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Multi-AgentReinforcementLearning viaDistributedMPC

as aFunctionApproximator

Samuel Mallick ⋆, Filippo Airaldi, Azita Dabiri, Bart De Schutter

Delft Center for Systems and Control, Delft University of Technology, Delft, The Netherlands

Abstract

This paper presents a novel approach to multi-agent reinforcement learning (RL) for linear systems with convex polytopic
constraints. Existing work on RL has demonstrated the use of model predictive control (MPC) as a function approximator
for the policy and value functions. The current paper is the first work to extend this idea to the multi-agent setting. We
propose the use of a distributed MPC scheme as a function approximator, with a structure allowing for distributed learning
and deployment. We then show that Q-learning updates can be performed distributively without introducing nonstationarity,
by reconstructing a centralized learning update. The effectiveness of the approach is demonstrated on a numerical example.
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1 Introduction

Reinforcement learning (RL) [23] has proven to be a
popular approach for control of complex processes.
For large or continuous state and action spaces,
function approximators are commonly used to learn
representations of the policy. Deep neural networks
(DNNs) [3] are a prevalent choice in this context;
however, they often lack interpretability and are not
conducive to safety verification, resulting in tradi-
tional DNN-based RL not yet widely being accepted
in the control community. Alternatively, model pre-
dictive control (MPC) is an extremely successful con-
trol paradigm [4], involving solving a finite-horizon
optimal control problem in a receding horizon fash-
ion. Extensive results on the stability and perfor-
mance of MPC exist [17]. However, MPC is entirely
model-based, with its performance depending on an
accurate system model.

The integration of MPC and RL is a promising di-
rection for achieving safe and interpretable learning-
based control [13, 20]. In particular, MPC has been
proposed as a replacement for DNN function approx-
imators in RL [10]. In this context, the optimal con-
trol action and cost of the MPC optimization problem
represent the policy and value function respectively.
An MPC-based policy facilitates the use of the rich
theory underlying MPC for obtaining insights into the
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policy, and allows to deliver certificates on the result-
ing behavior. The state of the art [1, 10,11], however,
relies on a centralized approach with a single learning
agent. This is in general prohibitive for multi-agent
systems, where centralization requires either a spe-
cific topology, with all agents connected to the cen-
tral agent, or multi-hop communication across inter-
mediate agents, where the number of hops grows with
the network size. Additionally, centralized computa-
tion can become too complex, and requires the sharing
of sensitive information, such as objective functions,
with the central agent.

Addressing these challenges, distributed control of
multi-agent systems offers computational scalability
and privacy, with only neighbor-to-neighbor com-
munication. Many existing works have adapted the
MPC methodology to the distributed setting with
distributed MPC [16] and, likewise, RL to the multi-
agent setting RL (MARL) setting, in which multiple
learning agents act in a common environment. A
central challenge in MARL is that the interaction of
simultaneously learning agents renders the learning
target of each agent nonstationary, degrading the per-
formance and convergence properties of single-agent
algorithms [7]. Several works have tried to circum-
vent this problem using a centralized training and
decentralized execution paradigm [2, 15]. However,
centralized training is often either unrealistic or un-
available. Some approaches address the nonstationar-
ity issue through communication across the network
of agents during learning [22,24,26]. These works pro-
vide theoretical convergence guarantees, but focus on
linear function approximation. MARL has also been
addressed with DNN function approximators [9, 12];
however, these approaches do not emphasize infor-
mation exchange between agents, and suffer from
the same drawbacks as DNN-based single-agent RL.
Addressing the nonstationarity of learning targets in
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MARL remains an open challenge.

This paper proposes the following contributions. The
use of MPC as a function approximator in RL is ex-
tended to the multi-agent setting. To this end we pro-
pose a structured convex distributed MPC scheme as
an approximator for the policy and value functions,
introducing a novel, model-based MARL approach for
linear systems, free from nonstationary. The method
is distributed in training and deployment, with data
sharing only between neighbors, irrespective of the
network size and topology, thus avoiding centralized
computation andmulti-hop data communication. Fur-
thermore, privacy of sensitive information in local pa-
rameters and functions is preserved, with only state
trajectories being shared, in contrast to a central-
ized approach where local functions are shared with
the central agent. Thanks to the MPC-based approx-
imation, insights into the policy can be gained from
the learned components, e.g., the prediction model
and constraints. Additionally, in contrast to DNN-
based approaches, it is possible to inject a priori in-
formation, e.g., model approximations. Furthermore,
we prove a result for consensus optimization; relating
the dual variables recovered distributively through the
alternating direction method of multipliers (ADMM)
to the optimal dual variables of the original problem,
that enables the distributed learning.

The paper is structured as follows. Section 2 provides
the problem description and background theory. In
Section 3 we present a result on the dual variables
in ADMM, which will be used later on in the paper.
In Section 4 we introduce the structured distributed
MPC function approximator. In Section 5 we propose
Q-learning as the learning algorithm, and show how
the parameter updates can be performed distribu-
tively. Section 6 gives an illustrative example.

2 Preliminaries and background

2.1 Notation

Define the index sets M = {1, ...,M} and K =
{0, ..., N − 1}. The symbols t, k, and τ represent
time steps in an RL context, an MPC context, and
iterations of an algorithm, respectively. The sym-
bols s and a refer to states and actions in an RL
context, while x and u are used for MPC. We use
bold variables to gather variables over a prediction
window, e.g., u = (u⊤(0), . . . , u⊤(N − 1))⊤ and
x = (x⊤(0), . . . , x⊤(N))⊤. A vector stacking the vec-
tors xi, i ∈ M, in one column is denoted coli∈M(xi).
The term local describes components known only
by the corresponding agent. For simplicity we write
(xτ )⊤ as xτ,⊤.

2.2 Problem description

We define a multi-agent Markov decision process
(MDP) forM agents as the tuple (S, {Ai}i∈M, P, {Li}i∈M,G).
The set S is the global state set, composed of the
local state sets for each agent S = S1 × · · · × SM .
Moreover, Ai is the local action set and Li is the local
cost function for agent i, while P describes the state

transition dynamics for the whole system. The graph
G = (M, E) defines a coupling topology between
agents in the network, where edges E are ordered pairs
(i, j) indicating that agent i may affect the cost and
state transition of agent j. Define the neighborhood
of agent i asNi = {j ∈M |(j, i) ∈ E , i ̸= j}. Note that
an agent is not in its own neighborhood, i.e., (i, i) /∈ E .
We assume the graph G is connected. Additionally,
agents i and j can communicate if i ∈ Nj or j ∈ Ni.

We consider agents to be linear dynamical systems
with state si ∈ Si ⊆ Rn and control input ai ∈ Ai ⊆
Rm. The true dynamics P of the network are assumed
to be unknown, and we introduce an approximation
of the dynamics for agent i, parametrized by a local
parameter θi, as

si(t+ 1) = fθi(si(t), ai(t), {sj(t)}j∈Ni
)

= Ai,θisi(t) +Bi,θiai(t) +
∑
j∈Ni

Aij,θisj(t) + bθi ,

(1)
with bθi ∈ Rn a constant offset allowing (1) to capture
affine relationships.

We consider a co-operative RL setting. At time step
t, agent i observes its own state si,t ∈ Si and takes an
action with a local policy parametrized by the local
parameter θi; πθi(si,t) = ai,t, observing the incurred
local cost Li,t and next state si,t+1. The cooperative
goal is to minimize, by modifying the parameters θi,
the discounted cost over an infinite horizon

J({πθi}i∈M) = E

( ∞∑
t=0

γtLt

)
, (2)

with Lt = 1
M

∑
i∈M Li,t the average of the agents’

local costs, and γ ∈ (0, 1]. We define the global
parametrization as θ = (θ⊤1 , ..., θ

⊤
M )⊤. The joint pol-

icy, parametrized by θ, is then πθ(s) = {πθi(si)}i∈M.
The joint action a = {ai}i∈M is generated by the
joint policy; πθ(s) = a, where s is the joint state
s = {si}i∈M. Note that the local policy πθi is param-
eterized with the same parameter θi as the dynamics
fθi because the policy generates an action via an
optimization problem in which these dynamics form
equality constraints (see Section 4).

2.3 Consensus optimization

Section 4 shows that evaluation of the proposed MPC-
based policy and value functions can be posed as a
consensus optimization problem and solved using the
ADMM and global average consensus (GAC) algo-
rithms. This section provides the relevant background.

ADMM: ADMM solves problems of the form

min
x∈X ,z∈Z

{fADMM(x)+gADMM(z) : Ax+Bz = c} (3)

by alternating between minimization of the aug-
mented Lagrangian, split over x and z, and maximiza-
tion of the result with respect to the multipliers y as:

xτ+1 = argmin
x∈X

L(x, zτ , yτ ) (4a)
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zτ+1 = argmin
z∈Z

L(xτ+1, z, yτ ) (4b)

yτ+1 = yτ + ρ(Axτ+1 +Bzτ+1 − c), (4c)

with y the Lagrange multipliers, ρ > 0, and
L(x, z, y) = fADMM(x) + gADMM(z) + y⊤(Ax+Bz −
c)+ ρ

2∥Ax+Bz− c∥22 the augmented Lagrangian. We
have the following convergence result:

Proposition 1 ( [18] ) Assume the optimal solution
set of (3) is nonempty and has optimal objective P ⋆,
the functions fADMM and gADMM are convex,X andZ
are convex polytopic sets, and A and B are full column
rank. Then, fADMM(xτ ) + gADMM(zτ ) → P ⋆ as τ →
∞. Additionally, {(xτ , zτ )}∞τ=1 has a single limit point
(x⋆, z⋆), which solves (3).

Consider the following optimization problem defined
over the graph G:

min
x1,...,xM

∑
i∈M

Fi(xi, {xj}j∈Ni) (5a)

s.t. hi(xi, {xj}j∈Ni
) ≤ 0, i ∈M (5b)

gi(xi, {xj}j∈Ni) = 0, i ∈M, (5c)

where Fi, hi, and gi are convex and local to agent
i, along with its state xi ∈ Rn. To solve this prob-
lem distributively we introduce the augmented state

x̃i = (x⊤
i , col

⊤
j∈Ni

(x
(i)
j ))⊤ for agent i, where x

(i)
j is a lo-

cal copy of agent j’s state. We then introduce a global
copy of each state z = (z⊤1 , z⊤2 , ...z⊤M )⊤, with zi cor-
responding to xi. The relevant portion of the global
copies for agent i is z̃i = (z⊤i , col⊤j∈Ni

(zj))
⊤. Define

the local feasible sets for the augmented states as

X̃i = {x̃i|hi(xi, {x(i)
j }j∈Ni

) ≤ 0, gi(xi, {x(i)
j }j∈Ni

) = 0}.
(6)

Problem (5) can then be reformulated with the addi-
tion of a redundant constraint

min
{x̃i∈X̃i}i∈M,z

∑
i∈M

Fi(xi, {x(i)
j }j∈Ni)

s.t. x̃i − z̃i = 0, i ∈M,

(7)

which is a particular instance of (3) satisfying the as-
sumptions in Proposition 1 (See Appendix A). The
steps in (4), when applied to (7), reduce to [5, Section
7.2]:

x̃τ+1
i = argmin

x̃i∈X̃i

Fi(xi, {x(i)
j }j∈Ni

) + yτ,⊤i (x̃i)

+
ρ

2
∥x̃i − z̃τi ∥22, i ∈M

(8a)

zτ+1
i =

1

|Ni|+ 1
(xτ+1

i +
∑
j∈Ni

x
(j),τ+1
i ), i ∈M (8b)

yτ+1
i = yτi + ρ(x̃τ+1

i − z̃τ+1
i ), i ∈M. (8c)

This is a distributed procedure as each step decou-
ples over the agents, and uses only local and neighbor-
ing information. By Proposition 1, at convergence of
ADMM the local variable x̃i for each agent will con-
tain the minimizers x⋆

i of the original problem (5),

and copies of the minimizers for neighboring agents

{x(i),⋆
j }j∈Ni .

GAC: The GAC algorithm allows a network of
agents to agree on the average value of local vari-
ables vi,0 ∈ R, i ∈ M, communicating over the
graph G. For each agent, the algorithm updates val-
ues as vτ+1

i = P(i, i)vτi +
∑

j|(i,j)∈E P(i, j)vτj , where

P ∈ RM×M
+ is a doubly stochastic matrix, i.e., entries

in each row and column sum to 1. The iterates con-
verge as limτ→∞ vτi = M−1

∑
i∈M vi,0, i ∈ M, with

M the number of agents [19].

3 Local recovery of optimal dual variables
from ADMM

In this section we provide a result linking the dual
variables from the local minimization step (8a) to a
subset of the dual variables in the original problem
(5). This will be used later to construct the distributed
learning update. The Lagrangian of (5) is

L({xi}i∈M, {λi}i∈M, {µi}i∈M) =
∑
i∈M

(
fi(xi, {xj}j∈Ni)

+ λ⊤
i hi(xi, {xj}j∈Ni

) + µ⊤
i gi(xi, {xj}j∈Ni

)
)
,

(9)
where λi and µi are the multipliers associated with
the inequality and equality constraints, for each agent.
We stress that these multipliers are related to the lo-
cal constraints, and differ from the consensus multi-
pliers {yi}i∈M used in the ADMM iterations. Denote
the optimal multipliers as ({λ⋆

i }i∈M, {µ⋆
i }i∈M). At it-

eration τ of ADMM, the Lagrangian of the local min-
imization step (8a) for agent i is

Lτ
i (xi, λ

τ
i , µ

τ
i ) = fi(xi, {x(i)

j }j∈Ni
)

+ λτ,⊤
i hi(xi, {x(i)

j }j∈Ni) + µτ,⊤
i gi(xi, {x(i)

j }j∈Ni)

+ yτ,⊤i (x̃i) +
ρ

2
∥x̃i − z̃τi ∥22.

(10)
Denote the optimal multipliers for iteration τ as
(λ⋆,τ

i , µ⋆,τ
i ).

Proposition 2 Assume that the assumptions in
Proposition 1 hold for problem (5). Additionally as-
sume that the functions Fi are strictly convex. Then,
at convergence of ADMM, the optimal multipliers
from the local minimizations (8a) converge to the
corresponding subset of optimal multipliers for the
original problem (5), i.e.,

(λ⋆,τ
i , µ⋆,τ

i )→ (λ⋆
i , µ

⋆
i ), i ∈M, as τ →∞. (11)

PROOF. See Appendix B.

4 Distributed MPC as a function approxima-
tor

In [10] it was shown how an MPC scheme can cap-
ture the RL policy, state-value, and action-value func-
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tions. This section introduces a distributed counter-
part, parametrized in θ = (θ⊤1 , ..., θ

⊤
M )⊤, approximat-

ing these quantities for a multi-agent system.

4.1 Parametrized distributed MPC scheme

Consider the distributed MPC-based action-value
function approximation:

Qθ(s, a) = min
({xi},{ui},{σi})i∈M

∑
i∈M

(
βθi(xi(0))

+
∑
k∈K

(
γk(lθi(xi(k), ui(k), {xj(k)}j∈Ni)

+ w⊤σi(k))
)
+ γNVf,θi

(
xi(N)

))
(12a)

s.t. ∀i ∈M, ∀k ∈ K :

ui(0) = ai, xi(0) = si (12b)

xi(k + 1) = fθi
(
xi(k), ui(k), {xj(k)}j∈Ni

)
(12c)

hθi

(
xi(k), ui(k), {xj(k)}j∈Ni

)
≤ σi(k). (12d)

The functions βθi , lθi , and Vf,θi are the initial, stage,
and terminal cost approximations respectively, fθi is
a model approximation, and hθi is an inequality con-
straint function. Each is parametrized by a local pa-
rameter θi and known only to the corresponding agent,
such that knowledge of the components of the MPC
scheme is distributed across the agents. Parameter-
ized terminal constraints could be included, but are
omitted here for simplicity. For conciseness, we sum-
marize (12) as

Qθ(s, a) = min
∑
i∈M

Fθi(xi, {xj}j∈Ni
,ui,σi)

s.t. ∀i ∈M,

Gθi(si, ai,xi, {xj}j∈Ni
,ui) = 0

Hθi(xi, {xj}j∈Ni ,ui,σi) ≤ 0.

(13)

The joint policy is then computed as

πθ(s) = argmin
{u(0)i}i∈M

∑
i∈M

Fθi(xi, {xj}j∈Ni
,ui,σi)

s.t. ∀i ∈M, ∀k ∈ K :

(12c)–(12d), xi(0) = si
(14)

and the global value function Vθ(s) can be obtained as
the optimal value of (14), satisfying the fundamental
Bellman equations [10].

Intuitively, this structured MPC scheme approxi-
mates the local cost of each agent through the local
cost functions. Interactions between coupled agents
enter the scheme via the parametrized stage costs Fθi ,
the dynamics in Gθi , and the inequality constraints
in Hθi . Inexact knowledge of agents’ dynamics, con-
straints, inter-agent interactions, and local costs can
be encoded in an initial guess of the local parameters
θi. Through learning, the cost and model representa-
tions will be modified to improve the global perfor-
mance. The constraints in (13) are chosen to be affine
and the functions Fθi to be strictly convex in their ar-
guments xi, {xj}j∈Ni ,ui, and σi, such that (13) sat-
isfies the assumptions for Propositions 1 and 2. This

is not a strong assumption for linear systems, as the
true optimal value function is convex when the stage
costs are convex, as is common in the literature [4].
Indeed, for quadratic stage costs, with a sufficiently
long prediction horizon, a convex optimization prob-
lem can capture the true infinite horizon cost [8].

4.2 Distributed evaluation

The ADMM and GAC algorithms can be used to
solve (12) distributively. Each agent stores a local
copy of the predicted states of neighboring agents
over the prediction horizon, and constructs the aug-

mented state x̃i = (x⊤
i , col

⊤
j∈Ni

(x
(i)
j ))⊤, where x

(i)
j

is agent i’s local copy of agent j’s predicted state
over the prediction horizon. Global copies are intro-
duced of each state prediction z = (z⊤1 , z

⊤
2 , . . . , z

⊤
M )⊤,

with the relevant components of z for agent i denoted
z̃i = (z⊤i , col

⊤
j∈Ni

(zj))
⊤. As in Section 2.3, ADMM

solves (13) by the following iterations:

x̃τ+1
i ,uτ+1

i ,στ+1
i = argmin Fθi(xi, {x(i)

j }j∈Ni
,ui,σi)

+
∑
k∈K

yτ,⊤i (k)(x̃i(k)) +
ρ

2
∥x̃i(k)− z̃i(k)

τ∥22

s.t. Gθi(si, ai,xi, {x(i)
j }j∈Ni

,ui) = 0

Hθi(xi, {x(i)
j }j∈Ni

,ui,σi) ≤ 0

(15a)

zτ+1
i =

1

|Ni|+ 1
(xτ+1

i +
∑
j∈Ni

x
(j),τ+1
i )

(15b)

yτ+1
i = yτ

i + ρ(x̃τ+1
i − z̃τ+1

i ). (15c)

By Proposition 1, as τ → ∞, the outputs of the lo-
cal minimization (15a) converge to the minimizers of
the original problem (13), i.e., x̃τ+1

i ,uτ+1
i ,στ+1

i →
x̃⋆
i ,u

⋆
i ,σ

⋆
i . Agents then evaluate their local objective

component F ⋆
θi

= Fθi(x
⋆
i , {x

(i),⋆
j }j∈Ni

,u⋆
i ,σ

⋆
i ). The

global action-value Qθ(s, a) =
∑

i∈M F ⋆
θi

can then
be agreed upon across the network via the GAC al-
gorithm. Each agent makes the naive initial guess
Qθ(s, a) = MF ⋆

θi
, i.e., each agent assumes that all

other agents have the same local cost. The GAC al-
gorithm gives convergence of these values, as per Sec-
tion 2.3, to the average

∑
i∈M F ⋆

θi
, which is the global

action-value.

Evaluation of the global value Vθ(s) and the joint pol-
icy follows from applying the same steps to (14). From
the optimal control sequence u⋆

i agents evaluate their
local component ai = πθi(si) = u⋆

i (0) of the joint pol-
icy πθ(s). We highlight that, while the joint policy
is a function of the global state s, the local policies
are functions only of the local state si, i.e., πθi(si), as
(15a) requires knowledge only of si.

4.3 Summary of distributedMPC as function approx-
imator

Webriefly summarize the key points of the distributed-
MPC-based approximator. Each agent stores local
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knowledge of its learnable parameter θi, and its lo-
cal parametrized functions βθi , lθi , Vf,θi , fθi , and
hθi . In addition, it maintains its own state predic-
tion xi, copies of predictions for its neighbors’ states

{x(i)
j }j∈Ni

, and an additional set of copies required
for agreement. Finally, each agent stores the local
Lagrange multipliers yi used in ADMM. Evaluating
Qθ (or Vθ), from the perspective of agent i, is sum-
marized in Algorithm 1. For simplicity, both ADMM
and GAC use a fixed number of iterations in the algo-
rithm, TA and TC respectively, with the consequences
discussed in Section 5.2.

Algorithm 1 Evaluation of Qθ(s, a) for agent i.

1: Inputs: si and ai (not ai if evaluating (14)).

2: Initialize: {x(i)
j }j∈Ni

← 0, zi ← 0, yi ← 0.
3: for τ = 0, 1, . . . , TA do
4: Get x̃τ+1

i ,uτ+1
i ,στ+1

i via (15a).

5: For j ∈ Ni, send x
(i),τ+1
j and receive x

(j),τ+1
i .

6: Perform averaging step (15b).
7: For j ∈ Ni, send zτ+1

i and receive zτ+1
j .

8: Perform local multipliers update (15c).
9: end for

10: Q̄θ(s, a)←MFθi(x
TA
i , {x(i),TA

j }j∈Ni ,u
TA
i ,σTA

i )
11: Perform TC iterations GAC, with initial guess

Q̄θ(s, a), to agree on Qθ(s, a).
12: Outputs: Global state-value Qθ(s, a)

(
local ac-

tion ai ← uTA
i (0) if evaluating (14)

)
.

5 Distributed Q-learning

In this section we show that using Q-learning as the
RL algorithm to learn the local parameters θi enables
a distributed learning update that avoids nonstation-
arity. Q-learning [23] adjusts, at each time step t, the
global parameters θ = (θ⊤1 , ..., θ

⊤
M )⊤ as

δt = Lt + γVθ(st+1)−Qθ(st, at)

θ ← θ + αδt∇θQθ(st, at),
(16)

where α ∈ R is a learning rate and δt ∈ R is the
temporal-difference (TD) error at time step t.

5.1 Separable Q-learning updates

The update (16) appears to be centralized due to the
global components at, Lt, st, st+1, and θ. However,
the structure of (12) allows decomposition into local
updates of θi for each agent. Addressing first the TD
error δt, we have shown in Section 4 that Vθ(s) and
Qθ(s, a) can be evaluated distributively. The globally
averaged cost Lt is the average of all agents’ locally
incurred costs Li,t, and can be shared across the net-
work using the GAC algorithm. This can be incorpo-
rated into line 11 of Algorithm 1, with no additional
communication overhead.

We now address the gradient term ∇θQθ(st, at). The

Lagrangian of (12) is

Lθ(s, a, p) =
∑
i∈M

(
Fθi(xi, {xj}j∈Ni

,ui,σi)

+ λ⊤
i Gθi(si, ai,xi, {xj}j∈Ni ,ui)

+ µ⊤
i Hθi(xi, {xj}j∈Ni

,ui,σi)

)
,

(17)

where λi and µi are the multiplier vectors associated
with the equality and inequality constraints, respec-
tively, and the primal and dual variables are grouped
as

p = ({xi}, {ui}, {σi}, {λi}, {µi})i∈M. (18)

We stress again that the multipliers in p are associ-
ated with the constraints of (12), and are unrelated
to the multipliers yi used in the ADMM procedure.
Via sensitivity analysis [6], the gradient ∇θQθ(s, a)
coincides with the gradient of the Lagrangian at the
optimal primal and dual variables p⋆:

∇θQθ(s, a) =
∂Lθ(s, a, p

⋆)

∂θ
. (19)

Observe that (17) is separable over parameters θi,
states si, actions ai, and subsets of the primal and dual
variables pi, i.e., Lθ(s, a, p) =

∑
i∈M Lθi(si, ai, pi),

where Lθi is the i-th term within the sum (17), and
pi = (xi,ui,σi, {xj}j∈Ni

,λi,µi). We then express
(19) as

∂
∑

i∈M Lθi(si, ai, p
⋆
i )

∂θ
=


∂Lθ1

(s1,a1,p
⋆
1)

∂θ1
...

∂LθM
(sM ,aM ,p⋆

M )

∂θM

 , (20)

and the centralized parameter update (16) can be
hence unpacked into M local updates:

θi ← θi + αδt
∂Lθi(si,t, ai,t, p

⋆
i )

∂θi
, i ∈M. (21)

What then remains to be shown is that the subset
of optimal primal and dual variables p⋆i for (12) is
available locally to agent i. By Proposition 1, at con-
vergence of ADMM, the local minimization (15a) re-
turns the minimizers (x⋆

i ,u
⋆
i ,σ

⋆
i ) and local copies of

the minimizers of neighboring agents {x(i),⋆
j }j∈Ni =

{x⋆
j}j∈Ni

. Each agent hence has local knowledge of
the optimal primal values in p⋆i . For the optimal dual
values, by Proposition 2, at convergence of ADMM,
the optimal dual variables of the local minimization
(15a) for agent i are equal to the relevant subset of
optimal dual variables for the original problem, i.e.,
(λ⋆

i ,µ
⋆
i ). Each agent hence has local knowledge of the

optimal dual values in p⋆i as well. Agents can there-
fore perform the local update (21). Nonstationarity is
avoided as the local updates reconstruct the central-
ized update of the whole network (16).
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5.2 Implementation details

In this section we discuss some auxiliary details in the
implementation of our proposed approach.

• Exploration can be added to the approach in, e.g.,
an epsilon-greedy fashion, in which case the agent
adds a random perturbation to the objective (12a)
with some probability ϵi, where ϵi decreases as
training progresses [1, 25]. This causes a pertur-
bation in the joint policy. It is assumed that the
system, with exploration injected, is sufficiently
persistently exciting.

• The finite termination of ADMM and the GAC al-
gorithm introduces errors in the evaluation of Vθ

and Qθ, πθ, and p⋆, and could lead to instability
in the learning. To counter this, large numbers of
ADMM and GAC iterations may be used in a simu-
lated learning phase, when there are no constraints
on computation time between actions. This is de-
sirable as primal and dual variables with high pre-
cision are needed to reliably compute the sensitiv-
ity (19). On the contrary, at deployment, sensitiv-
ities are not required and only the policy must be
evaluated. Thus, the iteration numbers can be re-
duced, as ADMM often converges to modest ac-
curacy within few iterations [5]. Additionally, ex-
perience replay (ER) [1, 14] can improve learning
stability by using an average of past observations
when calculating the gradient and the TD error.
In our method ER requires no extra mechanism as
agents can maintain a local history of values for δ
and∇θiLθi(s, p

⋆
i ). In our numerical experiments, we

found the learning to succeed with ER and modest
numbers of ADMM and GAC iterations.

• The variables α > 0 and γ ∈ (0, 1] are hyperparam-
eters; as the distributed update fully reconstructs
the centralized update, existing methods for select-
ing these parameters in centralized learning apply
directly, e.g., see [23, Chapter 9.6].

6 Example

This section presents a numerical example. Source
code and simulation results can be found at https:
//github.com/SamuelMallick/dmpcrl-concept.
Additionally, the longer online version of this
manuscript includes a power systems case study.
We modify the system from [10], forming a three-
agent system with state coupling in a chain, i.e.,
1↔ 2↔ 3, with real (unknown) dynamics si(t+1) =
Aisi(t)+Biai(t)+

∑
j∈Ni

Aijsj(t)+ [ei(t), 0]
⊤ where

Ai =

[
0.9 0.35

0 1.1

]
, {Aij}j∈Ni =

[
0 0

0 −0.1

]
, (22)

with B = [0.0813, 0.2]⊤ and ei(t) uniformly dis-
tributed over the interval [−0.1, 0]. The RL task is to
drive the states and control towards the origin while
avoiding violations of the state constraints s ≤ si ≤ s,

0 20 40 60 80 100
10−12

10−6

100

τ

∑3
i=0 ∥λ

⋆
i − λ⋆,τ

i ∥+ ∥µ⋆
i − µ⋆,τ

i ∥

Fig. 1. Accuracy of the dual variables recovered by Propo-
sition 2 as a function of the ADMM iteration index τ .

with local costs as:

Li,t(si, ai) = ∥si∥22 +
1

2
∥ui∥22

+max
(
(0, ω⊤(s− si)

)
+max

(
(0, ω⊤(si − s)

)
,
(23)

with ω = [102, 102]⊤, s = [0,−1]⊤, and s = [1, 1]⊤.
Non-positive noise on the first state biases that term
towards violating the lower bound of zero. This ren-
ders the task challenging, as the agents must regulate
the state to zero, and yet driving the first dimension
to zero will result in constraint violations due to the
noise. The true model is unknown, with agents instead
knowing a uniform distribution of models, containing
the true model:

Âi =

[
1 + a1,i 0.25 + a2,i

0 1 + a3,i

]
, {Âij}j∈Ni

=

[
0 0

0 ci

]
,

(24)

with B̂i = [0.0312 + b1,i, 0.25 + b2,i]
⊤ and, for

all i, the random variables distributed uniformly
as a1,i, a2,i, a3,i ∈ [−0.1, 0.1], b1,i ∈ [0, 0.075],
b2,i ∈ [−0.075, 0] and ci ∈ [−0.1, 0]. We implement
the following distributed MPC scheme:

min
{(xi,ui,σi)}i∈M

∑
i∈M

(
Vi,0 +

∑
k∈K

f⊤
i

[
xi(k)

ui(k)

]

+
1

2
γk
(
∥xi(k)∥2 +

1

2
∥ui(k)∥2 + ω⊤σi(k)

))
s.t. ∀i ∈M, ∀k ∈ K :

xi(k + 1) = Aixi(k) +Biui(k)

+
∑
j∈Ni

Aijxj(k) + bi

s+ xi − σi(k) ≤ xi(k) ≤ s+ xi + σi(k)

− 1 ≤ ui(k) ≤ 1, xi(0) = si

where M = 3, K = {0, . . . , 9}, and γ = 0.9. The
learnable parameters for each agents are then θi =
(Vi,0, xi, xi, bi, fi, Ai, Bi, {Aij}j∈Ni

). The initial val-
ues forAi, Bi, {Aij}j∈Ni

are the inaccuratemodel (24)
with the random variables set to zero. All other learn-
able parameters are initialized to zero.

To illustrate Proposition 2, for a given global state
s, Figure 1 shows the error between the true optimal
dual variables and those recovered from evaluating
the MPC scheme with ADMM, as a function of the
ADMM iteration index τ . The locally recovered dual
variables are close to the true values, with the error
initially decreasing with the iteration index.

6

https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept


Fig. 2. Centralized (left) and distributed (right). Evolution
of the states and inputs during training. Agent 1 (blue),
agent 2 (red), agent 3 (purple), and bounds (dashed).

Fig. 3. Evolution of TD errors (top) and stage costs (bot-
tom) during training.

Fig. 4. Evolution of learnable parameters for agent 2 dur-
ing training. Distributed (blue) and centralized (red).

We now compare the learning performance of our dis-
tributed approach with the centralized approach in-
spired from [10], using the sameMPC scheme, and the
same learning hyperparameters for both. We use an
exploration probability of ϵi = 0.7, exponentially de-
caying with rate 0.99, with local costs perturbed uni-
formly over the interval [−1, 1]. We use a learning rate
of α = 6e−5, exponentially decaying with rate 0.9996,
and ER with an average over 15 past samples at an
update rate of every 2 time steps. For the distributed
approach we use 50 iterations in ADMM and 100 it-
erations in GAC. These values were tuned to keep the
iterations low without introducing significant approx-
imation errors. Figure 2 shows the state and input tra-
jectories for the three agents during training. Figure
3 shows the evolution of the global TD error and the
collective cost. Figure 4 shows the learnable parame-
ters of the second agent during training (similar con-
vergence profiles are observed for the other agents). It
is seen that the behavior of the distributed approach
is similar to that of the centralized approach, reduc-
ing the TD error and costs incurred, with the central-
ized approach converging slightly faster. The costs are
reduced by maintaining the first state of each agent
above zero to prevent expensive violations of the state
constraint due to coupling and noise.

0 5000 10000 15000 20000
101

102

t

1
0
0 ∑ τ

=
0

L
τ NMPC SMPC + (24)

SMPC + (22) pol-t

Fig. 5. NMPC and SMPC compared against policy at
training time steps t (log scale).

We compare the performance of the distributed policy
against both a distributed nominal MPC controller
(NMPC) and a distributed stochastic MPC controller
(SMPC) based on the scenario approach [21]. The
nominal MPC controller uses the inexact model (24),
with all random variables set to 0. For the SMPC
controller we consider the case where the true model
is unknown and N = 25 samples of the model dis-
tribution (24) and the noise distribution are used to
account for the uncertainty. The number of samples
was manually tuned to balance conservativeness and
robustness [21]. We also consider the case where the
exact model (22) is known, and only the noise distri-
bution is sampled. The controllers are compared in
Figure 5, showing the closed-loop cost accumulated
over 100 time steps. The learned policy can be seen to
improve from a performance initially comparable to
NMPC, learning to outperform SMPC, and approach-
ing the performance of SMPC with a perfect model.
We highlight that our approach retains the computa-
tional complexity of NMPC, while SMPC is signifi-
cantly more complex, optimizing over N copies of the
state trajectories.

7 Conclusions

This paper has extended the idea of using MPC-based
RL to the multi-agent setting. We have proposed a
novel approach to MARL via the use of distributed
MPC as a distributed function approximator within
Q-learning. A result on the optimal dual variables in
ADMM is first presented. The structure of the dis-
tributed MPC function approximator is then detailed,
and is shown to enable a distributed evaluation of the
global value functions and the local policies. Finally,
by using Q-learning to update the parametrization of
the MPC scheme, the parameter updates can also be
performed fully distributively. The effectiveness of the
newly proposed method is demonstrated on a numer-
ical example.

A limitation of the proposed approach is the con-
vexity requirement on the MPC scheme, restricting
the class of systems for whom the optimal policy can
be captured to linear systems with convex cost func-
tions. Additionally, as both the ADMM and GAC al-
gorithms use iterative communication between neigh-
bors, the approach is less suited for applications with
high communication costs. Future workwill look at ex-
tending the idea to other RL methods, such as policy-
based approaches, and a formal analysis on the prop-
agation of errors from the finite termination of the
ADMM and GAC algorithms.
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Appendix

A Equivalence of (3) and (7)

Define the aggregate of the local augmented states as
x̄ = coli∈M(x̃i) and the feasible set as X̄ = X̃1×· · ·×
X̃M . Problem (7) can then be written in the form of
(3) as

min
x̄∈X̄ ,z

{fADMM(x̄)+gADMM(z) : Ax̄+Bz = c}, (A.1)

where fADMM(x̄) =
∑

i∈M Fi(x̃i), gADMM(·) is the
zero map, and c = 0. Furthermore, A = Iq×q, q =∑

i∈M n(|Ni|+ 1), and B ∈ Rq×nM is a block matrix
that contains negative identity matrix entries pick-
ing out the corresponding global states, with all other
entries being zero matrices. Clearly, matrix A is full
column rank. For B, we note that every column has
at least one identity entry, and that by rearranging
its rows we can express it as [−InM×nM , B⊤

+ ]⊤, where
B+ contains the remaining rows. Therefore, B is full
column rank. The assumptions in Proposition 1 are
hence satisfied.

B Proof of Proposition 2

The proof involves showing that the Karush-Kuhn-
Tucker (KKT) conditions for the local minimization
problems (8a), when aggregated for all agents, are
equivalent to the KKT conditions of the original prob-
lem (5). Then, due to strict convexity of both (8a) and
(5), the primal and dual solutions are unique, and the
equivalence between the optimal dual variables fol-
lows. We write the optimal primal and dual variables
of (5) as ({x⋆

i }i∈M, {λ⋆
i }i∈M, {µ⋆

i }i∈M), and the op-
timal primal and dual variables of (8a) for agent i,

at convergence of ADMM, as (x⋆
i , {x

(i),⋆
j }j∈Ni , λ̂

⋆
i , µ̂

⋆
i ).

Primal variable equivalence is given by Proposition 1,
i.e., the x⋆

i ’s are equivalent for both problems. Also,
optimal local copies are equal to their true values

{x(i),⋆
j }j∈Ni

= {x⋆
j}j∈Ni

i ∈M. (B.1)

First, we state the KKT conditions of (5). These are

hi(x
⋆
i , {x⋆

j}j∈Ni
) ≤ 0 i ∈M

gi(x
⋆
i , {x⋆

j}j∈Ni
) = 0 i ∈M (B.2a)

λ⋆
i ≥ 0 i ∈M (B.2b)

λ⋆,⊤
i hi(x

⋆
i , {x⋆

j}j∈Ni
) = 0 i ∈M (B.2c)

∇x

( ∑
i∈M

Fi(xi, {xj}j∈Ni
) + λ⊤

i hi(xi, {xj}j∈Ni
)

+ µ⊤
i gi(xi, {xj}j∈Ni

)
)
| {(xi,λi,µi)}i∈M
={(x⋆

i ,λ
⋆
i ,µ

⋆
i )}i∈M

= 0,

(B.2d)

where x = (x⊤
1 , . . . , x

⊤
M )⊤. Now consider the composi-

tion of the KKT conditions of each agent’s local mini-
mization (8a). First, primal feasibility, dual feasibility,

and complementary slackness for agent i:

hi(x
⋆
i , {x

(i),⋆
j }j∈Ni

) ≤ 0, gi(x
⋆
i , {x

(i),⋆
j }}j∈Ni

) = 0,

λ̂⋆
i ≥ 0, λ̂⋆,⊤

i hi(x
⋆
i , {x

(i),⋆
j }j∈Ni

) = 0.

(B.3)
Inserting the equivalence (B.1) into (B.3), we find that
the composition of these conditions for all agents are
the original problem’s conditions (B.2a) - (B.2c).

For ease of exposition in showing the equivalence of
the stationarity conditions, let us define

Fi(xi, {xj}j∈Ni , λi, µi) = Fi(xi, {xj}j∈Ni)

+ λ⊤
i hi(xi, {xj}j∈Ni) + µ⊤

i gi(xi, {xj}j∈Ni).
(B.4)

Moreover, we group the primal and dual variables as
p = ({xi}i∈M, {λi}i∈M, {µi}i∈M), such that the sta-
tionarity condition (B.2d) reads

∇x

( ∑
i∈M
Fi(xi, {xj}j∈Ni , λi, µi)

)∣∣∣
p=p⋆

= 0. (B.5)

By decomposing the derivative operator and consid-
ering each row l of (B.5) we have(

∂

∂xl

∑
i∈M
Fi(xi, {xj}j∈Ni

, λi, µi)

)∣∣∣∣
p=p⋆

= 0. (B.6)

Observing that ∂
∂xl
Fi(xi, {xj}j∈Ni , λi, µi) = 0 if i /∈

Nl ∪ l, from (B.6) we have(
∂

∂xl
Fl(xl, {xj}j∈Nl

, λl, µl)

)∣∣∣∣
p=p⋆

+
∑
i∈Nl

(
∂

∂xl
Fi(xi, {xj}j∈Ni

, λi, µi)

)∣∣∣∣
p=p⋆

= 0.

(B.7)
We highlight that the partial derivative terms within
the sum are not zero, as xl is one of the elements of
{xj}j∈Ni

. We will now show that the condition (B.7)
for each l can be reconstructed by a unique subset of
the KKT conditions arising in the agents’ local mini-
mizations. Consider the stationarity conditions of the
agents’ local minimizations. The primal and dual vari-

ables for agent i are grouped as pi = (x̃i, λ̂i, µ̂i). The
stationarity condition for agent i’s local minimization
can be written as

∇x̃i

(
Fi(xi, {x(i)

j }j∈Ni
, λ̂i, µ̂i)

+ yτ,⊤i x̃i +
ρ

2
∥x̃i − z̃τi ∥22

)∣∣
pi=p⋆

i

= 0.
(B.8)

Evaluating the derivative of the second term, we have

∇x̃i

(
Fi(xi, {x(i)

j }j∈Ni
, λ̂i, µ̂i)

)∣∣
pi=p⋆

i

+ yτi + ρ(x̃⋆
i − z̃τi ) = 0.

(B.9)

From Proposition 1, we have that at convergence of
ADMM, x̃⋆

i − z̃⋆i = 0. Decomposing the derivative
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operator we have

( ∂
∂xi

colj∈Ni(
∂

∂x
(i)
j

)

Fi(xi, {x(i)
j }j∈Ni

, λ̂i, µ̂i)

)∣∣∣∣∣
pi=p⋆

i

+

[
yτi

colj∈Ni(y
(i),τ
j )

]
= 0

(B.10)

We denote this as Ψi =
[
Ψ

(i),⊤
i col⊤j∈Ni

(Ψ
(i)
j )
]⊤

,

where Ψ
(i)
j is the row of (B.10) corresponding to the

partial derivative with respect to x
(i)
j . Let us sum all

rows of the agents’ local stationarity conditions which
correspond to the partial derivative with respect to
xl, or a copy of xl, to get

Ψ
(l)
l +

∑
i∈Nl

Ψ
(l)
i = 0. (B.11)

The result is equal to zero as each term in the sum is
zero. The sum expression reads

(
∂

∂xl
Fl(xl, {x(l)

j }j∈Nl
, λ̂l, µ̂l)

)∣∣∣∣
pl=p⋆

l

+
∑
i∈Nl

(
∂

∂x
(i)
l

Fi(xi, {x(i)
j }j∈Ni

, λ̂i, µ̂i)

)∣∣∣∣
pi=p∗

i

+ yτl +
∑
i∈Nl

y
(i),τ
l = 0,

(B.12)
where again we highlight that the partial derivative
terms in the sum are not zero, as l ∈ Ni. It is shown
in [5] that the sum of the dual ADMM variables corre-
sponding to the same global variables is zero after the

first iteration of the procedure, i.e., yτl +
∑

i∈Nl
y
(i),τ
l =

0, τ > 1. Hence, at convergence, we have

(
∂

∂xl
Fl(xl, {x(l)

j }j∈Nl
, λ̂l, µ̂l)

)∣∣∣∣
pl=p⋆

l

+
∑
i∈Nl

(
∂

∂x
(i)
l

Fi(xi, {x(i)
j }j∈Ni , λ̂i, µ̂i)

)∣∣∣∣
pi=p⋆

i

= 0.

(B.13)
Substituting the equivalence of the local copies (B.1)
and observing that

(
∂

∂x
(i)
l

Fi(xi, {x(i)
j }j∈Ni

, λ̂i, µ̂i)

)∣∣∣∣
pl=p⋆

l

=(
∂

∂xl
Fi(xi, {xj}j∈Ni

, λ̂i, µ̂i)

)∣∣∣∣
pl=p⋆

l

,

(B.14)

we obtain the equivalent stationarity condition from
the l-th row of (B.5). Repeating the sum in (B.11)
for each agent, we reconstruct the equivalent rows
of (B.5). We then have equivalence between the sta-

tionarity conditions on ({λ̂⋆
i }i∈M, {µ̂⋆

i }i∈M) and on
({λ⋆

i }i∈M, {µ⋆
i }i∈M). This concludes the proof.
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