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A Novel Framework Combining MPC and Deep
Reinforcement Learning with Application to

Freeway Traffic Control
Dingshan Sun, Anahita Jamshidnejad, and Bart De Schutter, Fellow, IEEE

Abstract—Model predictive control (MPC) and deep rein-
forcement learning (DRL) have been developed extensively as
two independent techniques for traffic management. Although
the features of MPC and DRL complement each other very
well, few of the current studies consider combining these two
methods for application in the field of freeway traffic control.
This paper proposes a novel framework for integrating MPC
and DRL methods for freeway traffic control that is different
from existing MPC-(D)RL methods. Specifically, the proposed
framework adopts a hierarchical structure, where a high-level
efficient MPC component works at a low frequency to provide
a baseline control input, while the DRL component works at a
high frequency to modify online the output generated by MPC.
The control framework, therefore, needs only limited online
computational resources and is able to handle uncertainties and
external disturbances after proper learning with enough training
data. The proposed framework is implemented on a benchmark
freeway network in order to coordinate ramp metering and
variable speed limits, and the performance is compared with
standard MPC and DRL approaches. The simulation results
show that the proposed framework outperforms standalone MPC
and DRL methods in terms of total time spent (TTS) and
constraint satisfaction, despite model uncertainties and external
disturbances.

Index Terms—Freeway network management, model predictive
control, deep reinforcement learning, hierarchical structure.

I. INTRODUCTION

THE ever-growing number of vehicles worldwide is chal-
lenging current traffic systems. Especially during morn-

ing or evening rush hours, congestion easily occurs due to
insufficient road capacity. Traffic jams do not only increase
commute time for individuals, but also create negative impacts
on society, including environmental, economic and health
issues due to the large amount of emissions and the loss of
productive time. Constructing new lanes and expanding the
freeway network can alleviate these issues. However, this is
not always feasible due to space, financial, or environmental
restrictions. Efficient management of traffic on the existing
infrastructure is a promising alternative to improve traffic
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efficiency and safety. Among freeway control measures, ramp
metering (RM) [1] and variable speed limits (VSLs) [2] are
the most widely used strategies, which have been shown to
substantially decrease the travel delay in various real-world
implementations [3], [4]. These two control measures can be
either used independently or coordinated together within a
control method, such as model predictive control (MPC) [5]
or deep reinforcement learning (DRL) [6]. MPC and DRL
are two powerful control techniques and have been studied
extensively in the literature. These two methods have been
applied to freeway traffic control successfully, but they also
come along with their shortcomings.

MPC is a model-based optimal control approach, and its
theory of stability and feasibility has become mature since
1990s [7]. It is widely applied in industry and many other
fields, because of its robustness and ability to explicitly
deal with input and state constraints, thus satisfying safety
requirements, which is a crucial concern in many real-world
applications. However, an accurate mathematical model is
usually required for MPC to guarantee the closed-loop per-
formance, while acquiring such a model is commonly not
possible in practice. In particular, large-scale and complex
systems, such as freeway networks, lead to highly nonlinear
and non-convex optimization problems with multiple variables,
which are difficult to solve in real time [8]. Even though some
efficient MPC approaches have been developed to improve the
computational efficiency of MPC [9]–[12], the optimality and
satisfaction of state constraints cannot always be guaranteed in
case of model mismatches and external disturbances. Robust
and stochastic MPC methods [13], including tube MPC [14]
and scenario-based MPC [15], can address uncertainties to
some extent. However, these methods require assumptions
or descriptions of the uncertainties that are often difficult to
validate.

DRL is a recent technique that has shown its success
and potential in the field of control, including intelligent
traffic control. Unlike conventional reinforcement learning
algorithms, artificial neural networks are deployed in DRL to
deal with large-dimension state and action spaces. This ad-
dresses the so-called issue of the curse of dimensionality [16].
Nevertheless, DRL still suffers from several challenges in real-
world applications [17]. For example, safety constraints are
of significant importance in operation of real-world systems,
while satisfaction of constraints cannot be guaranteed during
the learning phase and in implementation of DRL. In addition,
the sample efficiency issue and delayed reward for large-
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scale systems (e.g., for traffic networks) remain considerable
challenges for DRL that are still active research topics [17].

Both MPC and DRL have their advantages and disadvan-
tages, and they complement each other well (see Table I).
On the one hand, MPC suffers from degraded performance
due to model uncertainties and external disturbances. More-
over, large-scale systems introduce multiple variables and
long prediction horizons, which make MPC computationally
intractable in real time. On the other hand, DRL can naturally
cope with uncertainties, and tackle infinite prediction horizons
with negligible online computational resources. However, it is
usually time-consuming to train a well-performing DRL agent
from scratch, especially for complex systems. Although there
are clear potential benefits in combining MPC and DRL, very
limited work has been done to explore the synergy between
these two methods. In addition, very little work has been done
to apply combined MPC-(D)RL algorithms in the field of
traffic management. One of the representative studies is [18],
which applied a model-reference framework that utilizes MPC
and deep Q-network algorithm to urban traffic signal control.

The current paper contributes to the state-of-the-art by
proposing a novel framework for combining MPC and DRL,
and by applying it to traffic management of freeway networks.
To be more specific:

1) Different from the previous work [18], the newly pro-
posed MPC-DRL framework adopts a hierarchical struc-
ture in order to incorporate the advantages of both MPC
and DRL approaches. The combined framework can
learn from the environment, while providing basic control
performance. By taking advantage of the dynamic model
knowledge and environment information, the framework
can deal with uncertainties and improve sample efficiency
of the learning process. In particular, an efficient MPC
controller operates at the upper control level with a low
control frequency to provide initial optimality while ex-
plicitly incorporating the constraints. Meanwhile, a DRL
agent works at the lower control level with a high control
frequency in order to modify the MPC outputs, and to
compensate for model mismatches that may affect MPC.
Because of the hierarchical structure and multi-frequency
control strategy, the proposed framework achieves a good
balance between computational tractability and control
performance.

2) The resulting MPC-DRL framework is implemented on
a benchmark freeway network, and the results validate
the effectiveness of the proposed method. In particular,
the objective function of MPC and the reward function
of DRL are designed properly, such that the two com-
ponents are complementary with each other. In addition
to MPC, DRL addresses the state and input constraints
by introducing penalties on the constraint violation in
the reward function. Simulation results show that the
combined MPC-DRL outperforms other controllers in
terms of control performance, constraint satisfaction, and
computational efficiency.

The rest of this paper is organized as follows: Section
II summarizes related work about MPC and DRL and their

Table I
COMPARISON OF MPC AND DRL CHARACTERISTICS

MPC DRL
Need a model Yes No

Developed stability theory Yes No
Developed feasibility theory Yes No

Handling constraints explicitly Yes No
Adaptive to uncertainties No Yes

Online computational time High Low
Offline computation time Low High

application in freeway traffic management, as well as the
latest MPC-DRL algorithms and their applications. Section III
presents and provides details on the novel MPC-DRL frame-
work that is proposed in this paper. Section IV gives a case
study that implements MPC, DRL, and the proposed MPC-
DRL framework on the same benchmark network. Finally,
Section V concludes the paper and proposes topics for future
work.

II. RELATED WORK

A large number of studies about traffic management of
freeway networks exist in the literature, and a recent com-
prehensive survey is given in [19]. Among all the traffic
control approaches, MPC and DRL have drawn significant
attention because of their appealing features. MPC and DRL
have been developed and applied for both freeway and urban
traffic networks. As the case study in Section IV involves a
freeway traffic network, we will mainly focus on MPC and
DRL for freeway traffic control in this section1. After that,
current research gaps regarding combined MPC-DRL methods
are analyzed.

A. MPC for freeway traffic control

The idea of utilizing rolling horizon optimization in traffic
signal control was first introduced by Gartner [20], after which
the suggestion of adopting MPC in traffic signal control was
formally made by De Schutter and De Moor in [21]. Since
then extensive studies about MPC have been carried out in the
field of traffic control, including railway [22], urban [23], and
freeway traffic networks [8]. Particularly, an RM strategy and a
VSLs strategy was adopted in MPC for freeway traffic control
in, respectively, [24] and [25]. These two control methods were
first coordinated within MPC in the work of Hegyi et al. [8].

As an online optimization-based control method, MPC
struggles with computational complexity, especially when the
scale of the freeway network is large. Therefore, a large
amount of efforts have been devoted to alleviate this issue.
One major direction is to reduce the complexity of the
dynamic model of the freeway network, and many efficient
mathematical models have been developed to describe traffic
flow dynamics, such as METANET [26], and cell transmission
model (CTM) [27].

The other direction to improve the computational efficiency
of MPC is to simplify the problem by linearizing it, or

1It is, however, important to note that the novel MPC-DRL framework
proposed in this paper can be applied to both freeway and urban traffic
networks.
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by adopting efficient optimization techniques. For example,
Zegeye et al. [9] employed the parameterized MPC technique
to reduce the number of the decision variables of the optimiza-
tion problem. By introducing state-feedback control laws, the
control inputs can be described as a function of the states
and several function parameters. Thus, only the parameters
need to be optimized to obtain the control inputs. Jeschke
et al. further extended this approach by using a grammatical
evolution method to generate the state-feedback laws auto-
matically, and apply it to urban traffic control [12]. Ferrara et
al. [28] incorporated an event-trigger mechanism in the MPC
framework to reduce the frequency of solving the optimization
problems. Besides, the finite-horizon optimization problem
within the MPC scheme is formulated as a mixed-integer linear
programming problem that can be solved efficiently, thanks to
the revised linear model obtained from CTM.

Despite the success that efficient MPC algorithms have
achieved, MPC still suffers from issues that are caused by
uncertainties, since it relies heavily on the prediction model.
Mismatches between the (macroscopic) prediction model and
the real-world traffic system, as well as the presence of exter-
nal disturbances are inevitable, which deteriorate the closed-
loop performance of MPC.

To address these issues, a few studies have considered
robust MPC for freeway traffic control. For example, Liu et
al. [29] utilized a scenario-based approach [15] to describe
the uncertainties as a set of scenarios with their correspond-
ing probabilities, including global uncertainties (e.g., global
weather conditions) and local uncertainties (e.g., local weather
conditions, local traffic compositions, and local demands at
the origins). Coordinated with distributed MPC (DMPC), the
resulting scenario-based DMPC improves the control perfor-
mance for a large-scale freeway network considering some
uncertainties. Nevertheless, current robust MPC algorithms
for freeway traffic control require assumptions and simplifica-
tions about the uncertainties and disturbances that are usually
hard to satisfy in practice. Moreover, the extra computational
burden introduced by robust MPC methods is another issue.
Therefore, developing efficient and uncertainty-resistant MPC
algorithms for traffic management remains a challenging and
urgent task.

B. DRL for freeway traffic control

Reinforcement learning (RL) [30] is a machine learning
technique that usually follows a two-stage procedure. In the
first stage, the RL agent learns how to take actions by
interacting with the environment/system (or a model of it), in
order to maximize the notion of cumulative reward. After that,
the trained RL agent is then implemented for control. RL is
attracting more and more interest from the system and control
community, since it can naturally deal with uncertainties
and automatically learn a long-term optimal policy through
interacting with the environment. However, the drawbacks of
conventional RL are still obvious, which is called the curse
of dimensionality [16]. As a result, existing studies that use
conventional RL for traffic management can only deal with a
small traffic network [31], [32].

The emergence of DRL algorithms significantly broadens
the applications of RL and unlocks great potentials for various
fields. The introduced neural networks in DRL can handle
more complex state and action spaces [31]. DRL has also
been studied for intelligent traffic signal control [33], and a
recent survey is offered in [34]. In addition, DRL has been
successfully applied in other problems. For example, Zhang et
al. [35] used DRL to solve a dynamic traveling salesman prob-
lem, and achieved substantial improvement within a very short
computation time, compared with other baseline approaches.

Despite the great progress in DRL techniques, the limita-
tions of DRL mentioned in Section I still apply. Moreover,
current work mainly focuses on urban traffic signal control,
while relevant research about DRL for freeway traffic control
is still limited [36]–[38]. To the best of our knowledge, [39]
is the only paper that coordinates VSLs and RM with a
DRL algorithm, where both DDPG and TD3 [40] algorithms
are implemented and their performance is compared. It is
also shown that a centralized DRL agent can handle a large
freeway network with multiple VSL-RM hybrid controllers.
In addition, very few studies considers the state constraints.
For example, the queue length of the on-ramps should be
constrained, otherwise it interferes with the connected urban
road network and safety issues may occur. Moreover, although
a lot of research has studied how to improve the practicability
of learning-based methods, such as by training with real-world
data or by pre-training (i.e., before implementation), there is
still a huge gap between real-world deployment and simulator-
based applications.

DRL methods have the potential to deal with uncertain
environments, but they also suffer from the requirement of
a prolonged training process (i.e., low sample efficiency), as
well as the lack of performance and safety guarantees. How
to maintain the positive features of DRL, while circumventing
the drawbacks remains an interesting and relevant research
topic.

C. Current research gaps in MPC-(D)RL methods

Considering the features of both MPC and DRL, the idea
of merging these two methods to exploit their complementary
advantages sounds promising. Although a few studies have in-
vestigated this topic, current methods have their corresponding
drawbacks and no one has implemented MPC-DRL methods
in the field of traffic management, especially for freeway traffic
control. Therefore, in this subsection, the latest work relevant
to combined MPC-(D)RL methods are analyzed, which further
motivates this paper.

The paper [41] is the earliest one that utilizes a value
function to approximate the infinite-horizon objective func-
tion of MPC, where a Markov Decision Process (MDP),
which is a discrete-time stochastic control process, is used
as the prediction model. Moreover, the prediction horizon is
reduced to look only one step ahead, while accounting for
the long-term value of the performance criteria. The value
function can be learned gradually on-line using RL techniques,
and meanwhile MPC operates with a simplified optimization
problem to provide data samples. This work opened up a
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research direction to combine MPC and RL algorithms, and
inspired consequent research. The method was extended to
more general dynamics in [42], where two different value
function approximations are used and implemented for various
control examples, including the inverted pendulum, the double
pendulum, and the acrobot. However, the learning process still
struggles with a low sample efficiency and unsafe exploration
issues. Arroyo et al. [43] further extended the method given
in [41] to a realistic scenario for building energy management,
by encoding domain knowledge. Then the initial complex
MPC optimization problem is reformulated as an optimization
problem with a prediction horizon of one step. In [43] a
simulation model is extracted from the simulator via system
identification, and is used as the prediction model for MPC,
as well as for pre-training of the DRL agent. The simulation
results show that the proposed RL-MPC approach can meet the
state constraints and provide satisfying performance. However,
it is not demonstrated in [43] whether or not the RL-MPC
approach outperforms MPC in uncertain environments.

The above MPC-DRL combined algorithms can be cate-
gorized as objective function truncating methods. This can
reduce the on-line computational complexity of MPC, while
RL is used to handle the uncertain environment. Nevertheless,
these algorithms still suffer from several issues. First, one-
step ahead MPC optimizes the control input only for the next
time step, and therefore can only guarantee the short-term
safety constraints. Second, although the value function can
include the constraints by introducing a penalty on constraint
violations in the reward function, in this way the constraints
become soft constraints that do not necessarily provide guar-
antees. Third, an inaccurate system model is still used for
the one-step ahead optimization of MPC, which influences
the optimality of the performance. Fourth, optimizing the joint
objective function and value function can be quite challenging,
due to the nonlinearity and non-convexity introduced by the
neural networks.

Another direction to connect MPC with RL is developed by
Gros and Zanon. In [44] they proposed to use a parameterized
MPC scheme instead of deep neural networks to approximate
the value function and policy for the RL agent. It is shown that
the MPC scheme can guarantee the optimality of the learned
policy by adjusting the objective function of MPC, even with
an inaccurate system model. Furthermore, they extended the
algorithm by utilizing robust MPC techniques to address the
safety issue of RL [45]. The method is implemented with a
Q-learning algorithm and the results show that the constraints
are well handled. In fact, Gros and Zanon [44], [45] are
basically using RL tools to solve the MPC problem by using
the connection between the parameterized MPC and RL.
However, how to parameterize the cost function of MPC is
not considered in a structured way.

A different trend is to directly combine the control inputs
of MPC and RL. The paper [46] proposed a framework
that contains independent MPC and DDPG agents, in which
the overall output is a weighted sum of the control inputs
generated by MPC and DRL. The idea is to use MPC to play
a guiding role by applying its control action directly to the
system to obtain more effective data samples for the training

of the DDPG agent, thus improving the sample efficiency.
However, the weight parameter needs to be tuned by trail and
error for various tasks, and the synergies between MPC and
DRL are not considered nor analyzed. The state and input
constraints are not considered either.

There is not yet an extensive comparison study about the
MPC-RL algorithms discussed above, so it is still an open
question that which approach surpasses the other, and in
which cases. However, each algorithm is designed to address a
specific issue or a particular task. The current paper develops
a novel framework that combines MPC and DRL in a flexible
way, i.e., it allows the designers to freely choose the detailed
MPC and DRL schemes. The framework is also designed using
a hierarchical structure with multiple operation rates, such that
MPC and DRL can coordinate well with each other, making
the framework applicable for various complex applications.
The proposed framework is tested for a freeway traffic control
problem from [8], and the performance is compared with
standard MPC, DRL methods, and advanced MPC methods.

III. COMBINED MPC-DRL FRAMEWORK

This section presents the proposed MPC-DRL control
framework. Section III-A gives an intuitive description of
the framework from a high-level point-of-view. Section III-B
defines the MPC and the DRL modules. Section III-C details
the learning algorithm of the framework. The mathematical
notations used in this section are presented and defined in
Table II.

A. MPC-DRL framework

As illustrated in Figure 1, the proposed MPC-DRL frame-
work has a hierarchical structure. The MPC module operates at
the high level to provide a basic control input that is optimized
over the prediction window based on the objective function of
MPC with the associated nominal model and the predicted
traffic demands. The objective function is given according to
the control purpose (e.g., minimizing TTS), and the state and
input constraints are considered explicitly during the optimiza-
tion. In practice, the MPC output ub is not optimal, mainly
due to the mismatch between the prediction model and the real
system, as well as due to the error in the predicted demands.
Accordingly, the state constraints cannot be guaranteed. Note
that MPC performs with a larger control sampling time Tc
than the simulation sampling time Ts, such that the number of
the optimization variables is substantially reduced, even with
a long prediction horizon. Therefore the online optimization
problem of MPC is computationally tractable.

In order to improve the optimality of the MPC output and
to avoid severe constraint violations, the DRL module works
at the lower level to modify the MPC output ub during the
learning process by interacting with the real system. The state
space of the DRL agent includes the freeway states x and
the MPC output ub (see (7)), while the reward function is
designed to complement the objective function of MPC, such
that these two modules can collaborate to optimize the overall
objective. In addition, the traffic demands are also fed into
the DRL agent, and a penalty on the constraint violation is
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Table II
MATHEMATICAL NOTATIONS USED FOR THE COMBINED MPC-DRL

FRAMEWORK

Notation Definition

ks Simulation sampling step counter of the system
kd Control step counter of the DRL module, which also corre-

sponds to the control step of the controlled system
kc Control step counter of the MPC module
Ts Simulation sampling time between two simulation sampling

steps of the system
Td Control sampling time of the DRL module
Tc Control sampling time of the MPC module
Tini Time to initialize the freeway network before control for the

simulation
T The duration of the total simulation time period
ub(kc) Output of MPC module at control step kc
us(ks) Output of MPC module at simulation sampling step ks
url(kd) Action of DRL generated by the actor network at control step

kd
u′

rl(kd) Action of DRL generated by the target actor network at
control step kd

uc(kd) Final control input given to the system at control step kd
x(ks) Real traffic state at simulation sampling step ks
x̂(ks) Predicted traffic state at simulation sampling step ks

d̂(ks) Predicted traffic demands at simulation sampling step ks
d(ks) Real traffic demands at simulation sampling step ks
Np,c Prediction horizon length counted in terms of the MPC control

step
Np,s Prediction horizon length counted in terms of the simulation

sampling step
F Dynamic freeway model
xrl(kd) State vector for the DRL agent at control step kd
r(·, ·) Reward of the DRL agent for taking an action url(kd) when

at a state xrl(kd)
yi Learning target of the DRL agent for data sample i
R Experience replay buffer of the DRL agent
N Size of mini-batch sampled from the replay buffer
n Number of steps to look ahead for the reward in the DRL

algorithm
wn(kd) Random noise added to the DRL actions at control step kd

for exploration
wu Scaling parameter of the DRL actions
wp Penalty weight in the DRL reward function

added to the reward function. The action url of DRL has
the same dimension as ub, but its elements have smaller
magnitudes. The components of the DRL module are defined
in detail in Section III-B. The update algorithms of the network
parameters in the figure are presented in Section III-C.

Assume that the model of the freeway dynamic is discrete-
time with a simulation sampling time Ts, and the DRL module
works with a control sampling time Td. Then the relationship
between Ts, Td, and Tc are described as:

Tc = m1 · Td = m1 ·m2 · Ts, m1,m2 ∈ N+,m1 > 1. (1)

Note that for the sake of simplicity and brevity in the notations,
we assume that the simulation sampling step, DRL control
step, and MPC control step coincide (see Figure 2). Therefore,
the overall control input of the combined framework is a
combination of ub and url, which is updated every Td time
units. For control step kd that corresponds to the MPC control
step kc (i.e., kdTd ∈ [kcTc, (kc + 1)Tc)), the overall control
input is given by:

uc(kd) = sat(url(kd) + ub(kc)), (2)

where a saturation function sat(·) is used to guarantee that the

Figure 1. Block diagram of the hierarchical MPC-DRL control framework,
in which x′

rl represents the state measured at the next control step.

additive control input uc(kd) satisfies the bound constraints,
and is defined in element-wise by:

sat(u) =


umax, if u > umax

umin, if u < umin

u, otherwise,
(3)

with umin and umax the minimal and maximal allowed values
for the corresponding elements in the control inputs for the
freeway network, and ub(kc) the corresponding MPC output.
Figure 2 illustrates the different time scales of MPC and DRL
control sampling time, and how url modifies ub.

B. Detailed description of the framework

The details of the MPC and DRL modules are provided in
this section.

1) MPC module: A standard MPC procedure is performed
within the MPC module, where a nominal model F is used
to describe the freeway dynamic. The details of the freeway
model are given in Appendix B. The system states x are
updated every simulation sampling step ks. The simulation
sampling steps that correspond to the MPC control step kc are
given by:

{kcm, kcm+ 1, . . . , kcm+m− 1} , (4)
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Figure 2. Illustration of different time scales and how DRL modifies the
MPC output.

where m = m1m2. Thus at simulation sampling steps ks =
kcm, the real states of the freeway network are measured and
are fed into the MPC module. The following optimization
problem is solved at every control step kc:

min
ũb(kc),x̃(kc)

Np,s∑
ℓ=1

J(kcm+ ℓ) (5)

s.t. (A.1)-(A.4),

where J(ks) represents the predicted objective function value
(e.g., TTS) during the time interval [ksTs, (ks + 1)Ts), ũb(kc)
denotes the variables to be optimized over the prediction
window of length Np,c, and x̃(kc) denotes the predicted future
states at control step kc. In addition, Np,s and Np,c are the
prediction horizon length counted in terms of the simulation
sampling steps and MPC time steps, respectively, in which
Np,s = Np,cm. For simplicity, the detailed formulation of the
MPC module is present in Appendix A.

Due to the nonlinearity and non-smoothness of the traffic
model, the resulting optimization problem is, in general,
nonlinear and non-convex. Therefore, a nonlinear optimization
solver, such as multi-start sequential quadratic programming
(SQP), simulated annealing, or genetic algorithms [47] is
required. After the above optimization problem is solved, the
first element of the optimized control input ũb(kc) is given to
the DRL module.

2) DRL module: Considering the freeway network as a
Markov Decision Process (MDP), it can be represented by
a five-tuple ⟨S,A, P,R, γ⟩. The state space S, action space
A, and reward distribution R are defined in this section.
Furthermore, P denotes the transition probability among the
states, and is implicitly defined by the freeway network model.
Moreover, γ ∈ [0, 1) is the user-defined discount factor on
the future rewards. The DRL module operates at the low
level with a higher frequency than the MPC module. The
control sampling time Td of the DRL module is larger than the
simulation sampling time Ts, in order to avoid a too frequent
change in the control inputs to the freeway network. Therefore,
the simulation sampling steps that correspond to the DRL

control step kd includes:

{kdm2, kdm2 + 1, . . . , kdm2 +m2 − 1} , (6)

where m2 is defined in (1). The state, action, and reward of
DRL are updated every control step kd, and are defined as it
follows.

State xrl(kd) ∈ S: The state space of DRL should consist of
all necessary information of the framework. Since deep neural
networks are employed in DRL, the states fed into the input
layer are normalized to the same order of magnitude in order
to facilitate the learning. Thus, we have:

xrl(kd) = [x̄⊤(kdm2), ū
⊤
s (kdm2), d̄

⊤(kdm2), ū
⊤
c (kd − 1)]⊤,

(7)

where x̄(kdm2), ūs(kdm2), d̄(kdm2), and ūc(kd − 1) are,
respectively, the normalized states of the freeway network,
the MPC outputs, the real demands at simulation sampling
step kdm2, and the overall control input of the framework at
previous control step kd − 1. Note that the fourth element is
added to provide extra knowledge about the overall control
input of the combined framework, which can be beneficial to
avoid severe fluctuation in the control inputs.

Action url(kd) ∈ A: The action url is used to modify the
MPC output ub. Therefore, they have the same dimension,
i.e., dimurl = dimub. For simplicity, it is assumed that the
action space is also continuous.

Note that action url is generated from the output layer of
the DNNs, and the original values of its elements are between
[−1, 1]. Thus these values are scaled back to the real control
inputs before they are added. Moreover, the elements of url
have a smaller magnitude than those of ub, such that ub
dominates the control input in this framework and provides
basic performance, while url is an ancillary control input
that acts at a higher frequency and aims at improving the
performance. Furthermore, url meets the following inequalities
that defines the action space A:

−wu∆U ≤ url ≤ wu∆U , (8)

where ∆U = umax − umin, with umax the upper bound and
umin the lower bound of MPC output, and wu ∈ [0, 1) is the
scaling parameter that determines to what extent url influences
ub.

Reward r(xrl(kd),url(kd)) ∈ R: In order to coordinate
MPC and DRL to achieve the optimal performance, the reward
function should include the objective function J of the MPC
module:

r(xrl(kd),url(kd)) =

m2∑
k=1

(
−J(kdm2+k)−wpPs(kdm2+k)

)
,

(9)
where Ps denotes the state constraint violation, and wp > 0
is the penalty weight parameter. Let rt(kd) be an equiva-
lent representation of r(xrl(kd),url(kd)), which denotes the
observed reward based on the traffic condition during DRL
control step kd. In order to evaluate J , the relevant state x(ks)
can be measured at every simulation sampling step, and the
MPC output us(ks) can be obtained from (A.4). Moreover,
Ps(ks) can be calculated directly based on state x(ks), for
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ks = kdm2 + 1, . . . , kdm2 + m2. The reward is a negative
value, and thus R is the set of negative numbers.

The deep actor-critic algorithms are considered to train the
framework, among which Deep Deterministic Policy Gradient
(DDPG) [48] is chosen for the DRL agent, which is an off-
policy and model-free algorithm that can deal with continuous
state and action spaces, and has been implemented successfully
in many freeway traffic studies (see, e.g., [38], [39], [49]).

Remark 1. The standard MPC procedure within the high-level
MPC module can be replaced with any efficient MPC variants,
such as parameterized MPC or DMPC for large-scale freeway
networks. The DDPG agent can easily be extended to arbitrary
off-policy DRL algorithms that can deal with continuous state
and action spaces.

C. Algorithm for training the framework
The goal of learning is to train a policy π, such that the

expected return at state xrl(kd) after taking action π(xrl(kd))
is maximized. The expected return for action π(xrl(kd)) taken
at state xrl(kd) is given by:

Qπ (xrl(kd), π(xrl(kd)))

=Er,xrl∼E

[ ∞∑
k=0

γkr(xrl(kd + k),url(kd + k))

]
=Er,xrl∼E

[
r(xrl(kd),url(kd))

+ γQπ (xrl(kd + 1), π(xrl(kd + 1)))
]
, (10)

where the subscript r,xrl ∼ E implies that the transitions
among the states in the environment are stochastic. Note
that the return depends on the chosen actions, and thereafter
on the policy π. In DDPG, both the return and the policy
π are approximated by deep neural networks, which are
notated as Qπ

ϕ (xrl(kd),url(kd)) and πθ, respectively. They
are also known as the critic and the actor, and ϕ and θ
represent the parameters of the corresponding neural networks,
as shown in Figure 1. In addition, the target network technique
is used, which introduces two target critic and actor deep
neural networks, corresponding to ϕ′ and θ′, that are updated
in a slower pace in order to improve the stability of the
training process. Experience replay is also utilized to remove
correlations in the observation sequence, and to provide better
learning convergence, and a replay buffer R is used to store the
agent’s experience. For more details, the readers are referred
to [48].

Instead of the traditional one-step temporal-difference (TD)
target in DDPG, we use the n-step TD method [30], i.e.:

ykd = rn(kd) + γnQπ
ϕ′(xrl(kd + n),u′

rl(kd + n)), (11)

in which u′
rl(kd+n) = πθ′(xrl(kd+n)), and the n-step reward

is given by:

rn(kd) =

n−1∑
k=0

γkr(xrl(kd + k),url(kd + k)), (12)

where url(kd) = πθ(xrl(kd)). Then the loss function for the
critic is given by:

L (ϕ) =
1

N

∑
i

(
yi −Qπ

ϕ(xrl(i),url(i))
)
, (13)

where i is the index of the data points of a mini-batch
of size N that is sampled randomly from the experience
replay buffer. The critic parameters ϕ are therefore updated
by minimizing the loss function with the Adaptive Moment
Estimation (Adam) optimizer [50].

The benefits of using n-step TD here are fourfold:
1) A freeway network is a large-scale system with time

delays, which means the control measures only take effect
after a period of time. Thus, looking n steps into the
future can better evaluate the quality of the actions taken.

2) The optimization of the DDPG agent considers the reward
for n future steps, which coincides with the predicted ob-
jective function in MPC. In practice, taking n = Np,s/m2

makes the look-ahead time of DDPG and MPC the same,
and thus these two modules cooperate better.

3) Looking n steps ahead makes the learning process more
efficient than the one-step TD method of the conventional
DDPG algorithm, where the update is only based on
bootstrapping from the value of the state one step later
[30].

4) By introducing future rewards in (11), there is no need
to predict future demand information as the MPC module
does. Therefore, the state space definition (7) is simpler
and has a smaller dimension.

After the optimization of the critic network, the actor is
subsequently updated by maximizing the return Qπ

ϕ based on
the policy gradient. More details can be found in [48].

One advantage of DDPG as an off-policy algorithm is that
its exploration policy is independent from the learning process,
which means that a stochastic exploration is allowed. In this
context, the Ornstein-Uhlenbeck model [51] is used to produce
the noise wn(kd) for exploration (i.e., added on the DRL
actions), where the magnitude decays with time step kd. The
overall learning algorithm of the MPC-DRL framework is
summarized in Algorithm 1. Note that the total simulation
time is supposed to be T .

IV. CASE STUDY

The proposed MPC-DRL framework is now implemented
and evaluated via a benchmark freeway network from [8].
METANET is adopted to model this network, for which
the readers are referred to [8], [26]. Model uncertainties
and external disturbances are introduced into the model to
represent the real-world system, as illustrated in Section IV-A.
Furthermore, the proposed MPC-DRL framework is compared
with standalone MPC and DRL methods, and one advanced
MPC method (i.e., parameterized MPC [9]). In this case study,
the performance criteria consist of TTS of all the vehicles
for the entire traffic network, total waiting time (TWT) of all
the queues, minimum traffic speed during the total simulation
time, constraint violations of the queues on the lanes, and the
online computation time. All the simulations were conducted
in Matlab version 2022a running on a PC with an Intel Xeon
Quad-Core E5-1620 V3 CPU with a clock speed of 3.5 GHz.

A. Setup
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Algorithm 1 Hierarchical MPC-DRL Framework Algorithm
for Freeway Traffic Control

1: Initialize critic and actor networks Qπ
ϕ and πθ with pa-

rameters ϕ and θ
2: Initialize target network Qϕ′ and πθ′ with parameters ϕ′

and θ′

3: Initialize experience replay buffer R
4: for episode from 1 to M do
5: Initialize the empty traffic network with initial traffic

demands for Tini time units
6: for kc = 0 to T

Tc
− 1 (MPC outer loop) do

7: Observe current traffic state x(kcm) from the envi-
ronment, and estimate the traffic demands d̂(kcm +
k), k = 0, 1, . . . , Np,s

8: Perform high-level MPC with freeway model F
and prediction horizon Np,s, by solving optimization
problem (5)-(A.3)

9: Pass the optimized MPC output ub(kc) to the low-
level DRL module

10: for kd = kcm1 to (kc + 1)m1 − 1 (DRL inner loop)
do

11: Receive state xrl(kd) according to (7)
12: Select action url(kd) = πθ(xrl(kd)) + wn(kd))
13: Combine the output of MPC and RL with a satu-

ration function using (2)
14: for ks = kdm2, . . . , kdm2 +m2 − 1 do
15: Execute action uc(kd) in the freeway network,

with the real traffic demand d(ks)
16: end for
17: Observe reward rt(kd) and new state xrl(kd + 1)
18: Store transition (xrl(kd),url(kd), rt(kd),xrl(kd +

1)) in R (the transitions are stored in order)
19: Sample a mini-batch of N transitions from

R randomly, each of which contains n steps:
xrl(i),url(i), rt(i),xrl(i + 1), . . . ,xrl(i + n −
1),url(i+ n− 1), rt(i+ n− 1),xrl(i+ n)

20: Update the critic network Qπ
ϕ by minimizing the

loss function L(ϕ) with (11)-(13)
21: Update the actor network πθ by the sampled policy

gradient [48]
22: Update the target networks:

θ′ ← τθ + (1− τ)θ′, ϕ′ ← τϕ+ (1− τ)ϕ′

23: end for
24: end for
25: end for

1) Freeway traffic network: A benchmark network is taken
from [8]. Note that this benchmark network has also been used
in other freeway traffic studies [52]–[54]. As shown in Figure
3, the network consists of two origins (i.e., one mainstream
and one on-ramp) and one destination. The length of the main
stretch is 6 km, which is divided into 6 segments of 1 km.
The mainstream has two lanes with a capacity of 2000 veh/h
each, and its maximal allowed queue length is 200 veh. The
on-ramp has one lane with the capacity of 2000 veh/h, and
the maximum on-ramp queue length is 100 veh. The network

Figure 3. The benchmark freeway network with one metered on-ramp and
two segments with speed limits (marked in red) used for the case study.
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Figure 4. Predicted traffic demands used in the case study.

parameters are taken from [8] and the same mathematical
notations are used here. The real parameters are assumed
unknown in this case study, and the estimated values for these
parameters are used in the prediction model. Both the real and
the estimated parameter values are given in Table III.

2) Demand scenario: Two typical demand scenarios as
shown in Figure 4 similar to [8] are considered in order to
evaluate the controllers. These two demand scenarios have
the same profile for the mainstream. Without control both
of them can cause severe traffic congestion, and they are
suitable to examine the control effectiveness of both ramp
metering and variable speed limits in this freeway network.
The freeway network is initially empty, and is next simulated
with a constant demand at 3000 veh/h for the mainstream and
500 veh/h for the on-ramp for a period of 10 min, before the
control simulations start.

3) Noises: To reproduce the stochastic phenomena of the
traffic network, random noise with a Gaussian distribution is
added to the demands of both mainstream and on-ramp. To
fully evaluate the ability of the controllers to resist uncer-
tainties, we consider three noise levels, i.e., low-level noise,
medium-level noise, and high-level noise. More specifically,
the noise levels have the following distributions:

• Low-level noise: N (0, 75) for mainstream demand, and
N (0, 30) for on-ramp demand;

• Medium-level noise: N (0, 150) for mainstream demand,
and N (0, 60) for on-ramp demand;

• High-level noise: N (0, 225) for mainstream demand, and
N (0, 90) for on-ramp demand.
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Table III
REAL AND ESTIMATED VALUES FOR FREEWAY NETWORK PARAMETERS IN THE CASE STUDY

T [s] τ [s] κ[veh/km/lane] η[km2/h] am σ vfree[km/h] ρcrit[veh/km/lane] α ρmax[veh/km/lane] Lm[m]
Real 10 18 40 60 1.867 0.0122 102 33.5 0.1 180 1000

Estimates 10 14.5 48 50 2.160 0.01 102 37.5 0.08 150 800

B. Controllers

In this case study, the following controllers are implemented
and compared: standalone MPC, standalone DRL (with n-step
TD), high-frequency standalone MPC, parameterized MPC,
and combined MPC-DRL framework (with n-step TD). The
simulation parameters are Ts = 10 s, Td = 60 s, Tc = 300 s,
Tini = 600 s, T = 9000 s. These parameters apply for all the
controllers. Similar to [8], [55], the ramp metering rate ranges
from 0 to 1, and the variable speed limits range from 20 km/h
to vfree, which is 102 km/h. Therefore, umin = [20 20 0]⊤ and
umax = [102 102 1]⊤. Both control actions are continuous.

1) Standalone MPC controller: The objective function (5)
used in the MPC controller is written as

J(ks) =wTTSJTTS(ks) + wD ∥us(ks)− us(ks − 1)∥22 ,

where JTTS(ks) denotes the TTS value predicted for total
simulation time period [ksTs, (ks + 1)Ts), the second term
imposes a penalty on the fluctuations between consecutive
control inputs, and the weights are selected as wTTS = 1,
wD = 0.4. The prediction window is 10 min, which means
Np,c = 2, Np,s = 60. The prediction model used by the
MPC controller is the METANET model with the estimated
parameter values in Table III, and the predicted demands used
by MPC are shown in Figure 4. The control inputs include one
ramp metering rate and two variable speed limits, which are
constrained by the lower and upper bounds given before. In
this controller, the optimization problem is solved every 300
s, which is at a low frequency.

For simplicity, the control problem is transcribed into an
optimization problem by single-shooting [56]. The resulting
optimization problem is nonlinear and non-convex, so the
Matlab fmincon function with the SQP algorithm are used to
solve the optimization problem . In order to avoid getting stuck
in local optima, multiple starting points are used to solve the
optimization problem (i.e., 30 for this case study2). In order
to achieve a trade-off between the computational accuracy and
efficiency, the fmincon stopping criteria for the cost function
tolerance, step tolerance, and constraint tolerance are selected
to be 10−2.

2) Standalone DRL (with n-step TD): The standalone DRL
agent in this case study shares the same definition as the DRL
module in Section III-B2. Therefore, the dimensions of the
state space and action space are 30 and 3, respectively. The
actor network contains one input layer of size 30, one output
layer of size 3, and two inner layers with 256 neurons for
both layers. Accordingly, the critic network has two input
layers, in which one layer that corresponds to the states is
of size of 30 and is followed by a layer with 256 neurons,

2This number is obtained via several experiments, such that it achieves a
good trade-off between the computational efficiency and optimality.

Table IV
PARAMETERS USED FOR DRL AGENT TRAINING

Parameter Value
Maximal episodes M 3000

Mini-batch size N 512
Experience replay buffer R size 2 · 105

Discounter factor γ 0.99
Learning rate (both actor and critic networks) 0.001

Target network update rate τ 0.01
Noise wn standard deviation 0.3

Noise wn decay rate 5 · 10−6

and the other input layer that corresponds to the actions
is of size 3 and is followed by a layer with 128 neurons.
Both input layers are connected to two consecutive inner
layers with 256 and 128 neurons, respectively. The size of
the output layer, which generates the Q-values of the state-
action pairs, is 1. ReLU activation functions are used in all the
neural networks. Moreover, the reward function consists of the
objective function defined for the MPC controller and a penalty
for constraint violation with weight wp = 10. The actions
of the standalone DRL are the same as the MPC controller.
The other DRL parameters that are tuned during the learning
process are given in Table IV. These parameters apply for both
conventional standalone DRL and n-step TD DRL.

3) High-frequency standalone MPC controller: This is a
high-frequency version of the standalone MPC controller, in
which the main differences are that the control sampling time
is Tc = 60 s and the optimization problem is thus solved
at every 60 s. This means that this controller requires higher
online computational efforts, but also results in a better control
performance.

4) Parameterized MPC controller: The parameterized MPC
(PMPC) controller developed for integrated VSL-RM freeway
traffic control [9] is used in this case study. PMPC is an
efficient MPC controller: since the number of optimization
variables are reduced because of the introduced parameterized
control law, PMPC can reduce the online computation time
significantly with comparable control performance, compared
with a conventional MPC controller. For more details, the
reader can refer to [9] and the references therein. In this
case study, the PMPC controller shares settings with the high-
frequency standalone MPC controller, including the objective
function, prediction window, control sampling time, optimiza-
tion parameters, etc.

5) Combined MPC-DRL framework (with n-step TD): The
combined MPC-DRL framework (with n-step TD) consists
of an MPC module that is the same as the standalone MPC
controller, and a DRL module that is similar to the standalone
DRL (with n-step TD). The action space of the MPC-DRL
framework is different from the standalone DRL, because of
the scaling parameter wu = 0.4, which means that according
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to (8) the action bounds of the DRL module within the MPC-
DRL framework are ± 0.32 for variable speed limits and ± 0.4
for ramp metering rate. The training parameters in Table IV
also apply for the combined MPC-DRL framework, except for
the noise wn, which has a smaller standard deviation of 0.2
and a decay rate of 2× 10−5. Furthermore, n = 10 is chosen
for the DRL module, which makes the look-ahead time of the
DRL module the same as the prediction horizon of the MPC
controller.

C. Results for the learning process

The standalone DRL (with 10-step TD) and the combined
MPC-DRL framework (with 10-step TD) are both trained inde-
pendently over the stochastic environment (i.e., the benchmark
freeway network with stochastic demands), with 3000 episodes
for each run. Each episode contains a simulation interval of
9000 s with the mentioned stochastic demands. In the plots,
the episode rewards have first been smoothed by a moving
average filter of size 21 to better present the learning progress.
The learning performance is presented in Figure 5. There are
6 scenarios in total, which are:

• Scenario 1: Low-level noise & demand 1;
• Scenario 2: Medium-level noise & demand 1;
• Scenario 3: High-level noise & demand 1;
• Scenario 4: Low-level noise & demand 2;
• Scenario 5: Medium-level noise & demand 2;
• Scenario 6: High-level noise & demand 2.
Figure 5 shows that the learning curves of the combined

MPC-DRL framework methods start with higher rewards and
converge faster than the standalone DRL methods for all the
scenarios. This indicates that the proposed framework has a
better sample efficiency than the conventional DRL methods.
The reason is that the MPC module within the MPC-DRL
framework generates basic control inputs that provide baseline
control performance and guide the DRL to learn, and the
DRL module within the framework only requires a limited
exploration space with smaller action bounds and thus requires
less sample data, compared with the standalone DRL agent.

Furthermore, the methods with 10-step TD have a better
learning performance than the ones without 10-step TD, which
validates the advantages of the n-step TD method. In particu-
lar, the framework with 10-step TD has a more stable learning
curve than the one without 10-step TD, and this phenomenon
is more obvious as the noise level increases. This implies
that a DRL module with a similar prediction window to the
MPC module can cooperate better within the combined MPC-
DRL framework. In addition, DRL without 10-step TD fails
to converge for all the scenarios, while DRL with 10-step
TD learns better and converges for scenario 4, 5, and 6. For
scenario 1, 2, and 3, the DRL with 10-step TD fails to converge
within 3000 episodes due to the low sample efficiency.

D. Results for the implementations

According to the learning performance, only the trained
standalone DRL controller with 10-step TD and the combined
MPC-DRL controller with 10-step TD are implemented on the

benchmark freeway network, and their control performance
is evaluated in terms of TTS which represents the global
traffic efficiency, constraint violations, and online CPU time.
In addition, the total waiting time (TWT) of all the vehicles
in a queue is considered for comparison, which indicates
the congestion degree of the traffic network. The minimum
traffic speed on the links during the total simulation time is
compared, which represents the worst congestion degree. The
standalone MPC controller, high-frequency MPC, PMPC, and
the no-control case (i.e., no ramp metering or speed limit) are
included for comparison. Because of the stochastic feature of
the network, the experiments for each controller are repeated
10 times independently with random demands in order to
evaluate the control performance. The quantitative simulation
results are present in Table V, in which the constraint violation
is the ratio of maximal exceeded queue length with respect to
the maximum allowed queue length, the mean computation
time is the average time required for the optimization process
per control step (every 300 s), and the max computation time
corresponds to the maximum computation time per step over
all the control steps (every 300 s).

As shown in Table V, all the controllers can improve the
traffic control performance with regard to the no-control case
in terms of TTS, expect for the standalone DRL controller
(Scenario 1, 5, and 6). This is due to the insufficient learning
process and the low sample efficiency of the standalone DRL
agent. The standalone MPC controller can improve the control
performance compared to the no-control case with limited
online computational complexity, in terms of TTS, TWT, min-
imum speed, and constraint satisfaction. The high-frequency
MPC controller can further improve the performance of the
standalone MPC controller, which, however, comes at the
cost of a substantially higher online computational complexity
(more than 20 times higher). The PMPC controller can reduce
the online computational complexity of the high-frequency
MPC controller significantly, and further reduce the TTS for
several scenarios (Scenario 2, 3, and 6). However, the PMPC
controller performs worse for constraint satisfaction, TWT, and
minimum speed.

The proposed MPC-DRL framework outperforms both the
standalone MPC controller and the standalone DRL controller,
in terms of TTS, TWT, and constraint satisfaction, with similar
online computational complexity for all the considered scenar-
ios. The minimum speed of the proposed framework is slightly
lower than the standalone MPC or standalone DRL controller
in some scenarios. This is because more vehicles in the queues
on both mainstream and on-ramp are allowed to enter the
network in order to avoid constraint violation, thus reducing
the flow speed. In general, the results show that the framework
has learned from interacting with the environment, and that
the DRL module within the framework can compensate for
the model uncertainties and external disturbances and in this
way, provides extra optimality.

Although the high-frequency MPC controller can achieve
the best TTS, TWT, and minimum speed performance for most
scenarios, it still suffers from the uncertainties and noise in the
demand, which is reflected through the constraint violation for
all the scenarios. For the scenarios with traffic demand 2 (i.e.,
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Figure 5. Learning performance of standalone DRL and combined MPC-DRL with and without 10-step TD for different scenarios.

Scenario 4, 5, and 6), the constraint violation can be avoided
(see the MPC-DRL framework controller). However, the high-
frequency MPC controller still has constraint violations, while
the MPC-DRL framework controller can guarantee constraint
satisfaction. For the scenarios with traffic demand 1 (i.e.,
Scenario 1, 2, and 3), the traffic congestion is more severe,
and constraint violation is inevitable. In this case, the MPC-
DRL framework controller can further reduce the constraint
violation compared to the high-frequency MPC controller, at
the price of slightly higher TTS and TWT and lower minimum
speed with significantly less online computational burden. This
indicates that, in addition to the smaller action space and high
sample efficiency of the combined MPC-DRL framework, the
penalty on the constraint violations within the reward function
of the DRL module, which coincides with the state constraints
within the optimization problem of the MPC module, also
contributes to avoiding or relieving the constraint violations.
So in the proposed MPC-DRL framework, the MPC and the
DRL modules complement each other during both the learning
process and the implementation stage, which results in a better
sample efficiency and control performance in terms of TTS,
TWT, minimum speed and constraint violation, with very
limited online computational complexity.

V. CONCLUSION AND TOPICS FOR FUTURE WORK

This paper has developed a novel framework combining
MPC and DRL for freeway traffic control. Since MPC and
DRL each suffer from their own shortcomings and their
characteristics complement each other well, it is beneficial to

merge these two methods. The proposed MPC-DRL frame-
work inherits the ability of DRL in learning from the envi-
ronment to deal with uncertainties, and the ability of MPC
in using the model information to provide basic performance.
Specifically, the novel framework has a hierarchical structure,
in which an MPC controller works at a high level with a
lower frequency, while the DRL agent operates at a low
level with a high frequency. An additional advantage of the
proposed framework is that it requires less computational
efforts compared to conventional MPC, thanks to the lower
control frequency of the MPC module.

A simulation study has been conducted on a benchmark
freeway network with model uncertainties and stochastic traf-
fic demands. The proposed MPC-DRL framework (with n-
step TD), standalone MPC, high-frequency MPC, PMPC and
DRL (with n-step TD) were trained and implemented for
this traffic network. The results of the case study showed
that the proposed MPC-DRL framework outperforms MPC
and DRL in terms of both the learning process and the
control performance, and the n-step TD method can improve
the learning-based controllers for large-scale traffic networks.
Moreover, the combined framework is easy to implement and
can also potentially be applied to other systems that struggle
with model uncertainties and high computational complexity,
such as for the control of urban traffic networks or for the
energy management of smart buildings. Future research will
be conducted on extending the current framework to control
large-scale traffic networks by combining distributed MPC and
multi-agent DRL [57].
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Table V
COMPARISON OF THE CONTROL PERFORMANCE FOR DIFFERENT CONTROLLERS FOR DIFFERENT SCENARIOS, IN TERMS OF TTS, TWT, CONSTRAINT

VIOLATION, MEAN COMPUTATION TIME, AND MAX COMPUTATION TIME, IN WHICH ’-’ MEANS THAT THE CORRESPONDING ITEM IS NOT APPLICABLE TO
THE CONTROLLER, AND HF MPC REFERS TO HIGH-FREQUENCY MPC.

Scenarios Performance No control Standalone MPC Standalone DRL HF MPC PMPC MPC-DRL framework

Scenario 1

Total time spent [veh·h] 1456.23 1407.47 1466.31 1368.45 1404.34 1375.87
Total waiting time [veh·h] 353.58 344.17 365.15 308.24 426.40 321.46
Minimum speed [km/h] 12.65 13.77 12.16 14.09 11.69 13.11
Constraint violation [%] 90.63 38.79 58.86 18.64 174.98 9.97
Mean computation time [s] - 0.82 - 21.23 2.32 0.70
Max computation time [s] - 1.72 - 52.74 6.48 1.43

Scenario 2

Total time spent [veh·h] 1463.38 1400.39 1397.08 1374.92 1370.96 1388.29
Total waiting time [veh·h] 371.07 356.99 318.37 320.74 425.69 332.78
Minimum speed [km/h] 12.66 12.88 13.20 13.99 12.03 13.04
Constraint violation [%] 91.77 34.82 46.18 21.11 165.39 12.62
Mean computation time [s] - 0.79 - 21.96 2.39 0.78
Max computation time [s] - 1.84 - 51.80 6.75 1.59

Scenario 3

Total time spent [veh·h] 1475.94 1441.28 1428.17 1368.76 1339.53 1376.76
Total waiting time [veh·h] 378.69 344.65 354.70 315.90 425.78 324.21
Minimum speed [km/h] 12.53 13.97 11.64 13.56 12.18 13.14
Constraint violation [%] 100.32 44.82 15.23 22.30 224.76 14.25
Mean computation time [s] - 0.89 - 22.50 2.86 0.75
Max computation time [s] - 2.43 - 52.87 7.68 1.73

Scenario 4

Total time spent [veh·h] 1351.66 1303.80 1316.97 1231.47 1239.91 1265.21
Total waiting time [veh·h] 239.57 235.57 267.69 223.39 279.06 236.30
Minimum speed [km/h] 15.21 16.70 15.16 17.18 15.65 17.16
Constraint violation [%] 27.57 3.68 13.19 0.92 123.15 0.00
Mean computation time [s] - 0.74 - 22.85 2.56 0.68
Max computation time [s] - 1.53 - 54.61 6.05 1.00

Scenario 5

Total time spent [veh·h] 1360.15 1308.30 1361.59 1222.81 1239.15 1255.17
Total waiting time [veh·h] 250.77 238.09 259.65 225.29 276.58 225.46
Minimum speed [km/h] 15.20 15.87 15.90 17.21 14.47 16.99
Constraint violation [%] 31.42 9.66 3.59 1.88 135.54 0.27
Mean computation time [s] - 0.81 - 23.08 2.94 0.69
Max computation time [s] - 1.87 - 55.39 7.20 1.12

Scenario 6

Total time spent [veh·h] 1330.32 1296.31 1333.68 1252.80 1207.26 1266.48
Total waiting time [veh·h] 235.84 233.94 243.32 232.45 265.39 224.39
Minimum speed [km/h] 14.82 16.07 15.22 16.99 14.84 16.19
Constraint violation [%] 26.96 10.48 0.95 2.55 99.90 0.00
Mean computation time [s] - 0.82 - 23.01 2.64 0.70
Max computation time [s] - 1.92 - 56.08 6.96 1.05

APPENDIX

A. MPC module formulation

The mathematical details of the MPC module within the
combined MPC-DRL framework are given as below:

min
ũb(kc),x̃(kc)

Np,s∑
ℓ=1

J(kcm+ ℓ)

s.t. x̂(kcm+ ℓ+ 1) =

F (x̂(kcm+ ℓ),us(kcm+ ℓ), d̂(kcm+ ℓ)),

for ℓ = 0, . . . , Np,s − 1,
(A.1)

x̂(kcm+ ℓ) ∈ X , for ℓ = 1, . . . , Np,s, (A.2)
ub(kc + k) ∈ U , for k = 0, 1, . . . , Np,c − 1, (A.3)
us((kc + k)m+ ℓ)) = ub(kc + k),

for ℓ = 0, 1, . . . ,m− 1, k = 0, 1, . . . , Np,c − 1, (A.4)

where ũb(kc) = [u⊤
b (kc), . . . ,u

⊤
b (kc + Np,c − 1)]⊤ denotes

the variables to be optimized over the prediction window of
length Np,c, with ub(kc) the MPC outputs (e.g. ramp metering

rates or variable speed limits) at control step kc. Moreover,
us(ks) is the MPC output at simulation sampling step ks, and
x̃(kc) = [x̂⊤(kcm + 1), . . . , x̂⊤(kcm + Np,s)]

⊤ with x̂(ks)
denoting the predicted future state at simulation sampling step
ks. Besides, d̂(ks) contains the estimated traffic demands at
simulation sampling step ks. Equation (A.1) represents the
evolution of the system states driven by the freeway dynamics
F . Equations (A.2) and (A.3) represent the constraints on the
MPC state set X and the MPC output set U , respectively.
Since the frequency of system sampling is higher than that of
MPC output generating, (A.4) maps the MPC outputs to every
simulation sampling step during the prediction window, such
that the output can be implemented in system dynamic (A.1).
The freeway model F is introduced in detail in Appendix B.

B. Freeway model: METANET

METANET [26], [58] is a macroscopic freeway traffic
model that achieves a good trade-off between efficiency and
accuracy and has been widely used [8], [53], [55], [59]. The
model used in this paper is taken from [8]. In the METANET
model, a freeway link is divided into several segments, each of
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which is described by segment traffic density ρm,i(k), mean
speed vm,i(k), and traffic volume or outflow qm,i(k), where m
is the link index, i is the segment index, and k is the simulation
sampling step. The fundamental relationship between speed,
flow, and density is given by:

qm,i(k) = ρm,i(k)vm,i(k)λm, (A.5)

where λm denotes the number of lanes in the freeway link.
The density equation is:

ρm,i(k+1) = ρm,i(k)+
T

Lmλm
(qm,i−1(k)−qm,i(k)), (A.6)

where T is the simulation sampling interval (e.g., 10 s), and
Lm is the length of the segment. The speed update equation
is:

vm,i(k + 1) =vm,i(k) +
T

τ
(V (ρm,i(k))− vm,i(k))

+
T

Lm
vm,i(k) (vm,i−1(k)− vm,i(k))

− ηT

τLm

ρm,i+1(k)− ρm,i(k)

ρm,i(k) + κ
, (A.7)

where τ, η, κ are model parameters and with

V (ρm,i(k)) = vfree,m exp

[
− 1

am

(
ρm,i(k)

ρcrit,m

)am
]
, (A.8)

where vfree,m, am, ρcrit,m are model parameters. Origins (e.g.,
on-ramps and source links) are modeled with a simple queue
model, and the queue length wo equation is given by:

wo(k + 1) = wo(k) + T (do(k)− qo(k)) , (A.9)

where do(k) is the traffic demand at step k, and the flow qo(k)
is given by:

qo(k) = min

[
do(k) +

wo(k)

T
,Coro(k),

Co(k)

(
ρmax,µ − ρµ,1(k)

ρmax,µ − ρcrit,µ

)]
, (A.10)

where Co is the on-ramp capacity under free-flow conditions,
ro(k) is the ramp metering rate at step k, µ is the index of
the link that the on-ramp is connected to, and ρmax,µ is the
maximum density of link µ. For more details, the reader can
refer to [8] and the references therein.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Qingrui Zhang (Sun
Yat-sen University) and Yun Li (Delft University of Technol-
ogy) for the useful discussions and their valuable suggestions
on the DRL implementation.

REFERENCES

[1] M. Papageorgiou and A. Kotsialos, “Freeway ramp metering: An
overview,” IEEE Transactions on Intelligent Transportation Systems,
vol. 3, no. 4, pp. 271–281, 2002.

[2] C. Lee, B. Hellinga, and F. Saccomanno, “Evaluation of variable
speed limits to improve traffic safety,” Transportation Research Part
C: Emerging Technologies, vol. 14, no. 3, pp. 213–228, 2006.

[3] S. Hoogendoorn, J. Van Kooten, and R. Adams, “Lessons learned from
field operational test of integrated network management in Amsterdam,”
Transportation Research Record, vol. 2554, no. 1, pp. 111–119, 2016.

[4] R. Horowitz, A. May, A. Skabardonis, P. Varaiya, M. Zhang, G. Gomes,
L. Munoz, X. Sun, and D. Sun, “Design, field implementation and
evaluation of adaptive ramp metering algorithms,” California PATH
Research Report UCB-ITS-PRR-2005-2, 2005.

[5] E. F. Camacho and C. B. Alba, Model Predictive Control. Springer
Science & Business Media, 2013.

[6] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Processing
Magazine, vol. 34, no. 6, pp. 26–38, 2017.

[7] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert, “Con-
strained model predictive control: Stability and optimality,” Automatica,
vol. 36, no. 6, pp. 789–814, 2000.

[8] A. Hegyi, B. De Schutter, and H. Hellendoorn, “Model predictive control
for optimal coordination of ramp metering and variable speed limits,”
Transportation Research Part C: Emerging Technologies, vol. 13, no. 3,
pp. 185–209, 2005.

[9] S. K. Zegeye, B. De Schutter, J. Hellendoorn, E. A. Breunesse, and
A. Hegyi, “A predictive traffic controller for sustainable mobility us-
ing parameterized control policies,” IEEE Transactions on Intelligent
Transportation Systems, vol. 13, no. 3, pp. 1420–1429, 2012.

[10] Y. Li, K. Hua, and Y. Cao, “Using stochastic programming to train neural
network approximation of nonlinear MPC laws,” Automatica, vol. 146,
p. 110665, 2022.
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