)

Adding (29) and (30), combined with (23)-(25), we obtain

ωT
aiPaiω̇ai + ωT

uiPuiω̇ui

≤− λmi

[
∥ωai∥2 + ∥ωui∥2

]
+

2∑
l=0

θ̄li∥ξi∥l
(
∥ωai∥+ ∥ωui∥

)
+

∑
j∈Ni

[
φ̄1j∥ξj∥+ φ̄2j∥ξj∥2

](
∥ωai∥+ ∥ωui∥

)
− ωT

aiPaiB1(Im + Ti)ρi sat(Si, φ)

+ ωT
uiPuiB2M

−1
uuiMaui(Im + Ti)ρi sat(Si, φ)

+
∑
j∈Ni

āijω
T
uiPuiB2M

−1
uujMauj(Im + Tj)ρj sat(Sj , φ)

+
∑
j∈Ni

āijω
T
aiPaiB1(Im + Tj)ρj sat(Sj , φ) (31)

where λmi = min
{
λmin(Qai)/2, λmin(Qui)/2

}
, φ̄1j =

max
{
φ1j , φ

′
1j

}
, φ̄2j = max

{
φ2j , φ

′
2j

}
, j ∈ Ni.

Next, we will analyze the last three terms in (31) by
using the inequality ∥ sat(Si, φ)∥ ≤ 1. From the input-output
property of the adaptive law in (27), it can be verified that

θ̂li ≤ θ̊li + θ̌li
(
∥ωai∥+ ∥ωui∥+ ∥Si∥

)
∥ξi∥l (32a)

γ ≤ γ̊i + γ̌i
(
∥Si∥+ ∥ξi∥

)
(32b)

with θ̊li, θ̌li, γ̊i, γ̌i ∈ R+, l = 0, 1, 2.
Using (32), together with ∥ωai∥ ≤ ∥ξi∥ and ∥ωui∥ ≤ ∥ξi∥,

the following can be obtained:

ωT
uiPuiB2M

−1
uuiMaui(Im + Ti)ρi sat(Si, φ)

≤ ¯̄T1i

[ 2∑
l=0

θ̂li∥ξi∥l + γi

]
∥ωT

ui∥

≤ ¯̄T1i

{
2∑

l=0

θ̊li∥ξi∥l+1 + θ̌li
(
2 + ∥BT

1 Pai∥
)
∥ξi∥2l+2

+ γ̊i∥ξi∥+ γ̌i
(
1 + ∥BT

1 Pai∥
)
∥ξi∥2

}
(33)



11

where ¯̄T1i =

(
1+T̄

)
∥PuiB2∥∥M−1

uuiMaui∥(
1−T̄

) .

In an analogous way, the following can be obtained∑
j∈Ni

āijω
T
uiPuiB2M

−1
uujMauj(Im + Tj)ρj sat(Sj , φ)

≤
∑
j∈Ni

¯̄T2j

[ 2∑
l=0

θ̂lj∥ξj∥l + γj

]
∥ωT

ui∥

≤
∑
j∈Ni

¯̄T2j

{
2∑

l=0

θ̊lj∥ξi∥∥ξj∥l + γ̌j
(
1 + ∥BT

1 Pai∥
)
∥ξi∥2

+ γ̊j∥ξi∥+ θ̌lj
(
2 + ∥BT

1 Paj∥
)
∥ξi∥∥ξj∥2l+1

}
(34)

where ¯̄T2j =
āij

(
1+T̄

)
∥PuiB2∥∥M−1

uujMauj∥(
1−T̄

) . In addition,

∑
j∈Ni

āijω
T
aiPaiB1(Im + Tj)ρj sat(Sj , φ)

≤
∑
j∈Ni

¯̄T3j

[ 2∑
l=0

θ̂lj∥ξj∥l + γj

]
∥ωT

ai∥

≤
∑
j∈Ni

¯̄T3j

{
2∑

l=0

θ̊lj∥ξi∥∥ξj∥l + γ̌j
(
1 + ∥BT

1 Pai∥
)
∥ξi∥2

+ γ̊j∥ξi∥+ θ̌lj
(
2 + ∥BT

1 Paj∥
)
∥ξi∥∥ξj∥2l+1 (35)

where ¯̄T3j =

(
1+T̄

)
∥PaiB1∥(

1−T̄
) . Using (33)-(35), the following

aggregate term Ψij can be defined from (31)

N∑
i=1

∑
j∈Ni

Ψij =
∑
j∈Ni

[
φ̄1j∥ξj∥+φ̄2j∥ξj∥2

](
∥ωai∥+∥ωui∥

)
+ ωT

uiPuiB2M
−1
uuiMaui(Im + Ti)ρi sat(Si, φ)

+
∑
j∈Ni

āijω
T
uiPuiB2M

−1
uujMauj(Im + Tj)ρj sat(Sj , φ)

+
∑
j∈Ni

āijω
T
aiPaiB1(Im + Tj)ρj sat(Sj , φ)

≤
N∑
i=1

∑
j∈Ni

θ̌2j
( ¯̄T2j + ¯̄T3j

)(
2 + ∥BT

1 Paj∥
)
∥ξi∥∥ξj∥5

+

N∑
i=1

¯̄T1iθ̌2i
(
2 + ∥BT

1 Pai∥
)
∥ξi∥6

+

N∑
i=1

∑
j∈Ni

θ̌1j
( ¯̄T2j + ¯̄T3j

)(
2 + ∥BT

1 Paj∥
)
∥ξi∥∥ξj∥3

+

N∑
i=1

¯̄T1iθ̌1i
(
2 + ∥BT

1 Pai∥
)
∥ξi∥4 + ¯̄T1iθ̊2i∥ξi∥3

+

N∑
i=1

∑
j∈Ni

[
2φ̄2j +

( ¯̄T2j + ¯̄T3j
)
θ̊2j

]
∥ξi∥∥ξj∥2

+

N∑
i=1

∑
j∈Ni

{
2φ̄1j +

( ¯̄T2j + ¯̄T3j
)[
θ̌0j

(
2 + ∥BT

1 Paj∥
)

+ θ̊1j

]}
∥ξi∥∥ξj∥+

{
¯̄T1i

[
θ̌0i

(
2 +∥BT

1 Pai∥
)
+ θ̊1i

+ γ̌i
(
1 + ∥BT

1 Pai∥
]
+γ̌j

( ¯̄T2j + ¯̄T3j
)(
1+∥BT

1 Pai∥
)}
∥ξi∥2

+
[
¯̄T1i

(
θ̊0i + γ̊i

)
+
( ¯̄T2j + ¯̄T3j

)(̊
γj + θ̊0j

)]
∥ξi∥. (36)

b) Time derivative of the Lyapunov function based on
uncertainty bound

Up to now, we have calculated the time derivative of the
first line in (28). We will proceed with the time derivative of
the other terms. Using the adaptive laws (27a)-(27c), we have

2∑
l=0

1

χli
(θ̂li − θ̄li)

˙̂
θli =

2∑
l=0

1

χli
(θ̂li − θ̄li)

[
χli

(
∥ωai∥

+ ∥ωui∥+ ∥Si∥
)
∥ξi∥l − αli

(
∥ωai∥+ ∥ωui∥

)
∥ξi∥lθ̂li

]
=

2∑
l=0

θ̂li
(
∥ωai∥+ ∥ωui∥+ ∥Si∥

)
∥ξi∥l

−
2∑

l=0

θ̄li
(
∥ωai∥+ ∥ωui + ∥Si∥∥

)
∥ξi∥l

−
2∑

l=0

ᾱliθ̂
2
li

(
∥ωai∥+ ∥ωui∥

)
∥ξi∥l

+

2∑
l=0

ᾱliθ̂liθ̄li
(
∥ωai∥+ ∥ωui∥

)
∥ξi∥l (37)

where ᾱli = αli/χli. In addition,

γiγ̇i
ϵ0

=
γi
ϵ0

{
−

[
ϵ0 + ϵ1(∥ξi∥7 − ∥ξi∥5) + ϵ2∥ξi∥

]
γi

+ ϵ0
(
∥Si∥+ ∥ξi∥) + βi

}

=− γ2i

[
1 + ϵ̄1(∥ξi∥7 − ∥ξi∥5) + ϵ̄2∥ξi∥

]
+ γi

(
∥Si∥+ ∥ξi∥) + γiβ̄i (38)

where ϵ̄1 = ϵ1
ϵ0
, ϵ̄2 = ϵ2

ϵ0
, β̄i =

βi

ϵ0
. Using (31), (36) and (37)-

(38), the time derivative of V satisfies

V̇ ≤−
N∑
i=1

λmi

[
∥ωai∥2+∥ωui∥2

]
+

2∑
l=0

θ̄li∥ξi∥l
(
∥ωai∥+∥ωui∥

)
− ωT

aiPaiB1(Im + Ti)ρi sat(Si, φ) +

N∑
i=1

∑
j∈Ni

Ψij

+

N∑
i=1

2∑
l=0

θ̂li
(
∥ωai∥+ ∥ωui∥+ ∥Si∥

)
∥ξi∥l

−
N∑
i=1

2∑
l=0

θ̄li
(
∥ωai∥+ ∥ωui + ∥Si∥∥

)
∥ξi∥l

−
N∑
i=1

2∑
l=0

ᾱliθ̂
2
li

(
∥ωai∥+∥ωui∥

)
∥ξi∥l+

N∑
i=1

γi
(
∥Si∥+∥ξi∥)
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+

N∑
i=1

2∑
l=0

ᾱliθ̂liθ̄li
(
∥ωai∥+ ∥ωui∥

)
∥ξi∥l + γiβ̄i

−
N∑
i=1

γ2i

[
1 + ϵ̄1(∥ξi∥7 − ∥ξi∥5) + ϵ̄2∥ξi∥

]

≤−
N∑
i=1

λmi

[
∥ωai∥2 + ∥ωui∥2

]
− γ2i ϵ̄1(∥ξi∥7 − ∥ξi∥5)

− ωT
aiPaiB1(Im + Ti)ρi sat(Si, φ) +

N∑
i=1

∑
j∈Ni

Ψij

+

N∑
i=1

2∑
l=0

[
θ̂li − ᾱliθ̂

2
li + ᾱliθ̂liθ̄li

](
∥ωai∥+ ∥ωui∥

)
∥ξi∥l

−
N∑
i=1

2∑
l=0

θ̄li∥Si∥∥ξi∥l +
N∑
i=1

[ 2∑
l=0

θ̂li∥ξi∥l + γi

]
∥Si∥

+

N∑
i=1

[
γiβ̄i − γ2i

(
1 + ϵ̄2∥ξi∥

)]
+

N∑
i=1

γi∥ξi∥. (39)

The following inequality holds:

2∑
l=0

[
θ̂li − ᾱliθ̂

2
li + ᾱliθ̂liθ̄li

]

≤
2∑

l=0

− ᾱli

3
θ̂2li −

[
ᾱli

3

(
θ̂li +

3

2ᾱli

)2 − 3

4ᾱ2
l

]
−
[ ᾱli

3

(
θ̂li −

3

2ᾱli
θ̄li

)2 − 3θ̄2li
4ᾱ2

l

]
≤

2∑
l=0

[
− ᾱli

3
θ̂2li +

3

4ᾱli
+

3θ̄2li
4ᾱli

]
. (40)

In addition,
N∑
i=1

−γ2i
(
1 + ϵ̄2∥ξi∥

)
+ γiβ̄i + γi∥ξi∥

≤
N∑
i=1

− ϵ̄2
2
∥ξi∥γ2i −

{[
γi −

1

2
β̄i

]2
− 1

4
β̄2
i

}

− ϵ̄2
2
∥ξi∥

{[
γi −

1

ϵ̄2

]2
− 1

2ϵ̄22

}

≤
N∑
i=1

[
− ϵ̄2

2
∥ξi∥γ2i +

1

4
β̄2
i +

1

4ϵ̄2
∥ξi∥

]
. (41)

According to the adaptive law (27b), there exist γ
i
∈ R+ such

that γi > γ
i
. Substituting (40)-(41) into (39), yields

V̇ ≤−
N∑
i=1

λmi

[
∥ωai∥2 + ∥ωui∥2

]
−

N∑
i=1

γ2
i
ϵ̄1(∥ξi∥7 − ∥ξi∥5)

+

N∑
i=1

2∑
l=0

[
− ᾱli

3
θ̂2li +

3

4ᾱli
+

3θ̄2li
4ᾱli

](
∥ωai∥+∥ωui∥

)
∥ξi∥l

+

N∑
i=1

[
− ϵ̄2

2
∥ξi∥γ2i +

1

4
β̄2
i +

1

4ϵ̄2
∥ξi∥

]
+

N∑
i=1

∑
j∈Ni

Ψij

− ωT
aiPaiB1(Im + Ti)ρi sat(Si, φ)

+

N∑
i=1

[ 2∑
l=0

θ̂li∥ξi∥l + γi

]
∥Si∥. (42)

c) Behavior of the Lyapunov function on saturation regions
Based on the saturation sat(Si, φ), we study the behavior

of the Lyapunov function along three scenarios similar to [33]:
• Scenario 1: ∥Si∥ ≥ φ, i = 1, . . . , N .

In this scenario, we have sat(Si, φ) =
Si

∥Si∥ . According
to (26), we obtain the following as ST

i = ωT
aiPaiB1:

−ST
i (Im+Ti)ρi sat(Si, φ) ≤ −

N∑
i=1

(1− T̄ )
ST
i Si

∥Si∥
ρi

≤ −
N∑
i=1

[ 2∑
l=0

θ̂li∥ξi∥l + γi

]
∥Si∥. (43)

Using (43), the time derivative (42) is simplified to

V̇ ≤ −
N∑
i=1

λmi

[
∥ωai∥2 + ∥ωui∥2

]
−

N∑
i=1

γ2
i
ϵ̄1(∥ξi∥7−∥ξi∥5)

+

N∑
i=1

2∑
l=0

[
− ᾱli

3
θ̂2li +

3

4ᾱli
+

3θ̄2li
4ᾱli

](
∥ωai∥+∥ωui∥

)
∥ξi∥l

+

N∑
i=1

[
− ϵ̄2

2
∥ξi∥γ2i +

1

4
β̄2
i +

1

4ϵ̄2
∥ξi∥

]
+

N∑
i=1

∑
j∈Ni

Ψij .

(44)

The definition of Lyapunov function (28) satisfies

V ≤
N∑
i=1

λMi

(
∥ωai∥2 + ∥ωui∥2

)
+

N∑
i=1

[ 2∑
l=0

1

χli

(
θ̂2li + θ̄2li

)
+
γ2i
ϵ0

]
(45)

where λMi = max
{
λmax(Pai)/2, λmax(Pui)/2

}
. Define

ζ = mini{λmi}
maxi{λMi} . Substituting (45) into (44) yields

V̇ ≤− ζV +

N∑
i=1

[ 2∑
l=0

ζ

χli

(
θ̂2li + θ̄2li

)
+
ζγ2i
ϵ0

]

+

N∑
i=1

2∑
l=0

{
− ᾱli

3
θ̂2li

(
∥ωai∥l+1 + ∥ωui∥l+1

)
+

( 3

4ᾱli
+

3θ̄2li
4ᾱli

)(
∥ωai∥+ ∥ωui∥

)
∥ξi∥l

}

+

N∑
i=1

[
− ϵ̄2

2
∥ξi∥γ2i +

1

4
β̄2
i +

1

4ϵ̄2
∥ξi∥

]

−
N∑
i=1

γ2
i
ϵ̄1(∥ξi∥7 − ∥ξi∥5) +

N∑
i=1

∑
j∈Ni

Ψij

≤− ζV −
N∑
i=1

2∑
l=0

θ̂2li

[
ᾱli

3

(
∥ωai∥l+1 + ∥ωui∥l+1

)
− ζ

χli

]
−

N∑
i=1

γ2i

[
ϵ̄2
2
∥ξi∥ −

ζ

ϵ0

]
+ Z1(∥ξ∥). (46)
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According to (36),

Z1(∥ξ∥) ≜
N∑
i=1

−ϵ̄1γ2i ∥ξi∥
7+

N∑
i=1

∑
j∈Ni

c11∥ξi∥∥ξj∥5+
N∑
i=1

c6

+

N∑
i=1

c12∥ξi∥6 +
N∑
i=1

ϵ̄1γ
2
i
∥ξi∥5 +

N∑
i=1

∑
j∈Ni

c21∥ξi∥∥ξj∥3

+

N∑
i=1

c22∥ξi∥4 +
N∑
i=1

∑
j∈Ni

c31∥ξi∥∥ξj∥2 +
N∑
i=1

c32∥ξi∥3

+

N∑
i=1

∑
j∈Ni

c41∥ξi∥∥ξj∥+
N∑
i=1

c42∥ξi∥2 +
N∑
i=1

c5∥ξi∥

with

c11 =θ̌2j
( ¯̄T2j + ¯̄T3j

)(
2 + ∥BT

1 Paj∥
)

c12 = ¯̄T1iθ̌2i
(
2 + ∥BT

1 Pai∥
)
, c6 =

1

4
β̄2
i + ζθ̄2li

c21 =θ̌1j
( ¯̄T2j + ¯̄T3j

)(
2 + ∥BT

1 Paj∥
)

c22 = ¯̄T1iθ̌1i
(
2 + ∥BT

1 Pai∥
)

c31 =2φ̄2j +
( ¯̄T2j + ¯̄T3j

)
θ̄2j

c32 =2
( 3

4α2i
+

3θ̄22i
4α2i

)
+ ¯̄T1iθ̊2i

c41 =2φ̄1j +
( ¯̄T2j + ¯̄T3j

)[
θ̌0j

(
2 + ∥BT

1 Paj∥
)
+ θ̊1j

]
c42 =2

( 3

4α1i
+

3θ̄21i
4α1i

)
+ ¯̄T1i

[
θ̌0i

(
2 +∥BT

1 Pai∥
)
+ θ̊1i

+ γ̌i
(
1+∥BT

1 Pai∥
]
+γ̌j

( ¯̄T2j+¯̄T3j
)(
1+∥BT

1 Pai∥
)

c5 = ¯̄T1i
(
θ̊0i + γ̊i

)
+
( ¯̄T2j + ¯̄T3j

)(̊
γj + θ̊0j

)
+ 2

( 3

4α0i
+

3θ̄20i
4α0i

)
+

1

4φ̄2
.

Using Descartes’ rules of sign change and Bolzano’s
Theorem [46], the polynomial Z1 has exactly one positive
real root η1 ∈ R+. The coefficient of the highest degree
of Z1 is negative as −γ2

i
ϵ̄1. Therefore, Z1(∥ξ∥) ≤ 0

when ∥ξ∥ ≥ η1, where ξ = [ξ1, . . . , ξN ]T . Define ι1 =

3ζ
2χ0iᾱ0i

, ι2 =
√

3ζ
2χ1iᾱ1i

, ι3 =

(
3ζ

2χ2iᾱ2i

)1/3

, ι4 =
2ζ

ϵ̄2
.

According to (46), V̇ ≤ −ζV when

min{∥ωai∥, ∥ωui∥, ∥ξi∥} ≥ max{η1, ι1, ι2, ι3, ι4}
⇒ min{∥ωai∥, ∥ωui∥} ≥ max{η1, ι1, ι2, ι3, ι4} (47)

• Scenario 2: ∥Si∥ < φ, i = 1, . . . , N .
In this scenario sat(Si, φ) =

Si

φ . Using (26), we have

−
N∑
i=1

ST
i (Im + Ti)ρi sat(Si, φ) ≤ 0. (48)

Substituting (48) into (42) gives

V̇ ≤− ζV−
N∑
i=1

2∑
l=0

θ̂2li

[
ᾱli

3

(
∥ωai∥l+1 + ∥ωui∥l+1

)
− ζ

χli

]

−
N∑
i=1

γ2i

[
ϵ̄2
2
∥ξi∥ −

ζ

ϵ0

]
+ Z1(∥ξ∥)

+

N∑
i=1

[ 2∑
l=0

θ̂li∥ξi∥l + γi

]
∥Si∥. (49)

According to (32), together with ∥Si∥ < φ, we obtain
N∑
i=1

[ 2∑
l=0

θ̂li∥ξi∥l + γi

]
∥Si∥

≤
N∑
i=1

(
θ̊0i + φθ̌0i + φγ̊i

)
+ γ̌i

(
1 + ∥BT

1 Pai∥
)
φ

+
(
2θ̌0i + θ̊1i

)
∥ξi∥+

N∑
i=1

[
φθ̌1i + θ̊1i

]
∥ξi∥2

+ 2θ̌1i∥ξi∥3 + φθ̌2i∥ξi∥4 +
N∑
i=1

2θ̌2i∥ξi∥5. (50)

Substituting (50) into (49) gives

V̇ ≤− ζV −
N∑
i=1

2∑
l=0

θ̂2li

[
ᾱli

3

(
∥ωai∥l+1 + ∥ωui∥l+1

)
− ζ

χli

]

−
N∑
i=1

γ2i

[
ϵ̄2
2
∥ξi∥ −

ζ

ϵ0

]
+ Z2(∥ξ∥) (51)

with Z2(∥ξ∥) = Z1(∥ξ∥)+
N∑
i=1

(
θ̊0i+φθ̌0i+φγ̊i

)
+γ̌i

(
1+

∥BT
1 Pai∥

)
φ+

(
2θ̌0i+ θ̊1i

)
∥ξi∥+

N∑
i=1

[
φθ̌1i+ θ̊1i

]
∥ξi∥2+

2θ̌1i∥ξi∥3 + φθ̌2i∥ξi∥4 +
N∑
i=1

2θ̌2i∥ξi∥5.

Analogously to Scenario 1, V̇ ≤ −ζV when

min{∥ωai∥, ∥ωui∥, ∥ξi∥} ≥ max{η2, ι1, ι2, ι3, ι4}
⇒ min{∥ωai∥, ∥ωui∥} ≥ max{η2, ι1, ι2, ι3, ι4} (52)

where η2 is the positive real root of Z2 such that
Z2(∥ξ∥) ≤ 0 when ∥ξ∥ ≥ η2.

• Scenario 3: Without loss of generality, consider ∥Si∥ ≥
φ for i = 1, . . . , k, and ∥Si∥ < φ for i = k + 1, . . . , N
where 1 ≤ k ≤ N − 1. For i = 1, . . . , k, we have
sat(Si, φ) = Si

∥Si∥ ; For i = k + 1, . . . , N , sat(Si, φ) =
Si

φ . Similarly to Scenario 1 and Scenario 2, we get

V̇ ≤− ζV −
N∑
i=1

2∑
l=0

θ̂2li

[
ᾱli

3

(
∥ωai∥l+1 + ∥ωui∥l+1

)
− ζ

χli

]

−
N∑
i=1

γ2i

[
ϵ̄2
2
∥ξi∥ −

ζ

ϵ0

]
+ Z3(∥ξ∥) (53)

with Z3(∥ξ∥) = Z1(∥ξ∥) +
N∑

i=k+1

(
θ̊0i + φθ̌0i + φγ̊i

)
+

γ̌i
(
1 + ∥BT

1 Pai∥
)
φ+

(
2θ̌0i + θ̊1i

)
∥ξi∥+

N∑
i=k+1

[
φθ̌1i +

θ̊1i

]
∥ξi∥2 + 2θ̌1i∥ξi∥3 + φθ̌2i∥ξi∥4 +

N∑
i=k+1

2θ̌2i∥ξi∥5.

Analogously to Scenario 1, V̇ ≤ −ζV when

min{∥ωai∥, ∥ωui∥, ∥ξi∥} ≥ max{η3, ι1, ι2, ι3, ι4}
⇒ min{∥ωai∥, ∥ωui∥} ≥ max{η3, ι1, ι2, ι3, ι4} (54)
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where η3 is the positive real root of Z3 such that
Z3(∥ξ∥) ≤ 0 when ∥ξ∥ ≥ η3.

Finally, combining (47) in Scenario 1 with (52) in Scenario 2
and (54) in Scenario 3, we obtain ωui, ωai ∈ L∞ when ∥ξ∥ ≥
max{η1, η2, η3, ι1, ι2, ι3, ι4}, which leads to eu, ea ∈ L∞.
Both the local actuated synchronization error and local non-
actuated synchronization error are thus proved to reach UUB.
According to (9) in Lemma 1, the global synchronization
errors δu, δa are also uniformly ultimately bounded.
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