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Abstract

This paper focuses on the development of linear Switched Box–Jenkins (SBJ)
models for approximating complex dynamical models of biological wastewa-
ter treatment processes. We discuss the adaptation of these processes to the
SBJ framework, showing the model’s generality and flexibility as a class of
switched systems that can offer accurate predictions for complex and nonlin-
ear dynamics. This approach of modeling enables real-time data reconcilia-
tion from experiments and allows the design of model-based control strate-
gies previously inaccessible with conventional complex wastewater treatment
models. Through the extension of the Outer Bounding Ellipsoids (OBEs) al-
gorithm, the paper introduces an online two-stage parameter identification
algorithm that effectively handles bounded disturbances for SBJ models.
Using the OBE method relaxes the stochastic assumptions on disturbances,
which may not be satisfied in practice, particularly for biological and en-
vironmental fluctuations. The proposed decomposed OBE algorithm sepa-
rately identifies the switching patterns and parameters of linear submodels,
conducting parameter identification in two distinct phases for input/output
and disturbance/output submodels. The efficacy of this approach is shown
via simulation results validated against both ADM1 and PBM, demonstrat-
ing the proposed algorithm’s capability to accurately predict outputs from
different bio-process models.
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1. Introduction1

Hybrid (switched) dynamical systems capture interconnected continu-2

ous and discrete behaviors, serving to model processes with non-smooth3

behaviors or to approximate systems with high-order nonlinearities. Biolog-4

ical treatment processes are described by interconnected and competing bio-5

and physico-chemical reactions for substrate consumption and growth of dif-6

ferent trophic groups within a microbial community, resulting in nonlinear7

model behaviors. This type of complex nonlinear behavior can be simplified8

in terms of modeling using hybrid systems. Switched systems, as a well-9

known class of hybrid systems, consist of a switching pattern (or mode) and10

a finite number of values (countable state variables) that coordinates with11

corresponding continuous and linear subsystems (or submodels) (Lauer and12

Bloch, 2018).13

Hybrid system identification methods, as a tool to find a switched system14

to approximate a highly nonlinear biological treatment model, involve two15

steps: 1) estimating the parameters of the submodels, and 2) determining16

the switching patterns. Furthermore, hybrid system identification methods17

as a data-driven modeling approach avoid the complexity inherent in mech-18

anistic modeling of input-output relations. Moreover, using a set of linear19

models to approximate a nonlinear dynamic of a biological treatment process20

not only is straightforward to implement in comparison with Neural Net-21

works but also holds significant accuracy in comparison with non-switched22

systems.23

The input-output model complexity ranges from relatively simple Auto-24

Regressive eXogenous (ARX) models to more complex general Box-Jenkins25

(BJ) models. Input-output models consist of two parts, i.e. auto-regressive26

(depending on the previous forecasts) and moving-average (depending on the27

error of previous forecasts). Box–Jenkins (BJ) models have the advantage28

of describing stochastic systems in a more general and flexible way, since29

they include the output error model (Ding et al., 2010), the output error30

moving average model (Wang, 2011), and the output error autoregressive31

model (Wang et al., 2010) as special cases. Moreover, switched finite impulse32

response, SFIR (Liu et al., 2021) switched autoregressive exogenous, SARX33

(Du et al., 2018), switched autoregressive and moving-average, SARMAX34

(Hojjatinia et al., 2020), switched output error, SOE (Goudjil et al., 2017),35

and error-in-variable SARX, EIV-SARX (Ozbay et al., 2019) models can be36

mathematically considered as subclasses of a switched Box-Jenkins (SBJ)37

model. In other words, the mentioned simple model structures can be driven38

with simplification of a BJ model.39
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The BJ structure, also, has been widely and effectively used for time se-40

ries prediction due to its generality and efficiency in prediction (Box et al.,41

2015). As summarized in Table 1, some biological processes have been mod-42

eled by switched systems in the literature. The foundation of the submodels43

in these papers is ARX. The identification problem has been addressed using44

different approaches in these articles, including optimization-based methods45

by Hartmann et al. (2015) and Song et al. (2020), likelihood-based methods46

by Chen et al. (2020a,b), clustering-based methods by Wang et al. (2020),47

and Outer Bounding Ellipsoid (OBE) methods by Yahya et al. (2020). Since48

all these papers deal with ARX models, the identification approaches cannot49

be directly extended for the more general SBJ models.50

In addition to the base model (parametrization), selecting a suitable51

algorithm for solving the identification problem is an integral part of hy-52

brid system identification that should be developed based on the selected53

base model (Moradvandi et al., 2023). The approaches are classified into54

optimization-based techniques (Bianchi et al., 2021), clustering-based meth-55

ods (Mazzoleni et al., 2021), likelihood-based methods (Chen et al., 2020a),56

algebraic methods (Hojjatinia et al., 2020), and Outer Bounding Ellipsoid57

(OBE) methods (Yahya et al., 2020; Goudjil et al., 2023). Comprehensive re-58

views of these techniques have been done by (Garulli et al., 2012; Moradvandi59

et al., 2023). The selection of an appropriate method depends on factors60

such as parametrization, available knowledge of the system, and the compu-61

tational burden associated with the model. Optimization-based algorithms62

are the most commonly used, and they have recently been combined with63

other approaches such as clustering and classical algebraic methods (Wang64

et al., 2020; Du et al., 2020).65

To select an approach, practical aspects of a biological treatment process66

should also be taken into account. The behavior of a biological process can67

be affected by random and unpredictable factors. Common examples are68

meteorological fluctuations and influent concentration perturbations. Un-69

der these situations, Piga et al. (2020a) showed that stochastic modeling70

can be an option. However, the assumption of a statistical consideration71

for disturbances or noises may not always be justified due to an unknown72

probability distribution or modeling mismatch (Goudjil et al., 2023). On73

the other hands, the stochastic assumption requires precise distribution in-74

formation and employs a sequence of representative scenarios, which is hard75

to be satisfied in real-world applications. Alternatively, the assumption of76

bounded disturbances is considered less stringent and therefore a pragmatic77

solution.78

Amongst the mentioned hybrid system identification methods, the OBE79

method is one of the methods that has the advantage of not requiring any80

stochastic noise assumption. Furthermore, since the basis of the OBE algo-81

rithm is matrix manipulation, the OBE algorithm is not only computation-82

ally efficient, but also well-suited for analyzing large datasets (Goudjil et al.,83
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2023). This method has been developed for hybrid systems parametrized by84

SARX (Goudjil et al., 2016), SOE (Goudjil et al., 2017), and piecewise affine85

ARX (PWARX) (Yahya et al., 2020) models, not yet for the general models86

such as SBJ. The OBE algorithm encompasses two stages: (1) the procedure87

of assigning data by considering both the residual error and an upper bound88

for the estimation error of all the submodels, and (2) utilizing Recursive89

Least Squares (RLS) simultaneously to update the parameters of the active90

submodel in each time step (Goudjil et al., 2023).91

Motivated by the importance of BJ models, particularly for biological92

treatment processes as well as the current trend of extending other methods93

for SBJ models (Piga et al., 2020b; Chai et al., 2020), this paper addresses94

the extension of OBE algorithms to SBJ systems. For this purpose, aux-95

iliary model identification and decomposition techniques, which have been96

discussed for non-switched systems by Ding and Duan (2013), are adapted97

to the considered switched structure and the OBE framework. This adapta-98

tion deals with lack of availability of internal signals within the BJ structure.99

Inspired by the work done by Chai et al. (2020), the underlying principle100

involves the decomposition of a BJ system into two parts (the autoregressive101

part and the moving-average part), followed by the auxiliary model identifi-102

cation approach to determine the parameters of each part and the internal103

signals simultaneously. Therefore, a reformulation of the two-stage OBE104

algorithm based on adaptation of the decomposed technique is addressed105

in this study, and the active submodel detection and the parameter iden-106

tification procedures are developed based on a decomposed OBE objective107

function for SBJ models.108

The primary aim of the present work is, therefore, to develop the OBE109

algorithm for SBJ models. To achieve this objective, we present a math-110

ematical exposition by adapting the decomposition technique to switched111

systems in order to formulate the identification problem posed by SBJ sys-112

tems within the OBE framework. Furthermore, the approximation of bio-113

logical treatment processes represented by complex mathematical models, is114

explored within the framework SBJ models by validating the proposed algo-115

rithm for Anaerobic Digestion Model 1 (ADM1) and Purple Bacteria Model116

(PBM). Through a comprehensive numerical assessment and interpretation,117

this research sheds light on the potential applications of the SBJ modeling118

approach, contributing valuable insights into real-time data reconciliation119

and control strategies of biological treatment processes.120

The paper is organized as follows. Materials and methods (Section 2)121

include the formulation of the identification problem in Section 2.1 and the122

OBE identification procedure in Section 2.2. Section 3 presents results and123

discussions. Formulating of biological models in the form of SBJ is discussed124

in this section, and the aforementioned case studies of biological wastewater125

treatment models are also analyzed. Limitations of the proposed method126

are discussed in Section 4, and in the last section, conclusions are drawn.127
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2. Materials and methods128

2.1. Problem formulation129

A switched discrete-time linear system parameterized by a BJ model is130

represented as follows:131

yk =
B(q−1, θzk)

A(q−1, θzk)
uk +

C(q−1, θzk)

D(q−1, θzk)
vk (1)

where yk ∈ R, uk ∈ R, and vk ∈ R denote the system output, the sys-132

tem input, and the disturbance (noise). Moreover, A(q−1, θzk), B(q−1, θzk),133

C(q−1, θzk), and D(q−1, θzk) are the linear filters. The discrete state, zk ∈134

{1, ...,m} indicates the active mode of m number of parameterized submod-135

els or modes at time step k. If we assume at time step k, the i-th mode is136

active, i.e. zk = i, the linear filters that are rational functions of the time137

shift operator q−1 (i.e. q−dxk = xk−d for d ∈ Z), can be written as follows:138

B(q−1, θi)

A(q−1, θi)
=

bi1q
−1 + ...+ binb

q−nb

1 + ai1q−1 + ...+ ainaq
−na

, (2a)

C(q−1, θi)

D(q−1, θi)
=

1 + ci1q
−1 + ...+ cincq

−nc

1 + di1q−1 + ...+ dind
q−nd

, (2b)

where na, nb, nc, and nd are the orders of the filters (A(·), B(·), C(·), D(·))139

respectively, and the vectors of parameters can be expressed as140

θ1i = [ai1, ..., aina , bi1, ..., binb
]T ∈ Rna+nb , (3a)

θ2i = [ci1, ..., cinc , di1, ..., dind
]T ∈ Rnc+nd , (3b)

θi = [θT1i, θ
T
2i]

T ∈ Rna+nb+nc+nd , (3c)

The block diagram of the switched BJ system is depicted in Fig. 1.141

According to the block diagram, the two auxiliary variables xk and wk can142

be written as follows:143

xk = (1−A(q−1, θzk))xk +B(q−1, θzk)uk = ϕTk θ1,zk , (4a)

wk = (1− C(q−1, θzk))wk +D(q−1, θzk)vk = ψT
k θ2,zk + vk, (4b)

where ϕk and ψk are the regressor vectors:144

ϕk = [−xk−1, ...,−xk−na , uk−1, ..., uk−nb
]T ∈ Rna+nb , (5a)

ψk = [−wk−1, ...,−wk−nc , vk−1, ..., vk−nd
]T ∈ Rnc+nd . (5b)

Therefore, the model (1) can be rewritten as145

yk = ϕTk θ1,zk + ψT
k θ2,zk + vk

= ΦT
k θzk + vk.

(6)
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where Φk = [ϕTk , ψ
T
k ]

T ∈ Rna+nb+nc+nsd,146

The decomposition technique is a tool that is used to deal with two-stage147

identification procedure (Ding and Duan, 2013). In this study, we want to148

formulate it for switched systems. An intermediate variable is defined as149

ϖk = yk − ψT
k θ2,zk (7)

and the main system in (6) can be decomposed into two subsystems as150

follows:151

ϖk = ϕTk θ1,zk + vk (8a)

wk = ψT
k θ2,zk + vk, (8b)

ϖk − ϕTk θ1,zk = wk − ψT
k θ2,zk = vk, (8c)

and they can be rewritten as152

ϖk = yk − ϕTk θ1,zk (9a)

wk = yk − ψT
k θ2,zk , (9b)

These decomposed functions will be utilized in the parameter identification153

stage later on. The identification objective should be defined in order to154

estimate the discrete state, zk, and the parameter vectors, θzk , zk = 1, ...,m,155

given a collection of input and output observations. If the estimations of the156

discrete state and the parameter vectors are defined as ẑk, θ̂1,ẑk , and θ̂2,ẑk ,157

they should satisfy158

|yk − ΦT
k θ̂ẑk | ≤ δ,∀k (10a)

|yk − ϕTk θ̂1,ẑk − ψT
k θ̂2,ẑk | ≤ δ,∀k (10b)

where δ is an upper bound of vk, i.e. |vk| ≤ δ, ∀k. The objective can also159

be expressed according to (8c). The representation of the objective for the160

decomposed form of the switched system will be used to derive the parameter161

identification procedure in the next section.162

To apply the OBE algorithm for the defined objective and to derive the163

estimation procedure of the discrete state, the system represented by (6),164

should be extended in the following format. If we assume that at time step165
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k the submodel i is active, then it can be written as166 

yk = ϕTk θ11 + ψT
k θ21 + vk + ϕTk (θ1i − θ11) + ψT

k (θ2i − θ21)

yk = ϕTk θ12 + ψT
k θ22 + vk + ϕTk (θ1i − θ12) + ψT

k (θ2i − θ22)

...

yk = ϕTk θ1i + ψT
k θ2i + vk

...

yk = ϕTk θ1m + ψT
k θ2m + vk + ϕTk (θ1i − θ1m) + ψT

k (θ2i − θ2m)

(11)

By defining the extended parameter vectors, Θ1 ∈ R(na+nb)m×1 and Θ2 ∈167

R(nc+nd)m×1, the extended noise vector, Vk ∈ Rm×1, and the extended out-168

put vector, Yk ∈ Rm×1, as follows, the system (11) can be rewritten as169

follows:170

Θ1 =[θ11, ..., θ1m]T (12a)

Θ2 =[θ21, ..., θ2m]T (12b)

Yk =[yk, ..., yk]
T (12c)

Vk,zk=i =


vk + ϕTk (θ1i − θ11) + ψT

k (θ2i − θ21)
...
vk
...

vk + ϕTk (θ1i − θ1m) + ψT
k (θ2i − θ2m)

 (12d)

Yk = ϕ
T
kΘ1 + ψ

T
kΘ2 + Vk,zk (12e)

where ϕ = Im⊗ϕ and ψ = Im⊗ψ, in which ⊗ and IN denote the Kronecker171

product and the identity matrix of order m, respectively. If the estimations172

of zk, and the parameter vectors, Θ1 and Θ2 are denoted by ẑk, Θ̂1, and Θ̂2,173

respectively, (12e) can be rewritten as174

Vk,ẑk = Yk − ϕ
T
k Θ̂1 − ψ

T
k Θ̂2 (13)

Therefore, if we define νk(j) as the j-th element of Vk,zk , tanking (13) into175

account, the problem objective (10b) can be redefined as follows:176

|νk(ẑk)| ≤ δ,∀k (14)

where ẑk can be any integer values between 1 and m at time step k.177

2.2. Identification algorithm178

The OBE method is a technique used in conventional identification al-179

gorithms to estimate the parameters of a model within a given set of con-180

straints, where the feasible region (the set of possible solutions) is bounded.181
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Using this technique for switched systems allows computing the ellipsoid182

bounds for all the submodels and finding the active one that fits inside the183

assigned ellipsoid bound. The proposed identification algorithm is based184

on two stages, i.e. we first estimate the discrete state (the switching pat-185

tern), then the parameter vectors, in a repetitive manner for each time step.186

The parameter vector estimation is also derived based on the decomposi-187

tion technique in two stages, i.e. the parameter vector is primarily updated,188

then we estimate internal signals for next steps. To derive the algorithm,189

the estimates of the parameter vectors at time step k are denoted by Θ̂1,k190

and Θ̂2,k. The a priori and the a posteriori predictors of Yk can be written191

w.r.t. (12e), respectively, as192 Yk/k−1 = ϕ
T
k Θ̂1,k−1 + ψ

T
k Θ̂2,k−1

Yk/k = ϕ
T
k Θ̂1,k + ψ

T
k Θ̂2,k

(15)

Then a priori prediction error can be defined as follows:193

Vk/k−1 = Yk − Yk/k−1 = Yk − ϕ
T
k Θ̂1,k−1 − ψ

T
k Θ̂2,k−1 (16)

Therefore, the two-stage OBE algorithm can be described as follows:194

Step 1 (estimation of ẑk): The first step estimates the discrete state, i.e.195

ẑk based on the smallest element of the vector Vk/k−1 that can be expressed196

by ϱk = |νk/k−1(ẑk)|, in which ẑk ∈ {1, ...,m} is the detected active mode at197

time step k.198

Step 2 (estimations of Θ̂1 and Θ̂2): The second step is to identify the199

defined parameter vectors, i.e. Θ̂1 and Θ̂2. This step is derived based on200

the decomposition technique. According to the decomposed model written201

by (8c), the objective functions to derive a Recursive Least Square (RLS)202

minimization for the decomposed model can be defined as follows:203

J1(θ1,zk) :=
k∑

j=1

(
ϖk − ϕTk θ1,zk

)2
(17a)

J2(θ2,zk) :=
k∑

j=1

(
wk − ψT

k θ2,zk
)2

(17b)

where J1 = J2 according to (8c). Assuming the i-th mode is active at time204

step k (ẑk = i), the update laws for the estimates of the parameters, i.e. θ̂1i205

and θ̂2i can be written as a result of the RLS minimization as follows:206

θ̂1i,k = θ̂1i,k−1 + L1,k

[
yk − ψT

k θ̂2i,k−1 − ϕTk θ̂1i,k−1

]
, (18a)

θ̂2i,k = θ̂2i,k−1 + L2,k

[
yk − ϕTk θ̂1i,k−1 − ψT

k θ̂2i,k−1

]
, (18b)
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where207

L1,k = P1,k−1ϕk
[
1 + ϕTk P1,k−1ϕk

]−1
, (19a)

L2,k = P2,k−1ψk

[
1 + ψT

k P2,k−1ψk

]−1
, (19b)

and208

P1,k =
[
Ina+nb

− L1,kϕ
T
k

]
P1,k−1, (20a)

P2,k =
[
Inc+nd

− L2,kψ
T
k

]
P2,k−1, (20b)

Now, the solution of the decomposed RLS formulated above for the i-209

th mode can be extended for all m number of submodels to be able to210

apply the OBE algorithm. This is done considering the definitions of Θ1211

and Θ2 expressed by (12a) and (12b). The extended matrices, ϕ and ψ,212

should also be used as defined by the Kronecker product of an identity213

matrix of the order m to ϕ and ψ stated in (5a) and (5b). To be able to214

update only the parameters of the active submodel, a symmetric matrix215

is defined such that the values of all the elements are zero except for the216

one element corresponding to the identified active submodel (Goudjil et al.,217

2023). Because we are using the decomposition technique in this paper, we218

define two matrices - one for the autoregressive part, Υ1,k ∈ Rm×m, and the219

other one for the moving average part, Υ2,k ∈ Rm×m:220

Υ1,k =



(
ϕ
T
k P1,k−1ϕk

)−1
(Λk − Im);

if ϕ
T
k P1,k−1ϕk ≻ 0 and ϱk > δ

0m×m; else

(21a)

Υ2,k =



(
ψ
T
k P2,k−1ψk

)−1
(Λk − Im);

if ψ
T
k P2,k−1ψk ≻ 0 and ϱk > δ

0m×m; else

(21b)

in which Λk ∈ Rm×m denotes the identity matrix at time step k, where the221

ẑk-th element on the diagonal is ϱk
δ . Therefore, the parameters of the active222

submodel are updated, when the error of the output, ϱk, is not within the223

assigned ellipsoid bound, δ. The update gain is ϱk
δ in matrix Λk. On the224

other side, the adaptation is frozen when ϱk ≤ δ.225
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Considering the discussions above, the equations (18a)-(20b) can be re-226

formulated for the extended version as follows:227

Θ̂1,k = Θ̂1,k−1 + L1,k

[
Yk − ψ

T
k Θ̂2,k−1 − ϕ

T
k Θ̂1,k−1

]
(22a)

Θ̂2,k = Θ̂2,k−1 + L2,k

[
Yk − ϕ

T
k Θ̂1,k−1 − ψ

T
k Θ̂2,k−1

]
(22b)

L1,k =
1

2
P1,k−1ϕkΥ1,k

[
Im + ϕ

T
k P1,k−1ϕkΥ1,k

]−1
(22c)

L2,k =
1

2
P2,k−1ψkΥ2,k

[
Im + ψ

T
k P2,k−1ψkΥ2,k

]−1
(22d)

P1,k =
[
Im×(na+nb) − L1,kϕ

T
k

]
P1,k−1 (22e)

P2,k =
[
Im×(nc+nd) − L2,kψ

T
k

]
P2,k−1 (22f)

The introduction of the factor 1
2 in (22c) and (22d) allows us to prove the228

objective we defined in (14), which comes later.229

Remark 1. It should be noted that individual update equations (18a) and230

(18b) are written based on this assumption that the system stays in one mode231

in two consecutive time instants k−1 and k. After the extension and defining232

Υ1,k and Υ2,k, it is not the case for the extended update equations (22a)233

and (22b), since if the mode is changed from k − 1 to k, the corresponding234

elements on diagonal of matrices Υ1,k and Υ2,k are also changed to the235

associated active mode to be updated at time step k and other submodels236

remain frozen for the update process until they are detected active and the237

procedure continues.238

The inner variables x and w and the variable v within the definition of239

ϕk, (5a), and ψk, (5b) and their extended corresponding matrices, i.e. ϕk240

and ψk are unknown, which the estimates of these variables, i.e. x̂, ŵ, and241

v̂ can be replaced (Ding and Duan, 2013) as follows:242

x̂k = Xk(ẑk) (23a)

ŵk = yk − x̂ (23b)

v̂k = ŵk −Wk(ẑk) (23c)

where Xk = ϕ
T
k Θ̂1,k and Wk = ψ

T
k Θ̂2,k are the estimates of the unknown243

signals for all the submodels. If we assume the detected active submodel at244

time step k is i, i.e. ẑk = i, the i-th element of the vectors Xk andWk should245

be used for the calculation of x̂k and v̂k, respectively, as stated in (23a) and246

(23c). Considering the explained procedure, the two-stage decomposed OBE247

algorithm can be summarized in Algorithm .248

Remark 2. It can be shown that the objective defined in (14) is satisfied249

at each time step by implementing the proposed two-stage decomposed OBE250
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Algorithm Two-stage decomposed OBE algorithm

1: Initialize: P1,0 = p0Im×(na+nb), P2,0 = p0Im×(nc+nd),

2: Θ̂1,0 and Θ̂2,0 randomly initialized,
3: x̂k = ŵk = v̂k = 0 ∀k ≤ 0
4: for k = 1 do
5: step 1: detect the active submodel ẑk
6: Receive uk and yk
7: Form ϕk = ϕk ⊗ Im and ψk = ψk ⊗ Im
8: based on (5a) and (5b)
9: Compute νk/k−1 as (16)

10: Compute ẑk = argmin
j=1,...,m

|νk/k−1(j)|

11: Compute ϱk = |νk/k−1(ẑk)|
12: step 2: estimate the parameters vectors Θ̂1,k and Θ̂2,k

13: Compute Υ1,k and Υ2,k as (21a) and (21b)
14: Compute L1,k, L2,k, P1,k, and P2,k

15: as (22c)-(22f)
16: Update Θ̂1,k and Θ̂2,k as (22a) and (22b)
17: Compute x̂k, ŵk, and v̂k as (23a)-(23c)
18: k = k + 1
19: end for

algorithm. The a posteriori prediction error, i.e. Vk/k, can be written ac-251

cording to (16) as follows:252

Vk/k = Vk/k−1 − (ϕ
T
kL1,k + ψ

T
kL2,k)Vk/k−1 (24)

Using the definitions of L1,k and L2,k as stated in (22c) and (22d) in (24)253

yields254

Vk/k = Vk/k−1(Im − 1

2
ϕ
T

k P1,k−1ϕkΥ1,k[Im + ϕ
T

k P1,k−1ϕkΥ1,k]
−1

− 1

2
ψ
T

k P2,k−1ψkΥ2,k[IN + ψ
T

k P2,k−1ψkΥ2,k]
−1)

(25)

If the persistent excitation conditions (Ljung, 1999) are satisfied, i.e. ϕ
T
k P1,k−1ϕk ≻255

0, and ψ
T
k P2,k−1ψk ≻ 0, according to the expressions of Υ1,k and Υ2,k stated256

by (21a) and (21b), we have257

• either ϱk ≤ δ: Υ1,k and Υ2,k become zero and (25) can be rewritten258

element-wise as follows for the detected active submodel:259

|νk/k(ẑk)| = |νk/k−1(ẑk)| (26)

which yields260

|νk/k(ẑk)| ≤ δ (27)
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• or ϱk > δ: by substituting Υ1,k and Υ2,k in (25) yields261

Vk/k = Vk/k−1

(
Im − 1

2

(
Im − Λ−1

k

)
− 1

2

(
Im − Λ−1

k

))
(28)

which can be rewritten element-wise for the detected active submodel as fol-262

lows:263

νk/k(ẑk) = Λ−1
k (ẑk)νk/k−1(ẑk) (29)

where Λ−1
k (ẑk) denotes ẑk-th element of matrix Λ−1

k and since |Λ−1
k (ẑk)| =264

δ
ϱk
, it gives265

|νk/k(ẑk)| = δ (30)

Therefore, considering the two cases that can happen at each time step and266

according to (27) and (30), (14) is proved.267

3. Results and discussions268

3.1. Numerical example269

A numerical example is considered to assess the accuracy of the pre-270

diction using the proposed identification algorithm. The dynamics of this271

example as a two-mode SBJ system are provided in Table 2. To satisfy the272

persistent excitation, the input sequence is generated randomly within the273

range of [−1, 1]. The lower and upper bounds of the noise sequence are con-274

sidered −0.08 and 0.08, respectively. Therefore, δ as the upper bound of the275

noise can be taken any value as larger as 0.08, which it is set to 0.1 in this276

example. To reach and stay within the assigned bounds, 500 samples of the277

system are produced and given to the proposed algorithm for the purpose of278

prediction. The results are plotted for the last 100 samples. As depicted in279

Fig. 2 (a), the estimated output is capable to track the real output within280

the specified range. Fig. 2 shows the prediction output and errors and the281

detection of the switching time instants. Switching instants have been also282

detected accurately, except at a few steps. To assess the performance of the283

algorithm, the FIT index is considered, which is the percentage fitting error284

between the true output, y, and the estimated output, ŷ, which is 95.2 for285

the last 100 samples and 88.4 for all the samples.286

Remark 3. A few factors can impact the performance and the accuracy of287

the proposed algorithm. The value of δ that comes from the main constraint288

of the objective, is one of the major parameters. If it is chosen close to289

the bound of the system noise, it can numerically destabilize the prediction,290

while by selecting it too big, the accuracy is deteriorated. The other impor-291

tant factor is the forgetting procedure. The forgetting procedure is used to292

reduce the weight of past data and to avoid the matrices P1,k and P2,k from293

approaching zero, as this can affect the accuracy. Therefore, resetting the294

parameters P1,k and P2,k in a periodic time interval can affect the accuracy295

of the prediction, which should be taken into account.296
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3.2. Biological wastewater treatment processes297

A key question in modeling of biological wastewater treatment processes298

is which modeling approach to choose. Using first principal knowledge to299

mechanistically drive a model is one of the common and well-known ap-300

proach. Mechanistic models rely on chemical and biochemical insights and301

experimental studies, yet they can suffer model mismatch due to potential302

inaccuracies, occasional perturbations, and varying operational scenarios.303

Input-output modeling enables an alternative, since it is a data-driven ap-304

proach. These models can be utilized as prediction models of model-based305

control systems like model-predictive control, even with the lack of poor306

interpretability in some cases.307

Within input-output modeling approaches, switched system identifica-308

tion is worth exploring, particularly for approximating (highly-)nonlinear309

complex biological processes. As discussed in the introduction, a few limited310

real-world applications have been modeled by using simple switched system311

structures like SARX. Therefore, in this study, we open up a new window312

for further exploration of input-output switched system identification for the313

purpose of predictive modeling of biological treatment processes.314

For approximating a complex process in the form of input-output mod-315

els, a critical question arises:“how do we select influential inputs and their316

corresponding influenced outputs?” Upon this selection, inputs can be cat-317

egorized as main inputs and disturbances. Taking (1) into account, main318

inputs are denoted as u, and disturbances as v. By identifying parameters319

related to their dynamics, represented by A(.), B(.), C(.), and D(.), the320

relationship between outputs and inputs/disturbances is modeled in a data-321

driven framework. This paper sheds light on applications to be modeled322

using general SBJ models by illustrating this via two examples. Depending323

on the application, some simple structures would suffice for modeling of the324

process (Hartmann et al., 2015; Yahya et al., 2020; Wang et al., 2020; Chen325

et al., 2020a). For other cases, more complex structures may be needed.326

In this section, we explore the implementation of the proposed prediction327

method through two wastewater treatment processes; anaerobic fermenta-328

tion in a continuous stirred-tank reactor (CSTR) and microbial growth of329

purple phototrophic bacteria (PPB) in a raceway-pond reactor acting as se-330

quencing batch reactor (SBR). Anaerobic fermentation in CSTR is chosen331

to discuss the importance of using a SBJ model for such a complex biopro-332

cess widely-used in various operational scenarios. PPB biomass cultivation333

in an SBR is also selected not only because of dynamic complexity, but also334

for assessment of a potential application of the proposed algorithm in se-335

quencing batch conditions. Moreover, the coupled anaerobic fermentation336

and purple bacteria raceway-pond reactors for the growth of PPB biomass337

is a resource recovery process, which has been designed as a pilot plant in338

SARASWATI2.0 project.339
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Anaerobic fermentation in CSTR: Anaerobic digestion is a multistage340

complex biological process for converting biodegradable organic matter into341

biogas through volatile fatty acid (VFA) intermediates in the absence of342

oxygen (Batstone et al., 2002b; Anukam et al., 2019). This process can be343

represented by comprehensive mechanistic models such as ADM1, with a344

high-degree nonlinearity and stiffness (Batstone et al., 2002a). The model,345

however, is bio- and physio- chemical-structured for the purposes of pro-346

cess design and understanding, but it is computationally expensive to use347

for the purposes of predictive models (Kil et al., 2017; Ghanavati et al.,348

2021). Its differential-algebraic equation sets consist of time-varying param-349

eters, multiple variables with intricate interconnections, monod-type kinet-350

ics, inhibition functions, and competitive uptakes, which are the reasons for351

the nonlinear behavior. Furthermore, significant fluctuations in both inflow352

and the composition of incoming wastewater, that do reflect real-world be-353

haviors, perturb both liquid and gas phases characteristics. Input-output354

system identification for such a typical nonlinear biological model in the355

framework of switched systems and BJ structure is worth investigating, and356

as far as authors are aware is reported in literature for the first time in this357

study.358

It is challenging to select input and output variables of the process. As359

mentioned, output variables can be a function of different variables. As an360

example, the output to be predicted is chosen acetate as the process is fer-361

mentation and acetate is expected to be the main product of the anaerobic362

fermentation process. Moreover, prediction of acetate is worth considering363

due to its critical role, especially when the anaerobic digestion is designed364

for operation in a wider range (Wainaina et al., 2019). From a practical365

point of view, the most influential while easily being manipulating input366

on production of VFAs is the input flow rate. The flow rate affects the367

hydraulic retention time, and is one of the most feasible manipulators in368

terms of process control in practice. However, as mentioned earlier, produc-369

ing acetate does not depend only on inflow. Considering the mechanistic370

equation describing the dynamic of acetate in the ADM1 model (Batstone371

et al., 2002b), its function can be expressed as follows:372

Sacetate = f(q,Xlipid, Xprotein, Xcharbohydrate, Ssuger, Samino acid, Sfatty acid, ...)
(31)

where Si and Xi stand for soluble and particulate concentrations of material373

i, respectively, q denotes and inflow rate. The composition of the influent is374

considered as disturbance to the process. In practice, the process is usually375

designed around a specific operating point by monitoring various bioreactor376

operating parameters. However, perturbations like sudden influent concen-377

tration changes may happen any time during operation, playing a role as378

a disturbance. Therefore, the input-output relations can be represented by379

a BJ model. It means that disturbances can be integrated in modeling380
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with independent dynamics, which is biologically explainable due to differ-381

ent mechanistic effects between the input and the disturbance to the output.382

The dynamic between the input flow rate and acetate is completely different383

from the dynamic between other variables and acetate as described in the384

ADM1 model (Batstone et al., 2002b). Therefore, considering the schematic385

of a BJ structure as depicted in Fig. 1, dynamics of the disturbance is not386

the same as dynamics for input.387

The three main components i.e. carbohydrate, protein, and lipid repre-388

sents the influent characteristics, which can be considered as the disturbance.389

They highly impact the process output and are the potential perturbations390

due to lack of online measurement. Now, the schematic of the process can391

be drawn in Fig. 3. The nominal operating condition as given in (Batstone392

et al., 2002a) are considered to generate the dataset, while the reactor envi-393

ronment (the initial conditions) is considered to be acidified at the start-up394

phase. To explore a wide domain of operation, the process is excited by the395

input flow rate produced by a pseudo random input signal depicted in Fig.396

4 (a). The nominal values for carbohydrate, protein, and lipid are 5, 20, and397

5 kgCODm−3, respectively, while for fluctuation purposes, a random devia-398

tion from the nominal values in a range of [−0.5, 0.5] is assumed. Therefore,399

the process output deviates from its designated nominal value, as shown in400

Fig. 4 (b).401

Considering the modeling structure explained above, the proposed algo-402

rithm is implemented to identify a parametric SBJ model, given the dataset403

generated from complex ADM1 model. A few design parameters, therefore,404

should be assigned. It should be noted that the process is not hybrid by its405

intrinsic nature and the algorithm is used to capture the dynamics within406

the designed operating space by a set of linear systems for simplicity for the407

purpose of prediction, not interpretation. The orders of the SBJ system,408

therefore, are assigned as one for all na, nb, nc, and nd. While the higher409

order may result in higher accuracy, but no amelioration is observed when410

the complexity is increased. The bound of the disturbance, δ, should be set411

equal to or bigger than 0.05 due to the assigned range for the disturbance.412

The process dynamics can be captured accurately (FIT ≃ 95) by adjusting413

the two major design parameters for different number of submodels. It is414

highlighted in Remark 1 that the value of δ and the forgetting factor play415

important role for the numerical stability as well as the output accuracy.416

The effects of these aforementioned parameters on prediction accuracy are417

investigated in Table 3.418

A comparison with the conventional two-stage BJ system identification419

(Ding and Duan, 2013) is also made to explore the priority of using a SJB420

system instead of a non-switched system. The system orders are chosen421

the same for the both conventional BJ and SBJ systems. The number of422

modes and the ellipsoid bound for the SBJ system are assigned to 4 and423

0.05, respectively. The initial values and other required parameters are set424
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similarly. For the forgetting factor, a period of 60 days is chosen for this425

particular application. This setting suffices the need for accurate prediction426

with the desire for a reasonable rate of convergence. Generally, the proposed427

SBJ system identification algorithm outperforms the conventional BJ system428

identification method. The accuracy of the identified SBJ model is better429

during the whole of the operation and particularly the start-up as shown in430

Fig. 5 (a). The OBE algorithm forces the system to stay within the assigned431

bound by jumping to other mode, while the conventional BJ system cannot432

keep the output error in the range accurately. As can be seen in Figs 5433

(a) and (b), the spikes occur, when the direction of the response output is434

changed, which can be compensated by going to the other submodels in the435

SBJ system to keep the accuracy within the assigned bound.436

Remark 4. The anaerobic digestion process is not hybrid by its nature,437

but a highly nonlinear system. Approximation of the dynamics by using a438

SBJ model with the OBE algorithm has an advantage of capturing input-439

output relations with a limited number of linear submodels jumping among440

each other with a desired bound of accuracy in terms of prediction error.441

Moreover, the other advantage of using BJ structure is identifying differ-442

ent parameters for the moving average part, which is explainable because of443

different dynamical function of disturbance to output from mechanistic mod-444

eling point of view. Furthermore, the type of disturbance as it comes from a445

nonlinear dynamics in the real system cannot be fitted easily to the conven-446

tional stochastic assumption that is relaxed by proposing the developed OBE447

algorithm.448

Growth of PPB biomass in an SBR: Purple phototrophic bacteria (PPB)449

as a group of microbes for resource recovery from wastewater can be cul-450

tivated by cost-effective raceway-pond bioreactors (Alloul et al., 2023a). A451

mechanistic model for PPB in raceway bioreactors has been proposed by452

Alloul et al. (2023b), known as the Purple Bacteria Model (PBM). This453

type of bioprocesses, i.e. sequencing batch, is selected to assess modeling in454

the SBJ framework with the proposed OBE algorithm. The cyclic nature of455

sequencing batch bioreactor operation is regularly applied in conventional456

wastewater treatment, like for example in aerobic granular sludge technol-457

ogy.458

Besides hydraulic and sludge retention times, light also plays a critical459

role in growth of PPB. In a raceway-pond bioreactor, control over light,460

more specifically solar radiation, is not practically feasible, due to various461

hour-by-hour, day-by-day, and seasonal fluctuations. It should be, there-462

fore, considered as a potential disturbance, especially for modeling of an463

open reactor. Furthermore, distribution of solar radiation is barely repre-464

sentable by the common distribution functions. For instance, illumination465

durations and radiation angles at a single day are not independent of sub-466

sequent days, which may violate the independence assumption required for467
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probability distributions. It is, therefore, another motivation to employ the468

OBE algorithm for approximation of the process dynamics, since it is not469

subject to any assumptions for disturbances.470

The dynamics of PPB in raceway reactors are also highly nonlinear (Al-471

loul et al., 2023b). If the production of PPB is selected as an output to be472

predicted, flow rate that determines feeding of each sequence is considered473

as input, while solar irradiation fluctuation that deviates the process from474

the nominal operating is considered as disturbance. The schematic of an475

SBJ structure is depicted in Fig. 6. Considering the mechanistic model476

proposed by Alloul et al. (2023b), PPB production is the function of a wide477

range of variables with different dynamics. Therefore, defining the problem478

of approximating this bioreactor in the frame of BJ model is reasonable, due479

to different dynamics for the input and the disturbance.480

To run the PBM model, the following conditions are considered; the481

sequential batch is designed to feed the reactor once a day at the midnight;482

influent filling and the effluent extraction are set at midnight, while feeding483

rate is set to one fourth of the volume per hydraulic retention time; the484

paddlewheel is considered working only during the light condition. Other485

operational parameters are set to the default values of the PBM (Alloul486

et al., 2023b).487

The solar radiation is subject to fluctuation. Light intensity is depicted488

in Fig. 7 (a) from day 21 to 42, when the process reaches steady state.489

It can be observed, finding a probability distribution is subject to some490

simplifications that may not be reliable. Therefore, the OBE algorithm that491

is not subject to probability of disturbance is practically and theoretically492

more reasonable.493

The deviation from nominal process operation with light variation as a494

disturbance to the operation is shown in Fig. 7 (b) between day 21 to 42.495

The output to be predicted is considered purple bacteria produced from the496

three photoheterotrophic, anaerobic and aerobic chemoheterotrophic path-497

ways. The proposed algorithm is implemented, given the dataset produced.498

Since the effect of ellipsoid bound and number of modes were investigated499

in the previous case study, and the same results were observed, the detected500

switching patterns and its interpretations are explored in this case study.501

The orders of the estimated SBJ system are assigned as one for all na,502

nb, nc, and nd. The bound of the ellipsoid, δ, the number of modes, and the503

forgetting period are set to 0.25, 2, and 60 h, respectively and the process504

behavior is acceptably approximated as depicted in Fig. 8. Moreover, the505

switching patterns are shown in Fig. 8 (b). As can be seen, the time of being506

in mode one is much longer than mode two. If only the subsystem one is507

active for prediction, the ellipsoid bound constraint is violated, as shown in508

Fig. 8; sub-figures (a) and (b). In other words, using second mode assists509

the prediction process to stay within the bound.510
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Remark 5. Instants of jumping can be explained based on process operat-511

ing conditions that they occurred around time of extraction, when the light512

goes off. As described above, biomass removal happens every 24 h, and it is513

replaced by new influent. PPB are produced photoheterotrophically, aerobic514

and anaerobic chemoheterotrophiccally. As the reactor is an open system,515

the amount of PPB grown anaerobic chemoheterotrophiccally is negligible,516

while photoheterotrophic growth is the major metabolic growth pathway of517

PPB, which steadily increases when exposed to solar radiation and decreases518

when no light is available. A sudden decrease happens on the time extraction,519

and it is also affected negatively because of the absence of light availability.520

Therefore, the algorithm needs to switch to keep the accuracy within the as-521

signed bound. In other words, this biomass withdrawal is behaving like a522

hybrid feature in this example that the algorithm is capable of capturing it.523

4. Limitations of the proposed approach and further work524

This paper illustrates how SBJ models can be formulated for biological525

wastewater treatment process models by analyzing two ADM1 and PBM526

models. Depending on the application, some simple structures would suffice527

for process modeling (Hartmann et al., 2015; Yahya et al., 2020; Wang et al.,528

2020; Chen et al., 2020a). For other cases, more complex structures like SBJ529

may be more meaningful, as different dynamics could be fitted to represent530

the relation between disturbances and outputs.531

The identification algorithm used does not require an assumption on sta-532

tistical distribution for disturbances, and only has the less strict assumption533

that they are bounded. Nonetheless, the proposed method is built upon534

an approach that needs a few design parameters influencing the accuracy535

of prediction. These parameters discussed in Remark 3 can be determined536

through trial and error simulations. Moreover, preprocessing of a dataset537

for some cases may be required to avoid numerical issues.538

As a future research, the algorithm can be extended for processes that re-539

quire a multiple inputs and multiple outputs system representation. Parametriz-540

ing the switching domain in the form of polyhedral partitions for better541

interpretation of switching behavior may also be considered as another ex-542

tension, specially for biological wastewater treatment processes543

5. Conclusion544

In this paper, the application of switched Box-Jenkins systems is inves-545

tigated in the context of modeling biological treatment processes, using two546

widely-utilized complex models for benchmarking model performance, i.e.547

ADM1 and PBM. An identification method is introduced by extending the548

OBE identification algorithm for switched Box-Jenkins models. The algo-549

rithm builds upon the standard OBE approach as its foundation, eliminating550

18



the need for the assumption that a probability distribution of disturbances551

exists and relying solely on the assumption of bounded disturbances. This552

feature is particularly valuable in practical scenarios of treatment processes,553

where such distributions might not even be available due to unpredictable554

fluctuations. To tackle the mathematical challenges arising from the SBJ555

structure and its inner signals, we employ a decomposition technique. The556

resulting algorithm is recursive, enabling real-time data processing. This557

attribute makes it well-suited for systems dealing with extensive data vol-558

umes. The results underscore the algorithm’s capacity to yield accurate559

predictions, thereby highlighting its potential for real-world implementation560

for biological treatment processes.561
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Table 1: Applications of biological processes modeled by different hybrid systems.

Application Hybrid model Method Reference

pH neutralization process PWARX Clustering-based Wang et al. (2020)
Diauxic bacterial growth SARX Optimization-based Hartmann et al. (2015)
CSTR with exothermic reaction PWARX Clustering-based Song et al. (2020)

Continuous fermentation reactor
SARX Likelihood-based Chen et al. (2020a)
Delay-SARX Likelihood-based Chen et al. (2020b)

Transesterification reactor PWARX OBE Yahya et al. (2020)
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Table 2: Dynamics of the numerical example; a two-mode SBJ system.

Subsystem dynamics Subsystem 1 Subsystem 2

A(q−1, θ1 or 2) 1 + 0.45q−1 − 0.2q−2 1− 0.15q−1 + 0.35q−2

B(q−1, θ1 or 2) −0.4 + 0.95q−1 −0.5 + 1.15q−1

C(q−1, θ1 or 2) 1 + 0.64q−1 1− 0.36q−1

D(q−1, θ1 or 2) 1− 0.32q−1 1− 0.50q−1
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Table 3: Prediction accuracy of anaerobic fermentation process under different scenarios
based on the proposed output prediction algorithm.

Number of modes
(N)

Ellipsoid bound
(δ)

Period of forgetting factor
(day)

Accuracy
(FIT )

2 0.2 40 94.9157
3 0.1 50 95.7483
4 0.05 60 96.7509
5 0.05 50 97.1826
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Figure 1: Schematization of the switched BJ system for m number of mode.
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(a) the real system output, y, and the predicted system
output, ŷ based on the estimated SBJ system. The inner
figure shows the posteriori prediction error

(b) Detection of the switching sequences of the SBJ.

Figure 2: Numerical example simulation.
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Figure 3: Simplified schematization of the anaerobic fermentation process for the purpose
of estimation with a SBJ system.
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(a) The input flow rate produced by a pseudo random
input signal used for identification process.

(b) The process output (acetate) in nominal operating con-
dition (green line) and deviated (blue line) by random per-
turbation within the main components used for identifica-
tion process.

Figure 4: Input (flow rate) and output (acetate) of the anaerobic fermentation process.
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(a) The process output (acetate) in nominal operating con-
dition (green line) and deviated (blue line) and its output
prediction by a SBJ system (black line) and a BJ system
(red line).

(b) The error comparison between the output of the es-
timated SBJ system (green line) and the output of the
estimated BJ system (blue line).

Figure 5: Prediction performance of the proposed identification algorithm on the anaerobic
fermentation process.
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Figure 6: Simplified schematization of the purple bacteria raceway-pond photobioreactor
process for the purpose of estimation with a switched BJ system.

(a) The solar radiation fluctuation over a 24-hour period,
with zero radiation occurring for 12 hours followed by
non-zero radiation for the next 12 hours each day.

(b) the PPB production for the nominal-designed process
(green line) and deviated PPB by disturbance caused by
light intensity fluctuation (blue line).

Figure 7: Implemented disturbance (solar radiation) and observed output (PPB) of the
raceway-pond photobioreactor.
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(a) The process output (blue line) and its
output prediction by a SBJ system (black
line) and the same estimated system with
one mode, where more frequently mode is
considered than the other one (red line).

(b) The error comparison between the out-
put of the estimated SBJ system (green line)
and the output of the estimated SBJ system
with one mode, where that mode occurred
more frequently is considered than the other
(blue line).

(c) The switching patterns (mode occurrence) of
two-mode estimated SBJ system.

Figure 8: Prediction performance of the proposed identification algorithm on the PPB
photobioreactor.
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