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Eigenvalues of Time-invariant Max-Min-Plus-Scaling Discrete-Event

Systems

Sreeshma Markkassery1 Ton van den Boom2 and Bart De Schutter3

Abstract— This paper proposes an approach to find the
eigenvalues and eigenvectors of a class of autonomous max-
min-plus-scaling (MMPS) systems. First we show that time-
invariant, monotone and non-expansive MMPS systems with
only time variables has a unique structural eigenvalue and
eigenvector under some conditions. Then, we propose a mixed-
integer linear programming (MILP) algorithm to calculate
the eigenvalue and the corresponding eigenvector for such
systems. Finally, we present a modified linear programming
(LP) algorithm to find all the eigenvalues of a general time-
invariant MMPS system.

I. INTRODUCTION

Event-driven systems, such as large traffic networks, small

latches in a digital circuit, and production units form a major

class of dynamic systems. The dynamics of these systems

evolve with respect to some events and hence are called

discrete event systems (DES). Some examples of events are

the arrival of a train at a station in a railway network, a

voltage change at the input of a latch in a digital circuit, and

the arrival of raw material at a production unit.

Max-plus linear systems model DES involving only syn-

chronization [1]. Max-plus algebra and max-plus linear sys-

tems are thoroughly studied in [1], [2]. Max-plus linear

systems can model only a limited number of real-life DES.

Max-min-plus (MMP) systems can model synchronization

and competition in DES. They employ functions involving

max,min, and plus operations. MMP systems represent a

broader class of DES compared to max-plus linear systems.

Max-min-plus scaling (MMPS) systems introduced in [3]

are better-suited models for complex applications such as a

real-life railway network, production units, and clock sched-

ule verification problems in digital circuits. An explanation

of the applications of different operations (max, min, plus,

scaling) in DES can be found in [3]. MMPS systems can

be a model structure for approximating any DES (linear and

nonlinear) in max-plus algebra. There are very few articles

on MMPS systems in the literature and little research on the

dynamics of these systems.

Studies on MMP systems can be found in [2], [4]–[7].

In the analysis of the dynamic behavior of a stable MMP

system, homogeneity and non-expansiveness play a key role
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[8]. Functions that are homogeneous, monotonic and non-

expansive in the l∞ norm are called topical functions [9].

MMP functions belong to the family of topical functions.

Homogeneity implies that if we shift all the events by same

amount of time, the dynamics of the system is not altered

i.e. the system is time-invariant. Most practical DES are

time-invariant. Monotonicity indicates that delaying some

events cannot speed up any other event. By adding a scaling

operation to an MMP function, we get an MMPS function.

Scaling can possibly make the system non-homogeneous and

expansive. Hence, a general MMPS function is not a topical

function.

The cycle-time vector and eigenvector are two significant

metrics of a DES. For example, in an asynchronous circuit,

the cycle-time indicates the average speed of the circuit [10].

In a railway network, an eigenvector (when it exists) can act

as a time-table [2]. The eigenvector can also be interpreted

as the equilibrium point of the DES. It can be proved that a

cycle-time vector of an MMP system (if it exists) is unique

using non-expansiveness [8]. When the cycle time vector has

identical components, the eigenvalue/asymptotic growth rate

of an MMP system exists and is equal to the component

value of the cycle-time vector [11].

Many algorithms exist in the literature that find the eigen-

values and corresponding eigenvectors of max-plus linear

and MMP systems [2], [12], [13]. The power algorithm is

the most popular among these. However, for MMPS systems,

especially when they are non-monotone, the power algorithm

can take a long time to converge. Moreover, it may not give

all the eigenvalues (when multiple eigenvalues exist) of a

general time-invariant MMPS system.

The main contributions of this article are as follows. We

propose an ABC canonical form for MMPS systems and

show that any MMPS system can be put in this form. We

derive conditions for the MMPS system in ABC canonical

form to be time-invariant, monotonic and non-expansive.

Then, we prove that time-invariant, monotonic and non-

expansive MMPS (topical MMPS) systems have a unique

eigenvalue and eigenvector when the system is elementary.

The following are the most important contributions of this

paper. First, we propose a mixed integer linear program-

ming (MILP) algorithm, which calculates the eigenvalue

and eigenvector of a topical MMPS system. Second, we

find a set of linear programming problems to calculate all

the eigenvalues and eigenvectors of a general time-invariant

MMPS system, which can be considered as a generalized

approach.

Here is the outline of the paper. In Section II, the required



mathematical preliminaries are presented. In Section III, the

conditions on the MMPS system in the ABC canonical form

to have the time-invariance, monotonicity and non-expansive

properties are discussed. In Section IV, the proof for the

existence of a unique structural eigenvector and eigenvalue

for the topical MMPS systems is given. A novel MILP

algorithm is proposed to find the eigenvalue and eigenvector

via a transformation of MMPS system. In Section V, the

MILP algorithm is modified to a collection of linear program-

ming problems to find all the eigenvalues of a general time-

invariant MMPS system. The paper is concluded in Section

VI.

II. MATHEMATICAL PRELIMINARIES

In this paper we consider regular MMPS systems that are

explicit, time-invariant, and autonomous with state x(k) that

have the dimension of time and k is an event counter. The

states of the system keep growing linearly at each event as

they are the time at which the k-th event occur (e.g. time of

arrival of k-th train at a station).

Define ⊤ = ∞, ε = −∞, R⊤ = R ∪ {∞}, Rε = R ∪
{−∞}, and Rc = R ∪ {∞} ∪ {−∞}. Often we use the

notation R to denote either R, Rε, R⊤ or Rc. The notations

1 and 0 are used to denote the vector with all components

equal to one and the zero vector of appropriate dimension,

respectively.

From max-plus and min-plus algebra, we adopt the fol-

lowing notation for matrices A,B ∈ Rm×n and C ∈ Rn×p:

[A⊕B]ij=max([A]ij , [B]ij), [A⊗C]ij=max
k

([A]ik+[C]kj)

[A⊕′B]ij=min([A]ij , [B]ij), [A⊗′C]ij=min
k

([A]ik+[C]kj)

Definition 1. Given the vector v ∈ R
n, we define a max-plus

diagonal matrix, d⊗(v) and the min-plus diagonal matrix,

d⊗′(v)

d⊗(v)=









v1 ε · · · ε

ε v2
...

...
. . .

...

ε · · · · · · vn









, d⊗′(v)=









v1 ⊤ · · · ⊤

⊤ v2
...

...
. . .

...

⊤ · · · · · · vn









Then the inverse max-plus diagonal matrix is d⊗(−v)
and inverse min-plus diagonal matrix is d⊗′(−v). The n-

dimensional max-plus identity matrix E = d⊗(0) and min-

plus identity matrix is T = d⊗′(0).

Definition 2 ( [2]). A matrix A ∈ Rn×m is said to be regular

if A has at least one finite element in each row.

Definition 3 ( [6]). A general MMP system can be repre-

sented as the following canonical form.

y(k) = B ⊗′ x(k − 1), x(k) = A⊗ y(k) (1)

where B ∈ R
m×n
⊤ , A ∈ R

n×m
ε , x ∈ Rn, y ∈ Rm.

Definition 4 ( [3]). A max-min-plus-scaling (MMPS) func-

tion f : Rm → R of the variables x1, . . . , xm ∈ R is defined

by the grammar

f := xi|α|max(fk, fl)|min(fk, fl)|fk + fl|β · fk,

where α ∈ R, β ∈ R are some scalars and fk, fl are MMPS

functions. For vector-valued MMPS functions the above

statements hold component wise. (Or alternatively, αi,j are

matrices, and βi,j are vectors). This definition is the ‘Backus-

Naur’ form from computer science where the vertical bars

separate the different ways by which the function can be

recursively constructed.

Definition 5. Max-min-plus-scaling system. A max-min-plus-

scaling (MMPS) system is described by a state-space model

of the form

x(k) = f(x(k − 1)),

where x ∈ Rn is the state and f is a vector-valued MMPS

function in the variables x and k ∈ Z
+.

Inspired from the canonical form of MMP systems (1), we

propose the following definition for an MMPS system.

Definition 6. (ABC canonical form) Consider the following

system:

x(k) = A⊗ (B ⊗′ (C · x(k − 1))) (2)

This system is an MMPS system in the ABC canonical form

for some matrices A ∈ R
n×m
ε , B ∈ R

n×p
⊤ and C ∈ R

p×n.

Proposition 1. Any MMPS system can be written in the ABC

canonical form.

Proof. A general MMPS system can be written in a disjunc-

tive canonical form [14] as follows.

x(k) = max
i=1,...,n

min
j={1,...,mi}

(σT
j x(k − 1) + ρj) (3)

for some integers n,m1,m2, . . . ,mn, vectors σj and real

numbers ρj . Now define

z(k) =





σT
1 x(k − 1)

· · ·
σT
Px(k − 1)



 = C · x(k − 1)

Here P is the total number of distinct σj vectors. Now we

obtain x(k) = F (z(k)) where F is a max-min-plus function.

This function can now be written [6] as

x(k) = A⊗ (B ⊗′ z(k))

resulting in

z(k)=C ·x(k − 1), y(k)=B⊗′z(k), x(k)=A⊗y(k) (4)

Note that the ρj in (3) will appear as entries in the matrices

A and B.

Definition 7. (Homogeneous, monotone and non-expansive

system) Consider a system x(k + 1) = f(x(k)).
The system is called homogeneous if there holds:

f(x+ α1) = f(x) + α1

for any α ∈ R.

A system is called monotone if there holds:

if x ≤ y then f(x) ≤ f(y)

A system is called non-expansive in l-norm if there holds:

‖f(x)− f(y)‖l ≤ ‖x− y‖l



A homogeneous, monotonic and non-expansive MMPS

system will be referred as a topical MMPS system.

III. TOPICAL MMPS SYSTEM

Definition 8. A system x(k + 1) = f(x(k)) where x is a

time signal is time-invariant if for any τ ∈ R there holds

x(k + 1) + τ1 = f(x(k) + τ1)

This means that an MMPS system is time-invariant if and

only if it is homogeneous.

A. Time-Invariant MMPS systems

Time-invariance in MMPS is defined with respect to state

x(k). Here k is only an event counter and has nothing to do

with the time-invariance (unlike in discrete-time systems).

An MMP function is always homogeneous [11]. Let f define

an MMP system. Then from (1)

x(k) = f(x(k − 1)) = A⊗ (B ⊗′ x(k − 1))

Homogeneity implies that

f(x(k − 1) + h1) = f(x(k − 1)) + h1

A⊗(B⊗′(x(k − 1)+h1))=A⊗ (B⊗′x(k − 1))+h1.
(5)

Lemma 1. An MMPS system as in Definition 6 is time-

invariant if and only if
∑

j

cij = 1, ∀i where cij are the

components of the matrix C.

Proof. Consider the MMPS system in the ABC canonical

form (2). For the MMPS system we have

A⊗ (B⊗′(C · (x(k − 1) + h1)))

=A⊗ (B ⊗′ (C · x(k − 1) + C · h1)) (6)

From (5), the equation (6) is equal to

A⊗ (B ⊗′ (C · x(k − 1))) + C · h1

So the MMPS system is homogeneous when C · h1 = h1.

This is true if and only if each row of C adds to 1. That is,
∑

j

cij = 1, ∀i.

B. Monotonicity of MMPS systems

Lemma 2. An MMPS system is monotonic if and only if

cij ≥ 0 ∀i, j.

Proof. The ‘if’ part can be directly proved from the mono-

tonicity of MMP systems. Assume that x(k−1) ≤ y(k−1).
As the MMP system is monotonic [11], we have

A⊗ (B ⊗′ x(k − 1)) ≤ A⊗ (B ⊗′ y(k − 1))

An MMPS system is monotonic if

A⊗ (B ⊗′ (C.x(k − 1))) ≤ A⊗ (B ⊗′ (C.y(k − 1)))

This is true if C.x(k − 1) ≤ C.y(k − 1). which is satisfied

when cij ≥ 0 ∀i, j.

The ‘only if’ condition can be easily seen using any

counter-example where cij < 0.

C. Non-expansiveness of time-invariant MMPS systems

Lemma 3. A time-invariant MMPS function is non-expansive

if and only if |cij | ≤ 1 ∀i, j.

Proof. The ‘if’ part can be proved using the result of the

non-expansive property of an MMP system [11]. Consider

the MMP system defined as in (1). Since the MMP system

is non-expansive,

‖A⊗ (B ⊗′ x(k − 1))−A⊗ (B ⊗′ y(k − 1))‖ ≤

‖x(k − 1)− y(k − 1)‖

‖A⊗ (B ⊗′ (x(k − 1)− y(k − 1))‖ ≤

‖x(k − 1)− y(k − 1)‖

Note that the operations + and − are distributive over ⊗,⊗′

[2]. The ‖.‖ here is the ∞- norm. Now consider the MMPS

system as in (6). This system is non-expansive when

‖A⊗ (B ⊗′ (C.(x(k − 1)− y(k − 1)))‖ ≤

‖x(k − 1)− y(k − 1)‖ (7)

Let w(k−1) = x(k−1)−y(k−1). Equation (7) is true when

‖C.w(k−1)‖ ≤ ‖w(k−1)‖. Let us first take the case where

all |cij | ≤ 1. Then
∑

j

cijwj(k − 1) ≤ max(|wi(k − 1)|) ∀i.

The ‘only if’ condition can be easily seen using any counter-

example where |cij | > 1.

Note that if the MMPS system is homogeneous and

monotonic, it is also non-expansive which can be deduced

from Lemmas 1 and 2.

IV. EIGENVALUE AND EIGENVECTOR OF A TOPICAL

MMPS SYSTEM

Definition 9. (Eigenvalue, eigenvector) The time-invariant

DES, x(k) = f(x(k − 1)), x ∈ Rn and f : Rn → Rn

is said to have an additive eigenvalue if there exists a real

number λ ∈ R and a vector v ∈ R
n such that

f(v) = v + λ1.

The scalar λ is then called an eigenvalue and the vector

v is called a corresponding eigenvector. Further, if v is an

eigenvector, v + h1 is also an eigenvector for any h ∈ R.

The eigenvalue of an MMPS system is the rate at which the

system grows. If the existence of eigenvalue of the system

depends only on the structure of the system matrices A,B,C,

then it is called structural eigenvalue of the system [15]. This

means that the existence of an eigenvalue is not affected by

any finite numerical changes in the system matrices.

Definition 10. An MMPS system is called elementary, if for

each i ∈ {1, . . . , n} and for each j ∈ {1, . . . ,m}, at least

one of the two entries aij , bji is finite and cij 6= 0 if aij = ε.

Proposition 2. (Topical MMPS system) A topical MMPS

system characterized by matrices A,B,C has a structural

eigenvalue and eigenvector if and only if A,B are regular

and elementary.

Proof. The proof is similar to that of Theorem 15 in [16].

Even though the theorem in [16] is stated with respect to



a bipartite MMP system, it can be seen that the proof is

applicable for topical MMPS systems as well. The proof

shows any system satisfying homogeneity, monotonicity and

non-expansiveness has a unique structural eigenvalue under

the conditions stated in the above proposition.

Remark 1. In [16], the term fixed-point is used in the proof

instead of the term eigenvector.

For the computation of the eigenvalue and eigenvector of a

topical MMPS system we discuss two algorithms, the power

algorithm inspired from the power algorithms for max-plus

and max-min-plus systems and the MILP algorithm.

Algorithm 1. (Power algorithm [15]) To compute the eigen-

value and eigenvector of a system we can use the power

algorithm.

1) Take an arbitrary initial vector x(0) = x0 6= ε1; that

is, x0 has at least one finite element.

2) Iterate x(k) = f(x(k−1)) until there are integers p, q
with p > q ≥ 0 and a real number c, such that x(p) =
x(q) + c1, i.e., until a periodic regime is reached.

3) Compute the eigenvalue as λ = c/(p− q).
4) Compute the eigenvector as v = 1

p−q

∑p−1

j=q

x(j)

Before we introduce the MILP to compute the eigenvalue

and eigenvector we first introduce the normalized MMPS

system.

A. Normalized MMPS representation

Given a time-invariant, monotone, non-expansive MMPS

system

z(k)=C ·x(k − 1), y(k)=B⊗′z(k), x(k)=A⊗y(k) (8)

where x ∈ R
n, z ∈ R

p, y ∈ R
m, A ∈ R

n×m
ε , B ∈ R

m×p
⊤ ,

and C ∈ R
p×n. Let the system (8) has an eigenvalue λ and

eigenvector (xT
e , y

T
e , z

T
e )

T . Then the system satisfies

ze = C · (xe − λ1), ye = B ⊗′ ze, xe = A⊗ ye

Define Aλ = [A]ij − λ ∀i, j and xe,λ = xe − λ1, then

ze = C · xe,λ, ye = B ⊗′ ze, xe,λ = Aλ ⊗ ye. (9)

Now we define

X = d⊗(xe,λ), X−1 = d⊗(−xe,λ)

Y = d⊗(ye), Y −1 = d⊗(−ye)

Y ′ = d⊗′(ye), (Y ′)−1 = d⊗′(−ye)

Z ′ = d⊗′(ze), (Z ′)−1 = d⊗′(−ze)

(10)

Then we have,

X−1 ⊗ xe,λ = 0 Y −1 ⊗ ye = 0

(Y ′)−1 ⊗′ ye = 0 (Z ′)−1 ⊗′ ze = 0
(11)

By applying the matrices (10) to equation (9), we get

X−1 ⊗ xe,λ = X−1 ⊗Aλ ⊗ ye

= X−1 ⊗Aλ ⊗ Y
︸ ︷︷ ︸

Ã

⊗Y −1 ⊗ ye

Y −1 ⊗′ ye = (Y ′)−1 ⊗′ B ⊗′ ze

= Y −1 ⊗′ B ⊗′ Z
︸ ︷︷ ︸

B̃

⊗′(Z ′)−1 ⊗′ ze

(12)

From equation (11) and (12) we get the following:

0 = B̃ ⊗′
0, 0 = Ã⊗ 0 (13)

Consider the normalized MMPS system,

z̃(k)=C ·x̃(k − 1), ỹ(k)=B̃⊗′ z̃(k), x̃(k)=Ã⊗ỹ(k) (14)

This system has an eigenvalue λ̃ = 0 and eigenvector,

ṽe = (x̃T
e , ỹ

T
e , z̃

T
e )

T = (0T ,0T ,0T )T . When initialized at

this eigenvector, ṽe, the states of the normalized system stay

at zero. Furthermore, there holds:

x(k) = x̃(k) + (kλ)1+ xe, y(k) = ỹ(k) + (kλ)1+ ye

z(k) = z̃(k) + (kλ)1+ ze

Based on (13) we can conclude that

min
l
[B̃]jl = 0 ∀j, max

j
[Ã]ij = 0 ∀i (15)

Hence, there exist variables pjl ∈ {0, 1} and qij ∈ {0, 1}
such that

[B̃]jl ≤ M (1− pjl) ∀j, l,
∑

l

pjl ≥ 1 ∀j (16)

[Ã]ij ≥ −M (1− qij) ∀i, j,
∑

j

qij ≥ 1 ∀i (17)

where M is a large positive number. Note that the inequalities

(16) guarantee that in every row of B̃ there is at least one

zero. Similarly, the inequalities (17) guarantee that in every

row of Ã there is at least one zero [17].

Let the variables λ and (x, y, z) stand for the unknown

eigenvalue end eigenvector respectively, then from (12)

[B̃]jl = Bjl − yj + zl, [Ã]ij = Aij − λ− xi + yj

The unknown values λ and (x, y, z) can be computed

by solving the mixed-integer linear programming problem

(MILP).

Algorithm 2. (Eigenvalues and eigenvectors of a topical

MMPS system - MILP)

min
x,y,z,p,q

λ

subject to yj − zl ≤ Bjl ∀j, l

−yj + zl +M pjl ≤ −Bjl +M ∀j, l

−λ− xi + yj ≤ −Aij ∀i, j

λ+ xi − yj +M qij ≤ Aij +M ∀i, j

−
∑

l

pjl ≤ −1 ∀j, −
∑

j

qij ≤ −1 ∀i

z = C · x



In case any Aij = ε (or any Bjl = ⊤), the corresponding

constraint can be omitted from the MILP and then the pjl
(or qij) related to that constraint should be set to zero.

Remark 2. The above MILP algorithm can also be used for

computing the eigenvalue and eigenvector of an MMP system

by choosing C as an identity matrix making z(k) = x(k).

Example 1. Given a topical MMPS system in ABC canonical

form with

A =

[
10 5
3 2

]

, B =

[
8 8
5 4

]

, C =

[
0.8 0.2
0.4 0.6

]

By solving the MILP we obtain

λ = 13.8 ve =
[
7 0 10.8 6.8 5.6 2.8

]T

By solving power algorithm, we get the same eigenvalue and

a shifted eigenvector,

vep =
[
87 80 90.8 86.8 85.6 82.8

]T
= ve + (80)1

By using (10), we get

X=d⊗(xe,λ)=

[
7 ε
ε 0

]

, Y =d⊗(ye) =

[
10.8 ε
ε 6.8

]

Y ′=d⊗′(ye) =

[
10.8 ⊤
⊤ 6.8

]

, Z ′=d⊗′(ze)=

[
5.6 ⊤
⊤ 2.8

]

Then from (12), we get

B̃ =

[
2.8 0
3.8 0

]

, Ã =

[
0 −9
0 −5

]

It can be verified that B̃⊗′
0 = 0, and Ã⊗0 = 0. Note that

every row of Ã and every row of B̃ contains at least one

zero.

V. EIGENVALUES OF GENERAL TIME INVARIANT MMPS

SYSTEMS

Multiple eigenvalues might exist for a general time-

invariant MMPS system. Then, for every eigenvalue λs

with eigenvector vs = (xT
s , y

T
s , z

T
s )

T , we can compute a

corresponding normalized system (Ãs, B̃s, C) such that

0 = B̃s ⊗
′
0, 0 = Ãs ⊗ 0.

We define the matrices FAs
∈ R

n×m
ε , FBs

∈ R
m×p
⊤ as

follows:

[FAs
]ij=

{

0 if [Ãs]ij = 0

ε if [Ãs]ij < 0
, [FBs

]jl=

{

0 if [B̃s]jl = 0

⊤ if [B̃s]jl > 0

The matrices FAs
and FBs

are called the structure matrices

for the eigenvalue λs. Different pairs of structure matrices

may give rise to different eigenvalues. Let there be S
eigenvalues λs, s = 1, . . . , S with structure matrices FAs

and FBs
. Every structure matrix, FAs

consists of n rows of

an m ×m max-plus identity matrix, E and every structure

matrix FBs
consists of m rows of an p×p min-plus identity

matrix, T . So the number of possible structure matrices

FA is less than or equal to mn. Similarly, the number of

possible structure matrices FB is less than or equal to pm.

Therefore the number of eigenvalues is always smaller or

equal to mnpm. Typically many entries of A and B will

be ε or ⊤ respectively. This will decrease the number of

possible structure matrices dramatically. As a consequence,

the maximum number of eigenvalues will also decrease.

The algorithm for finding an eigenvalue and the corre-

sponding eigenvector for a general time-invariant MMPS

reduces to a linear programming problem (LPP). Based on

the location of zeros in the structure matrices FA and FB ,

some of the inequalities change to equalities:

yj − zl = Bjl ∀j, l s.t. [FB ]jl = 0

λ+ xi − yj = Aij ∀i, j s.t. [FA]ij = 0

Algorithm 3. (Eigenvalues & eigenvectors of a general time-

invariant MMPS system using a set of LPP)

min
x,y,z

λ

subject to yj − zl ≤ Bjl ∀j, l s.t. [FB ]jl = ⊤

−yj + zl = Bjl ∀j, l s.t. [FB ]jl = 0

−λ− xi + yj ≤ −Aij ∀i, j s.t. [FA]ij = ε

λ+ xi − yj = Aij ∀i, j s.t. [FA]ij = 0

z = C · x

For a topical MMPS system, only one pair of structure

matrices gives a feasible solution for the MILP. For the

eigenvalue in example 1, the structure matrices FA and FB

are given by

FA =

[
0 ε
0 ε

]

, FB =

[
⊤ 0
⊤ 0

]

Note that the structure of structure matrices FA, FB is

similar to that of the normalized system matrices Ã, B̃. For

time-invariant MMPS systems, distinct structure matrix pairs

might give rise to different eigenvalues. It is possible that

some pairs are invalid, i.e. the linear programming problem

corresponding to these matrices is infeasible.

Example 2. Consider the time-invariant MMPS system in

ABC canonical form with system matrices,

A=





9 5
2 6
2 10



 , B=

[
8 3 9
5 8 2

]

, C=





−0.75 1.75 0
1.2 0.8 −1
−0.4 −0.4 1.8





Note that the system is non-monotone and expansive as some

of the elements in the C matrix are negative and some

are greater than one. By solving the linear programming

problems (in this case 23 × 32 = 72 LPPs) for all possible

pairs of the structure matrices, we found three distinct

eigenvalues and associated eigenvectors

λ1 = 8.8 λ2 = 8.6316 λ3 = 6.5

v1 =
[
0 1 5 −1.2 3.8 1.75 −4.2 8.6

]T

v2 = [0.5263 − 2.6316 1.3684 · · ·

· · · 0.1579 0 − 5 − 2.8421 3.3053]T

v3 = [0 − 6 − 2 − 2.5 − 5.5 − 10.5 − 2.8 − 1.2]T
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Fig. 1: Growth rate of state x1 and x̃1 of MMPS system from

the example 2 initialized at different eigenvectors, v1, v2, v3.

The structure matrices associated with eigenvalues,

λ1, λ2, λ3 are

FA1
=





ε 0
ε 0
ε 0



 , FB1
=

[
⊤ 0 ⊤
⊤ 0 ⊤

]

FA2
=





0 ε
ε 0
ε 0



 , FB2
=

[
⊤ 0 ⊤
0 ⊤ ⊤

]

FA3
=





0 ε
ε 0
ε 0



 , FB3
=

[
0 ⊤ ⊤
0 ⊤ ⊤

]

The MMPS system in above example can be normalized

with different eigenvalues. The normalized system, corre-

sponding to an eigenvalue (say λ1), initialized at zero will

be equivalent to the original MMPS system initialized at the

corresponding eigenvector (v1).

Figure 1a shows the three different growth rates of state

x1(k) that corresponds to the original MMPS system. Figure

1b shows the states of three normalized systems, x̃1,λ1
(k),

x̃1,λ2
(k), and x̃1,λ3

(k) that corresponds to the eigenvalues

λ1, λ2, and λ3 respectively. The original MMPS system is

initialized at three eigenvectors (associated to λ1, λ2, λ3),

v1, v2 and v3 respectively. All three normalized systems are

initialized at zero.

It can be observed from Figure 1a that the state x1(k)
continues to grow with the same rates λ1 and λ3 when

initialized at v1 and v3, respectively. When started at v2,

the state grows at rate λ2 for some time and jumps to rate

λ3. This might be because the eigenvalue, λ2 is unstable.

Figure 1b supports this premise. As discussed in section IV,

when the normalized system is initialized at zero, the states

stay at zero. We see that the state of normalized systems that

are derived with eigenvalues λ1 and λ3 stays at zero while

the state of the normalized system, which is derived from λ2

is growing. Due to the small numerical error in MATLAB

calculations, the normalized system derived with λ2 deviates

from its eigenvector, 0. This causes the state x̃1,λ2
to grow

due to the instability of the eigenvalue, λ2. The stability of

eigenvalues of a general time-invariant MMPS system will

be studied in detail in our future research.

Note that power algorithm for this example cannot find the

unstable eigenvalue, λ2. Also, multiple iterations of power

algorithm with random initial conditions are required to find

all the stable eigenvalues.

VI. CONCLUSIONS

In conclusion, this study is aimed at understanding the

properties of MMPS systems via the analysis of the eigen-

values and eigenvectors of the system. Our analysis has

shown a method to find the eigenvalues and eigenvectors

for different classes of MMPS systems. The insights from

this study are important to establish a framework of stability

for these classes of systems.
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