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Abstract

Humans and autonomous vehicles will jointly use the roads in smart cities.
Therefore, it is a requirement for autonomous vehicles to properly handle the in-
formation and uncertainties that are introduced by humans (e.g., drivers, pedes-
trians, traffic managers) into the traffic, to accordingly make proper decisions.
Such information is commonly available as linguistic, fuzzy (non-quantified)
terms. Thus, we need mathematical modeling approaches that, at the same
time, handle mixed (i.e., quantified and non-quantified) data. For this, we in-
troduce novel type-2 sets and membership functions to translate such mixed
traffic data into mathematical concepts that handle different levels and types of
uncertainties and that can undergo mathematical operations. Next, we propose
rule-based data processing and modeling approaches to exploit the advantages
of these sets. This is inspired by the rule-based reasoning of humans, which
has proven to be very effective and efficient in various applications, especially
in traffic. The resulting models, hence, handle more than one level and type
of uncertainty, which results in precise estimations of traffic dynamics that are
comparable in accuracy with similar analyses if only one level of uncertainty
(either probabilistic or fuzzy) would exist in the dataset. This will significantly
improve the analysis, prediction, management, and safety of traffic in future
smart cities.

Keywords: Traffic modeling; fuzzy and probabilistic uncertainties;
human-centered autonomous driving.

1. Introduction

Autonomous vehicles are key elements of future transportation systems [1].
These vehicles must navigate efficiently and safely in smart cities, interacting
with pedestrians, cyclists, and other (autonomous or human-driven) vehicles.
In fact, safety is crucial to ensure that autonomous vehicles will be deployed,
accepted, and used [2, 3]. Understanding human users of the roads is essential
for safety of autonomous vehicles [4, 5, 6]. Humans introduce uncertainties
to the traffic dynamics, especially based on their cognitive states [7]. Human
drivers intuitively perceive and take into account such psychologically-driven
variations in the behavior of other drivers and pedestrians [8, 9].
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Model-based control methods [10] can potentially steer autonomous vehicles
based on predictions of the behavior of other people on the road, so that safety
is guaranteed and various objectives (e.g., reduced congestion and emissions
[11, 12]) are obtained.

When reliable, large-scale statistical data from systems or processes is avail-
able, generating probability density functions and employing them in the mod-
eling of those systems and processes have effectively been considered for a long
time in different fields. Modeling based on statistically sound data, however,
requires to perform a large number of controlled tests and to collect and statis-
tically analyze the resulting large datasets [13]. Moreover, the resulting models
may still suffer from lack of robustness to uncertainties due to unmodeled sce-
narios. Crucially, such models may face the following issues: First, they are not
capable of interpreting newly received information/data that involves fuzziness
and that has not been (extensively) calibrated or filtered yet, i.e., is given in
vague human terms. An example of this is: Driver A is very frustrated. Sec-
ond, these models are not capable of interpreting information/data that does
not (in a probabilistic sense, where the likelihoods of complementary events add
up to 1) comply with complementary events. An example of this is: Pedestrian
B reports that all vehicles in area C are driving high speed, whereas driver D
reports that some vehicles in area C drive with an average speed.

These excellently motivate the use of fuzzy logic, which has been proposed
to handle such lack of precision and consistency in the data that is collected
from humans, and the integration of heuristic and statistical knowledge, espe-
cially for an application like traffic, where a large number of effective heuristic
rules for interpretation and modeling of the processes exists. Moreover, novel
approaches that incorporate human-like (logical) reasoning into traffic contexts,
especially those that have not been reproduced in controlled test environments,
are of significant value [14, 15, 16]. Fuzzy logic has proven to be one of the
strongest mathematical tools for modeling human perception, cognition, and
decision making [17]. While fuzzy sets of type-1 and type-2 handle, respec-
tively, one and two levels of fuzzy uncertainties, systematic incorporation of
both probabilistic and fuzzy uncertainties in one model is a challenge. Thus,
in this paper, we will close this gap by introducing type-2 sets that incorpo-
rate both probabilistic and fuzzy uncertainties, and by introducing rule-based
models that apply such combined sets for dynamical systems, e.g., for traffic.

This paper is organized as follows: The rest of this section covers the main
contributions of the paper and provides a brief preliminary discussion about
fuzzy sets. Section 2 introduces the novel concepts of probabilistic-fuzzy and
fuzzy-probabilistic sets for representing data with multiple levels and types of
uncertainties. Section 3 proposes a dynamic model that processes such data
to estimate and predict the dynamics of the system. We also explain an iden-
tification procedure for these type-2 models. Section 5 gives the results of a
case study. Finally, Section 6 concludes the paper and suggests some topics for
future research.

Table 1 gives the most frequently used mathematical symbols and notations
used throughout the paper. Scalar variables have been shown by a regular italic
font, whereas for vector variables a bold italic font has been used. Indices of
the variables (e.g., the position of that variable in a vector or the index of the
system that the variable belongs to) have been indicated as subscripts for those
variables. Linguistic terms that may specify or distinguish these variables from
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Table 1: Mathematical symbols and notations frequently used throughout the paper

us(k) vector of all control inputs to system s for time step k

us,i(k) element i of control input vector us(k)
x
eval
s (k) vector of all evaluated (e.g., based on observations and/or measure-

ments) state variables of system s for time step k

xeval
s,i (k) element i of the evaluated state variable vector xeval

s (k)
x
est
s (k) vector of all state variables of system s estimated (via a model) for

time step k

xest
s,i (k) element i of the estimated state variable vector xest

s (k)
νs(k) vector of all uncontrolled inputs (i.e., external disturbances) to sys-

tem s for time step k

νs,i(k) element i of the uncontrolled input vector νs(k)
|xs| size of the state variable vector for system s

|us| size of the control input vector for system s

K set of all discrete time steps
K

eval
s set of all time steps when an evaluation of the state variable vector

is available for system s

K
id
s set of all identification time steps for system s

πs (k) the time step before time step k when the most recent information
about the evaluated state variable vector of system s exists

one another have been included with a non-italic font, as superscripts for the
variables. For instance, the superscript “eval” and “est” have been used to
distinguish the evaluated and estimated state variable vectors.

1.1. Road-map and main contributions

To summarize the core findings of the previous section and to provide a clear
road-map for the paper, note the following recapped information:

State-of-the-art of online traffic modeling. Analysis and modeling of traffic based
on data that is received online is mainly based on quantified data. In future
smart cities, however, traffic control centers and connected users will receive
various, heterogeneous data from different sources and with different represen-
tations. For instance, users of the roads may send a voice or text message about
their perception (in vague linguistic terms) of the neighboring traffic, whereas
historical data may be obtained from the cameras and other traffic sensors.

Open challenges. Data that is provided by humans in linguistic, fuzzy terms can
provide valuable insights about the current and expected states of the traffic,
and will thus contribute significantly to effective and efficient control of traffic
and to safety in autonomous driving. In most situations, received traffic data
involves both quantified and qualified information and uncertainties, whereas
current mathematical tools handle one type of uncertainty at a time.

Main contributions. Accordingly, the main contributions of the current paper
are:
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• we propose a generalization of type-2 fuzzy sets and membership functions,
via introducing probabilistic-fuzzy and fuzzy-probabilistic sets and mem-
bership functions, for precise representation and analysis of real-life traffic
data with both probabilistic and human-based (fuzzy) uncertainties;

• we formulate type-2 rules for human-centered modeling of road traffic
network, with (delayed and/or asynchronous) traffic measurements and
observations, where the resulting rule-based type-2 models can process
such combined probabilistic and human-based uncertainties;

• we provide an assessment of the proposed theoretical approaches via nu-
merical simulations for an urban traffic network.

Expected impact. The resulting analysis and modeling approaches will allow to
incorporate more than one level and type of uncertainty, resulting in precise
estimations that are comparable in accuracy with similar analyses if only one
level of uncertainty (either probabilistic or fuzzy) would exist in the dataset.
This not only improves the analysis of traffic, but will significantly contribute
to safety and autonomous control of traffic systems in smart cities.

1.2. Background of human behavior modeling in autonomous driving

End-to-end learning-based control, including (fully) convolutional neural
networks, with or without long-short-term memory [18, 19, 20, 21], has been
used for autonomous driving. This approach, which receives an input image to
generate a control signal for autonomous driving, requires a large dataset for
training its inner neural network.

In [22], a Bayesian neural network has been used that provides predictions
about navigation and localization based on GPS and image inputs. Bayesian
neural networks generally work based on the concept of probabilistic safety,
i.e., the probability that the generated control signal from the Bayesian neural
network keeps the vehicle safe [23, 24, 25]. Such predictions of safety, how-
ever, are still prone to uncertainties, since autonomous driving occurs in highly
dynamic environments that cannot comprehensively be modeled according to
only one level of quantified (i.e., probabilistic) uncertainties. In addition to
noisy measurements and a priori unknown scenarios, the mental states, particu-
larly, intentions of human users of the road cannot be measured (directly) [26].
Thus, various alternative approaches have been proposed, in order to incorpo-
rate such non-measurable or non-quantifiable human factors into the decision
making, thus traffic modeling, by autonomous vehicles. One of the most promis-
ing frameworks includes interaction models based on fuzzy logic [27, 28, 29].

Fuzzy-logic-based modeling and control systems are capable of emulating,
respectively, the cognitive procedure of humans (including drivers and pedes-
trians) in processing the environmental data for analyzing the environmen-
tal states and changes, and the heuristic knowledge processing and decision
making of experts/experienced drivers. Therefore, fuzzy-logic-based methods
are able to steer autonomous vehicles similarly to experts/experienced humans
[30, 31, 32, 33, 34, 35, 36]. A significant advantage of using fuzzy-logic-based
models in autonomous driving is the ability of accurately predicting the behavior
of human drivers, e.g., in lane shifting [37, 38, 39].
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Figure 1: Type-2 membership function in a discrete domain (for a detailed definition of the
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Table 2: Mathematical notations used in Section 1.3
x a (fuzzy) variable with domain X

f t1,p(·) a primary type-1 membership function defined on the domain X

and returning a value from [0, 1]
f t1,s(·, ·) a secondary type-1 membership function defined on the domain

X× [0, 1] and returning a value from [0, 1]
x∗ a (fuzzy) element, i.e., a realization for x
µi,j primary (i = 1) or secondary (i = 2) membership degree for ele-

ment j
µ∗
i,j a realization for µi,j

1.3. Preliminary discussions

In fuzzy logic [40, 41], the concept of sets is generalized. More specifically,
while in classical logic an element either belongs to or does not belong to a
set, in fuzzy logic, partial membership to a set is allowed, i.e., the membership
degree to a set can be a value within [0, 1]. Thus, each fuzzy set is defined
by a membership function. Fuzzy sets are the most proper mathematical tools
for representing human-inspired uncertain perceptions and for processing non-
quantified (linguistic) data that has more than a unique possible quantification.

A fuzzy set that allows partial membership of elements, with certain degrees
of (partial) membership, is a type-1 fuzzy set. Type-2 fuzzy sets [42] additionally
handle multiple levels of uncertainties, i.e., similarly to type-1 fuzzy sets there
is uncertainty about whether or not an element belongs to the type-2 fuzzy set
(thus a primary membership degree in [0, 1] is assigned to each element) and
also this degree of membership is uncertain, i.e., there is a degree of certainty
within [0, 1] about the primary membership degree. Mathematically, with n

fuzzy type-2 sets defining the domain of element x∗, each primary membership
degree f

t1,p
i (x∗) ∈ [0, 1] for element x∗, with i ∈ {1, . . . , n}, corresponds to a

secondary membership degree f t1,s
i

(

x∗, f
t1,p
i (x∗)

)

∈ [0, 1], which represents the

level of certainty about the primary membership degree.
Membership functions of type-2 fuzzy sets are represented in a 3D space:

Figure 1 shows a discrete-time type-2 membership function, where three pri-
mary membership degrees µ1,1, µ1,2, and µ1,3 are proposed for x∗, with sec-
ondary membership degrees µ2,1, µ2,2, and µ2,3, respectively. An illustration
of a continuous-domain type-2 membership function with its secondary type-1
membership functions f t1,s(x∗, ·) defined for an arbitrary value x∗ is provided
in Figure 2, where the secondary type-1 membership function corresponds to
the intersection of the given type-2 fuzzy membership function with the plane
parallel to the µ1-µ2 plane through the point x∗.

In general, uncertainties may be probabilistic or fuzzy. When various pos-
sible realizations of an event or variable are complementary, i.e., their degrees
of certainty add up to 1, the uncertainty is probabilistic and these probabilities
are represented via probability density functions [43]. With fuzzy uncertainties,
different realizations of an event or variable do not necessarily add up to 1.
In other words, fuzzy interpretation of data allows to carry the uncertainties
through analyzing and processing a data, without limiting the possible realiza-
tion to a unique value. This is particularly important when associating a certain
interpretation to a human-based concept is either impossible or likely erroneous.

6



D

Figure 3: Illustration of a part of a traffic network: The yellow ellipse represents an au-
tonomous vehicle that should model the behavior of the front vehicle shown via a red ellipse,
where the front vehicle has destination “D”. The front vehicle may choose to continue its trip
in the direction of either of the black arrows shown in the figure.

Fuzzy logic, thus, allows analysis and mathematical operations on such data,
without the need to assign certainty to the realizations initially.

2. Probabilistic-fuzzy & fuzzy-probabilistic sets for traffic data

In this section, we expand the concept of type-2 fuzzy sets, in order to
represent various traffic uncertainties that should autonomously be processed
and modeled in smart cities. In other words, we focus on data that involve
both primary and secondary uncertainties, due to combined probabilistic and
human-based information that is involved in traffic phenomena.

Consider a vehicle at an intersection (see the red ellipse in Figure 3), where
the vehicle has a known destination (indicated by “D” in Figure 3), which is
feasible both if the vehicle turns right at the intersection and if it moves straight
ahead. An autonomous vehicle (see the yellow ellipse in Figure 3) behind this
vehicle may assign a probability to each of these events, based on the historical
observations about the behavior of vehicles with the same destination (e.g., 75%
to turning right and 25% to moving straight ahead). In case such historical
data is not available, or when incorporation of a human-centered approach is
of interest (e.g., including the mental states of the front driver in their decision
making) an intuitive (i.e., quantitative) approach may be used: For instance,
the driver is likely to change the destination due to being tired, or is very
unlikely to turn right due to the large number of traffic lights on its way.
While this data does not correspond to the historical observations, they reflect
a more human-inspired and human-centered interpretation. For efficient and
safe route planning, autonomous vehicles should deal with both historical and
human-inspired interpretation of data.

In particular, representing the environmental data, such that they incor-
porate both levels of uncertainty, i.e., probabilistic and fuzzy, and developing
models that handle such data, allow for analysis and decision making that simul-
taneously benefit from both historical knowledge and human-inspired intuition
in traffic. For instance, the autonomous vehicle can use the following data to an-
alyze the behavior of the front vehicle: “54% of drivers are very likely to change
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k − 1 k k + 1 k + 2 k + 3 k + 4 k + 5 k + 6 k + 7

Discrete time steps

Figure 4: Illustration of the discrete time steps, when the dynamics of the traffic network is
updated using a discrete-time modeling approach. The small red circles imply that information
(based on measurements or observations) about the state variable vector is available at that
time step. Note that collecting such information is not necessarily done periodically.

their destination when traffic is slow”, whereas “46% of drivers are likely to
move straight ahead”. In these statements, the primary uncertainty (expressed
via very likely and likely) is fuzzy (i.e., is based on a human-inspired ap-
proach), whereas the secondary uncertainty about the primary uncertainty is
probabilistic (i.e., is gathered via historical observations). This may be swapped
by having a probabilistic (historically known) primary uncertainty and a fuzzy
(human-inspired) secondary uncertainty. For instance, “many observations in-
dicate that 23% of the drivers change their destination and the rest turn right”,
whereas “some observations indicate that 77% of the drivers go straight ahead
and the rest turn right”. We mathematically represent such analyses of environ-
mental data in smart cities via, respectively, probabilistic-fuzzy (i.e., a primary
type-1 membership function and a secondary probability density function) and
fuzzy-probabilistic (i.e., a primary probability density function and a secondary
type-1 membership function) membership functions.

3. Type-2 knowledge-based dynamical models

Next, we formulate type-2 rules that can effectively be used as the basis of
dynamic mathematical models, to autonomously process uncertain (combined
probabilistic and fuzzy) data in smart cities and to make decisions based on
such data. We consider discrete-time models throughout the paper, as such dis-
cretization is common in both collecting traffic data and modeling the evolution
of the traffic states (see, e.g., [11, 44, 45, 46]). A discrete-time traffic model can
also perfectly match and feed a decision-making system for traffic that performs
based on a discrete-time framework.

We will consider various types of traffic data that may be collected within
smart cities, from both users and managers of the roads and the sensor and
measurement devices: for instance, historical and statistical data based on the
cameras and traffic detectors on the roads; fuzzy data and information that
is provided by large groups of participants about their regular driving habits
and their culture of using the roads (this procedure is performed in advance
and offline, and through, e.g., questionnaires and interviews); online data and
information (qualitative, quantitative, or combined) that sensors and humans
send out (to, e.g., a central control station) via their mobile phone, smartwatch,
or any other (simple) device or app that may be installed in their cars.

To provide a more realistic modeling approach for traffic, nonlinear dynam-
ics are modeled considering measurements and observations that are possibly
delayed. In other words, at time step k the state variable vector x

eval
s (πs (k))

that has been evaluated (i.e., has been described quantitatively, qualitatively,
or in a combined way) based on the most recent information captured at time
step πs (k) is used for system s, with πs (k) an integer, for which we have
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πs (k) < k. In general, πs (k) may change for each time step. For instance,
if at time step 10 the most recent information about the evaluated state vari-
able vector corresponds to time step 8 (i.e., πs (k) = k − 2 for k = 10),
and then at time step 11 no new information is received, then πs (11) = 8,
i.e., π(k) = k − 3 for k = 11. Figure 4 shows an example, where for var-
ious time steps, the time step when the most reliable measurement is avail-
able is the following: πs (k − 1) = πs (k) = πs (k + 1) = πs (k + 2) = k − 1,
πs (k + 3) = πs (k + 4) = k+3, and πs (k + 5) = πs (k + 6) = πs (k + 7) = k+5.

For system s with missing or delayed evaluations for the state variables at
time step k, the dynamics at this time step may be formulated as a function
of the most recent evaluated state variable vector, i.e., xeval

s (πs (k)), and of all
the control inputs that have affected the dynamics of the system from time step
πs (k) until time step k − 1.

Therefore, such systems possess an input-delayed dynamics formulation. A
logical “If-then” rule for modeling the dynamics of system s for time step k is,
in general, formulated by:

If x
eval
s

(

πs (k)
)

is

(

X̃1, . . . , X̃|xs|

)

and

us (πs (k)) is

(

Ũπs(k),1, . . . , Ũπs(k),|us|

)

and

. . . and

us(k − 1) is

(

Ũk,1, . . . , Ũk,|us|

)

,

then x
est
s (k) = f

(

θ
con
s (k),xeval

s (πs (k)) ,us (πs (k)) , . . . ,us(k − 1)
)

(1)

where the following definition holds in our mathematical notations:

x
eval
s

(

πs (k)
)

is

(

X̃1, . . . , X̃|xs|

)

⇔

xeval
s,1

(

πs (k)
)

is X̃1 and . . . and xeval
s,|xs|

(

πs (k)
)

is X̃|xs| (2)

and for κ = πs (k) , . . . , k − 1:

us(κ) is

(

Ũκ,1, . . . , Ũκ,|us|

)

⇔

us,1(κ) is Ũκ,1 and . . . and us,|us|(κ) is Ũκ,|us| (3)

Moreover, k ∈ K and πs (k) ∈ K
eval
s , where K

eval
s ⊆ K, and X̃1, . . . , X̃|xs| and

Ũκ,1, . . . , Ũκ,|us| are type-2 sets (that may be described by a probabilistic-fuzzy
or fuzzy-probabilistic membership function) that represent the uncertain ele-
ments of, respectively, xeval

s and us.
For instance, suppose that the state variable vector has one element, driving

aggression. Human users and managers of the road, who are the main sources
of evaluating this variable, usually consider no precise quantification for driving
aggression, and instead, perceive this variable based on their heuristics. Then,
the evaluation that is represented via “xeval

s,1

(

πs (k)
)

is X̃1” may correspond to
“recent observations imply with a certainty following a Gaussian probability
density function that the driving aggression on the roads has been high”.
Thus, X̃1 in this case is a probabilistic-fuzzy type-2 set with primary fuzzy and
secondary probabilistic uncertainties.
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In (1) and (3), the past control inputs may also be represented by type-2
sets, due to the source (e.g., human perception) of reporting the information cor-
responding to these inputs, or due to limiting the storage requirements, where
instead of recording the exact values, the data is stored under a limited num-
ber of linguistic categories (e.g., small, average, large). For instance, suppose
that the control input vector has one element, the maximum preferred driving
speed. The evaluation that is represented via “us,1(κ) is Ũκ,1” may corre-
spond to “based on most of the received reports, the vehicles on the road
followed a symmetric piece-wise linear probability density function, choosing a
maximum preferred driving speed in the range of [8, 13] meter per second”. This
implies that Ũκ,1 is a fuzzy-probabilistic type-2 set with primary probabilistic
and secondary fuzzy uncertainties.

Finally, in general f (·) in (1) is a nonlinear function, and θ
con
s (k) is a vector

containing the design parameters for function f(·) for time step k. This parame-
ter vector may in the course of running the model be re-identified for improving
the model precision.

Remark 1. A type-2 model of the system dynamics is composed of a rule base
with several logical rules of the form (1). Each rule may generate a different
value for an estimated state variable. The estimated value of that state variable
can be obtained via a linear combination of all the values produced by the various
rules.

Remark 2. In (1) in addition to the parameters that identify the outputs of the
rules, adaptive parameters θ

ant
s (k) may also be considered for the mathematical

formulation of the type-2 sets in the antecedent of the rules. More specifically,
the primary and secondary membership functions may involve tuning parameters
that will be fine-tuned whenever needed.

Remark 3. In general, each system s is also prone to uncontrolled inputs (i.e.,
external disturbances) denoted by νs(k). Disturbances in a traffic network could
refer to the changes in the state variables due to accidents or unexpected inflow
of vehicles to the network. In such cases in (1), the uncontrolled inputs and
their qualifications should be included similarly to the controlled inputs.

4. Parameter identification for type-2 models

For the type-2 model of system s that involves a rule base composed of rules
with formulation (1), the parameter vectors θant

s (k) and θ
con
s (k) per rule in the

rule base are identified or re-identified at the time steps in the set Kid
s . The most

recent element of Kid
s before the current identification time step ℓ is denoted by

πid
s (ℓ). Therefore, in (1) for πid

s (ℓ) ≤ k < ℓ, we have θ
con
s (k) = θ

ant
s

(

πid
s (ℓ)

)

and θ
ant
s (k) = θ

con
s

(

πid
s (ℓ)

)

.

4.1. Re-identification of the antecedent parameters

Re-identification of θant
s (πid

s (ℓ)) at time step ℓ may be done through a map-
ping on the most recently identified vector θant

s

(

πid
s (ℓ)

)

. Moreover, we consider
the set Lant

s (ℓ), which includes time step ℓ and a number of earlier time steps.
For a certain number of these time steps an evaluation of the state variable
vector should exist, i.e., Keval

s ∩ L
ant
s (ℓ) 6= ∅. Then, the set X

eval
s (ℓ) including
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x
eval
s

x
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s

ǫ
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s
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cumulative estimation error

θ
con
s

θ
con,up
s

Figure 5: Identification of the parameters of the type-2 model for system s via minimizing
the estimation error of the model. The estimation error

∥

∥

x
eval
s

− x
est
s

∥

∥ of the type-2 model
is denoted by ǫ

est
s

and for the sake of simplicity time steps are not indicated. In fact the
estimation error may be computed and accumulated within a time window and the accumu-
lated error will then be minimized. Moreover, the superscript “up” is used for the updated
consequent parameter vector.

the evaluated state variable vectors for all the time steps in K
eval
s ∩L

ant
s (ℓ), and

the set Us(ℓ) consisting of control input vectors for all these time steps are also
included in the mapping. Note that if uncontrolled inputs also exist, they may
also be included. We assume that all these inputs can be recovered (possibly
not as precise quantities, but via type-2 sets, as was explained in an example in
the third paragraph below (3)).

Then we have:

θ
ant
s (ℓ) = O

(

θ
ant
s

(

πid
s (ℓ)

)

,Xeval
s (ℓ),Us(ℓ)

)

(4)

with O (·) a generally nonlinear mapping (see, e.g., [47]). The definition and
parameters corresponding to the antecedent terms, especially the fuzzy mem-
bership functions, are largely dependent on the perceptions of the humans who
report this data. In practice, after a long enough interaction with the system
and collecting and analyzing such data, the identified parameters will remain
constant [48].

4.2. Re-identification of the consequent parameters

Re-identification of θcon
s (πid

s (ℓ)) at time step ℓ is based on the information
corresponding to the time steps in set Lcon

s (ℓ). This set includes time step ℓ and
a number of earlier time steps, where for a certain number of these time steps
an evaluation of the state variable vector exists. Therefore, we have K

eval
s ∩

L
con
s (ℓ) 6= ∅. The parameter vector θcon

s (πid
s (ℓ)) of the consequent of the type-2

rules for system s may be updated at time step ℓ, by minimizing, within time
window L

con
s (ℓ), the cumulative error of the reported evaluations of the state

variable vectors and these vectors when estimated by the type-2 model. For
instance, the following optimization problem may be solved to determine the
consequent parameter vector θcon

s (ℓ):

min
θcon
s (ℓ)

∑

κ∈(Keval
s ∩Lcon

s (ℓ))

∥

∥x
eval
s (κ)− x

est
s (κ)

∥

∥ (5)

where x
eval
s (κ) is retrieved from X

eval
s (ℓ), and x

est
s (κ) is estimated in the loop

of the optimization problem using (1) with θ
ant
s

(

πid
s (ℓ)

)

for the antecedent pa-
rameters if (4) is not run (yet) or with the updated vector θ

ant
s (ℓ) otherwise.

Moreover, the set Us(ℓ) that consists of control input vectors (recorded generally
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Figure 6: Detailed illustration of the identification procedure for type-2 models of system s.
The signals indicated by blue solid lines are activated when an evaluation (either qualified,
quantified, or a combination of both) of the state variable vectors is received. The signals
indicated by blue dash-dotted lines are activated when the ones indicated by the blue solid
signals are not activated. The signals indicated by dashed green lines correspond to the model
(re-)identification procedure and they are also activated at specific pre-set time steps k ∈ K

id
s

or at any time step at which the model evaluator notices, based on the estimation error ǫ
est
s

,
that an identification threshold ǭ has been exceeded. In this figure, the superscripts “up”
and “p” have been used for, respectively, “updated” and “past”. The other notations follow
the general notation rules of the paper, as given in Table 1, and also explained in detail in
Section 1.
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as type-2 sets) for all the time steps in the window of the optimization problem
is assumed to be available.

In general, (5) is a nonlinear constrained optimization problem, in case the
state variable vector should be bounded. To prevent the risk of infeasibility,
one may make the optimization loop unconstrained by relaxing the implicit
constraint that is defined on the optimization variable in (5), and by instead
constraining f(·) in (1), e.g., by saturating the output of this function. More-
over, since (5) is in general non-convex, a multi-start optimization solver, e.g.,
based on a genetic algorithm or pattern search, may be considered.

The identification procedure explained above has been simplified and illus-
trated in Figure 5: The difference between the state variable vector estimated
via the type-2 model for system s and its evaluation (via qualified, quantified,
or combined data) is shown by ǫ

e
s. With more details, Figure 6 shows the

type-2 model of system s. Three storage modules for the past evaluated state
variables and external disturbances, as well as the previously injected control
inputs (which are all distinguished in the figure via a superscript “p” for the
word “past”) are considered. These are needed, according to (1) and (5), to
re-identify the parameters of the type-2 model. Note that this data is in general
recorded including the probabilistic and fuzzy uncertainties using type-2 sets
introduced in Section 2. The control input policy that generates vector us is
illustrated within a dashed red rectangle in Figure 6. This controller receives
the past evaluations of the state variable vector (indicated by x

eval,p
s ) from the

state evaluation storage, as well as the current evaluated state variable vector,
indicated by x

eval
s , from the system. In case an evaluation is not available at

the current time step, the current state variable vector estimated by the type-2
model, and indicated by x

est
s , as well as the corresponding current and previ-

ous corresponding external disturbances (indicated, respectively, by νs and ν
p
s )

from the disturbance storage will be used. Next, the resulting control input
vector us is injected into the system and into the control input storage.

In Figure 6, the signals indicated by solid blue arrows correspond to the time
steps for which an evaluation of the state variable vector of the system is avail-
able. For the other time steps, the signals marked by dash-dotted blue arrows
will be activated. The signals indicated by dashed green arrows in Figure 6 will
be activated only at identification time steps. For pre-specified identification
time steps k ∈ K

id
s or whenever the model assessor identifies that the type-2

model should be updated (i.e., when ǫ
est
s exceeds a pre-specified threshold ǭ),

the identification module will be activated. This module will then receive the
sequence (shown by

{

x
eval
s

}

in Figure 6) of all evaluated state variable vectors
within time window L

ant
s (ℓ)∪L

con
s (ℓ) from the state evaluation storage, as well

as the most recent parameter vectors θant
s and θ

con
s from the type-2 model, and

updates these vectors using, respectively, (4) and (5).

5. Case study: Traffic modeling

To illustrate and assess the proposed type-2 fuzzy modeling approaches for
autonomous data analysis and modeling in smart cities, when additional uncer-
tainties are introduced into the data via humans, we now present a case study
that involves an urban traffic network. We estimate the accuracy of a type-1
fuzzy model that is used when only primary uncertainties exist in the traffic
data. We then consider traffic data that includes a second level of uncertainty
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Figure 7: Urban traffic network used for the case study.

introduced by humans, and compare the estimations made by type-2 models
that include fuzzy-probabilistic, probabilistic-fuzzy, and type-2 fuzzy sets with
those estimated when data was uncertain only in one level. The goal is to ob-
tain insights about how effectively these type-2 models can handle the additional
level of uncertainty in estimation of traffic states.

5.1. Setup

The traffic network shown in Figure 7 is considered. The network consists of
two intersections (indicated by the labels “L” and “R”) and seven links, each of
which two lanes. The lanes are indicated by the labels 1L, . . . , 7L, and 1R, . . . ,
7R. Lanes 1L, 2L, 3L, and 7L are the entrance lanes for intersection L, whereas
lanes 4L, 5L, 6L, and 7R are the exit lanes of intersection L (in the figure the
direction in which the vehicles drive in a given lane is indicated by a red arrow).
Likewise, 1R, 2R, 3R, and 7R are the entrance lanes for intersection R, and 4R,
5R, 6R, and 7L are the exit lanes for intersection R.

In the remainder of the paper, lanes in links 1, . . . , 6 are referred to as
“side lanes”, and the two lanes in link 7 are called “connecting lanes”. Turning,
except for U-turns, is allowed at the intersections (as indicated by the black
arrows in Figure 7). Each intersection has four traffic signals, each of which
controls all the rights-of-way of the entrance lane at which the traffic signal is
located. The traffic signals at the opposite entrance lanes of an intersection are
synchronized and the follow the same schedule (i.e., in Figure 7 the green and
red phases of the northern and southern traffic signals coincide, and a similar
statement holds for those of the western and eastern ones). In the given traffic
network, the length of the side lanes is 150 m, the length of the connecting lane
is 300 m, the average vehicle length (including the safety distances from and to
the preceding and following vehicles) is 7.5 m, and the cycle time of the traffic
signals is 90 s.

5.2. Modeling

The given traffic network is divided into two sub-networks, called “sub-
network 1” and “sub-network 2”. In Figure 7 these sub-networks are indicated
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in, respectively, grey and pink. More specifically, sub-network 1 contains in-
tersection L and lanes 1L, . . . , 7L, while sub-network 2 consists of intersection
R and lanes 1R, . . . , 7R. For each sub-network, one type-1 model and three
different classes of type-2 models with a formulation following (1) that describe
the traffic behavior are developed:

• “class 0” involves type-1 fuzzy membership functions and is considered to
compare the efficacy of type-2 models versus type-1 models;

• “class 1” involves type-2 fuzzy membership functions;

• “class 2” includes probabilistic-fuzzy membership functions, and

• “class 3” includes fuzzy-probabilistic membership functions.

The models involve two state variables, i.e., the total number of vehicles per
link, n, and the number of vehicles in the queue on a link, q. Note that defining
the dynamics of urban traffic with 2 state variables is a common approach in
literature (see, e.g., [45, 49]). The control input and external disturbances are,
respectively, the green time of the traffic signals and the external inflow of the
vehicles.

For the sake of simplicity, we assume that the most recent evaluation of the
state variables for each time step k, has been done at time step k − 1. Each
type-2 rule indexed by r is of the following from:

If x(k − 1) is X̃r and u(k − 1) is Ũr and ν(k − 1) is Ñr, (6)

then xr(k) = a0,r + a1,rx(k − 1) + a2,ru(k − 1) + a3,rν(k − 1),

where x is a state variable of the traffic network (i.e., n or q for a particular lane)
and the symbol xr in the consequent refers to the estimated value of x via rule
r. For the traffic scenarios considered in this case study, the range of variations
of the parameters of the considered traffic network is limited. Therefore, the
parameters of the type-2 sets X̃r, Ũr, and Ñr in the antecedents are assumed to
be fixed, and only the parameter vectors [a0,r, a1,r, a2,r, a3,r]

⊤
of the consequent

are (re-)identified. The control input of each sub-network is the green time
of the northern and southern traffic signals (marked by the red dashed ovals
in Figure 7). These traffic signals are synchronized. As a consequence, the
green time of the other two traffic signals of each intersection (which are also
synchronized) is the difference between the fixed cycle time of the intersection
and the control input. In this case study the vehicle flows that enter the network
via the source lanes (1L, 2L, 3L, 1R, 2R, 3R) are considered as the external
disturbances.

When a fuzzy membership function is considered as the primary membership
function of the type-2 sets X̃r and Ñr, to which the state variables and the
external disturbances belong, we use two qualitative terms “low” and “high” to
describe the sets. Moreover, for the type-2 set Ũr, to which the control inputs
belong, two qualitative terms “short” and “long” are considered for the fuzzy
primary membership function. For the secondary fuzzy membership functions,
the qualitative terms “slightly likely”, “moderately likely”, and “highly likely”
are used. Therefore, the statement n(k − 1) is X̃r in the antecedent, with X̃r

represented via a type-1 fuzzy set, a type-2 fuzzy set, a type-2 probabilistic-
fuzzy set, and a type-2 fuzzy-probabilistic set, may, for instance, be respectively
given by:
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• The number of vehicles on the lane is high

• It is very likely that the number of vehicles on the lane is high.

• There is a chance according to a Gaussian density function that the
number of vehicles on the lane is high

• It is likely that the number of vehicles on the lane follows a Gaussian

density function over the total range of the demand

Since in the first case, only one level of uncertainty (which is fuzzy) exists, a
natural expectation is that the most precise results are obtained based on such
data, using the corresponding type-1 model, in comparison with all other cases
where two levels of uncertainties exists.

However, one important aspect to consider in addition to the number of
uncertainty levels, is the type of the uncertainties. In type-1 and class 1 type-2
models, the uncertainty is handled only after the linguistic terms have been
translated into quantified uncertainties (via fuzzy membership functions) and
after the corresponding parameters have been identified. Analyzing probabilistic
data requires one step less, i.e., the quantification is not needed. Thus, it is
again expected to experience less imprecision when uncertainties are already
quantified (at least in one of the two uncertainty levels).

In combined fuzzy-probabilistic and probabilistic-fuzzy models, the fuzziness
is accompanied by quantified statistical uncertainties. Thus, it is not unexpected
to observe a competitive trend in the accuracy of the results of these combined
models and the type-1 model.

In summary, we are in particular interested in seeking answers for the fol-
lowing questions, via our case studies and results:

Q1. Which model(s) will result in the most precise estimations of the traffic
state variables in most case studies? Which model(s) will result in the
least cases with the least precise estimations of traffic states?

Q2. How complex/demanding the computations corresponding to type-2 sets
and hence type-2 models are in general? What the sources of these po-
tential complexities are?

5.2.1. Type-1 trapezoidal membership functions

For the models in class 0, type-1 trapezoidal membership functions are con-
sidered because of two main reasons: next to the simplicity and low computation
time, both empirical evidence and theory show that, compared to more compli-
cated membership functions, trapezoidal membership functions are very efficient
in various engineering applications [50].

Figure 8 shows the type-1 trapezoidal membership functions used for the
class 0 models. The maximal number of type-1 fuzzy rules with nin inputs that

can be constructed for a type-1 model within class 0 is
∏nin

i=1 ρi, where ρi is
the number of possible linguistic/fuzzy realizations for the ith input variable.
Note that this is based on the assumption that an initial filtering has been
implemented, such that the best output realization for each combinations of the
nin inputs has been selected.

Therefore, in this case the maximum number of type-1 fuzzy rules within
class 0 is 23 = 8, i.e., the antecedent statements concerning the state variable and
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the external disturbance can each adopt 2 descriptions from the set {low,high}
and the antecedent statement for the control input can also adopt either of the 2
descriptions within the set {short,long}. Hence, the total number of parameters
that should be identified for the type-1 fuzzy model is 4(8), i.e., 32 parameters,
per state variable. Notice that rules of the class 0 model follow (6) with 4
identification parameters in the consequent for each of the two state variables,
where the sets in the antecedent are type-1 fuzzy sets.

5.2.2. Type-2 fuzzy membership functions

In the linguistic description of the rules of a type-2 class 1 model, we consider
low or high for the state variable and also for the external disturbance, short or
long for the control input, and slightly likely, moderately likely, or very likely for
the secondary uncertainties. The corresponding mathematical representations
are illustrated in Figure 9, where three different interpretations per term low,
high, short, and long are considered.

The maximum number of type-2 fuzzy rules that can be constructed for
a type-2 model within class 1 is 63 = 216, i.e., the antecedent statements re-
garding the state variable and the external disturbance can adopt 6 descriptions
within the set {slightly likely,moderately likely,very likely}×{low,high} and the
antecedent statement for the control input takes on either of the 6 descriptions
within the set {slightly likely,moderately likely,very likely}×{short,long}. This
implies that the total number of parameters to be identified for the type-2 fuzzy
model is 4 · 216, i.e., 864 parameters, per state variable.

Consider now a specific rule with the following antecedent: “if x is very likely
high and u is moderately likely short and ν is slightly likely low”. Then the three
type-2 fuzzy events involved are denoted by ex:VL-high, eu:ML-short, and eν:SL-low,
and their primary membership degrees are indicated by µ

x:high
1,i , µu:short

1,j , and

µν:low
1,k for i, j, k ∈ {1, 2, 3} corresponding to the three various interpretations

given for the fuzzy terms low, high, short, long in the antecedent. Likewise,

µ
VL(x:high)

i

2 , µ
ML(u:short)

j

2 , and µ
SL(ν:low)

k

2 denote the secondary membership de-
grees corresponding to each of these primary membership degrees. Normally
to find the membership degrees of the combination of these three type-2 fuzzy
events in the antecedent, all possible combinations of the primary and secondary
membership degrees should be considered. For the given antecedent, 33 = 27
combinations are possible, i.e., each primary membership degree can adopt 3
values, as there are three definitions per fuzzy term high, low, short, long. More-
over, the secondary membership degree adopts 1 value depending on which fuzzy
term, i.e., slightly likely, moderately likely, or very likely is used to formulate the
rule. Hence, each variable in the antecedent adopts 3 possible combinations of
the primary and secondary membership degrees, and for all the three variables
(state variable, control input, external disturbance) in the antecedent the possi-
ble combinations are 33. For each combination ex:VL-high∧eu:ML-short∧eν:SL-low,
with ∧ representing ‘logical and’, the primary and secondary membership de-
grees of the combined fuzzy-fuzzy event can be determined as follows:

µ1

(

ex:VL-high ∧ eu:ML-short ∧ eν:SL-low, i, j, k
)

= min
{

µ
x:high
1,i , µu:short

1,j , µν:low
1,k

}

(7)
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Figure 9: Class 1 type-2 model: Type-2 fuzzy membership functions for state variables, control
inputs, and external disturbances.
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µ2

(

ex:VL-high ∧ eu:ML-short ∧ eν:SL-low, i, j, k
)

= (8)

min
{

µ
VL(x:high)

i

2 , µ
ML(u:short)

j

2 , µ
SL(ν:low)

k

2

}

If two combinations have the same primary membership degree, the combination
with the largest secondary membership degree is kept, while the rest of the equal
primary membership degrees and their corresponding secondary membership
degrees are then excluded when computing the output of the fuzzy inference
engine (the interested reader is referred [51] for more details). The approach of
[52] is then used to compute the output of the inference engine of the type-2
fuzzy-fuzzy rule.

In order to reduce the number of possible combinations and hence, the com-
putational burden and computation time of class 1 type-2 models, for both
the identification procedure and the online computations, we have considered
the following setup: as illustrated in Figure 9, each fuzzy term used for the sec-
ondary membership degrees corresponds to only one of the three interpretations
for the fuzzy terms used for the primary membership degrees. More specifically,
in Figure 9, the term very likely (illustrated by dotted blue curves) corresponds
to those interpretations of the terms low, high, short, and long that are also
represented by dotted blue curves. Similarly, the terms moderately likely (solid
red curves) and slightly likely (dash-dotted black curves) correspond to those
interpretations of low, high, short, and long that are represented by curves of a
similar color and format.

5.2.3. Type-2 probabilistic-fuzzy membership functions

Figure 10 illustrates the primary type-1 fuzzy membership functions and the
secondary probability density functions of the type-2 probabilistic-fuzzy mem-
bership functions. The maximally possible number of type-2 probabilistic-fuzzy
rules for a type-2 model within class 2 is 63 = 216, i.e., the antecedent state-
ments regarding the state variable, control input, and external disturbance can
each adopt 6 options from, respectively, the sets {sPF1,sPF2,sPF3}×{low,high},
{cPF1,cPF2,cPF3}×{short,long}, {dPF1,dPF2,dPF3}×{low,high}, where sPF1,
sPF2, sPF3 are the state probability density functions illustrated in the 5th plot
of Figure 10, cPF1, cPF2, cPF3 are the control probability density functions
illustrated in the 7th plot of Figure 10, and dPF1, dPF2, dPF3 are the distur-
bance probability density functions illustrated in the 9th plot of Figure 10. As a
result, total number of parameters to be identified for the type-2 probabilistic-
fuzzy model is 4(216), i.e., 864 parameters, per state variable.

Consider the antecedent of a type-2 probabilistic-fuzzy rule that is described
by “if x is 100 ·πx% (with 0 ≤ πx ≤ 1) low and u is 100 ·πu% (with 0 ≤ πu ≤ 1)
long and ν is 100·πν% (with 0 ≤ πν ≤ 1) high”. The corresponding three events,
denoted by ex:πx-low, eu:πu-long, and eν:πν -high, have to occur at the same time
for this specific rule to be fired. The primary fuzzy membership degree of the
combined event ex:πx-low∧eu:πu-long∧eν:πν -high can be determined by aggregating
the corresponding primary type-1 fuzzy membership functions using a t-norm
(i.e., minimum or multiplication) of the primary fuzzy membership degrees of
the three events, i.e., for i, j, k ∈ {1, 2, 3}:

µ1

(

ex:πx-low∧ eu:πu-long ∧ eν:πν -high, i, j, k
)

= min
{

µx:low
1,i , µ

u:long
1,j , µ

ν:high
1,k

}

(9)
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Figure 10: Class 2 type-2 model: Probabilistic-fuzzy membership functions for state variables,
control inputs, and external disturbances.
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The probability of simultaneous occurrence of the three events and hence of
activation of this type-2 probabilistic-fuzzy rule is

p
(

ex:πx-low∧ eu:πu-long ∧ eν:πν -high, i, j, k
)

=

p
(

ex:πx-low| (x : low)i
)

· p
(

eu:πu-long| (u : long)j

)

· p
(

eν:πν -high| (ν : high)
)

= πx,i · πu,j · πν,k (10)

where p(·) denotes the probability density function. For the sake of simplicity,
we have assumed the three events to be independent. In case two different
combinations have the same primary fuzzy membership degree, the combination
with the highest secondary probability is considered.

Here the secondary membership functions are probability density functions,
which have been considered to have a fixed value (see Figure 10). Similarly to
the class 1 model, to decrease the computational burden and the computation
time, we assume that each probability density function corresponds to one of the
interpretations given for the fuzzy terms low, high, short, and long. More specif-
ically, the chances that the primary fuzzy membership degrees corresponding
to the solid (red), dotted (blue), or dash-dotted (black) curves (see plots 1-4, 6,
and 8 in Figure 10) are realized, are the same for all primary fuzzy membership
degrees that correspond to each of these plots, and these chances correspond
to the fixed-value functions illustrated by, respectively, the solid (red), dotted
(blue), and dash-dotted (black) curves.

5.2.4. Type-2 fuzzy-probabilistic membership functions

The primary membership functions in this case are probability density func-
tions, meaning that the membership degrees corresponding to a certain state
variable and all the primary membership functions sum up to 1. For class 2 and
class 3 models, we considered two categories (i.e., low and high; short and long)
for the state variables, control inputs, and external disturbances. For class 4
models we therefore also consider two categories/probability density functions
per variable, supposing they form the world set together (see Figure 11). These
two functions can be considered as the information deduced from two different
experiments for counting the number of vehicles on various lanes and measur-
ing the green time length of the traffic signals, and the probability that each
provided data may be valid in each experiment. In probability theory, the uncer-
tainty does not arise due to the use of fuzzy terms (taken from human language),
but the uncertainty is about the likeliness that a random event is realized or
a realization is true. Therefore, in the class 4 model, there are not various in-
terpretations per category, and the plots 1-4, 6, and 8 of Figure 11 include two
curves only. For the fuzzy secondary membership functions, we again consider
the terms very likely, moderately likely, and slightly likely.

The maximal number of type-2 fuzzy-probabilistic rules one can construct for
a type-2 model within class 3 is 63 = 216, i.e., the antecedent statements regard-
ing the state variable, control input, and external disturbance can each adopt 6
options from, respectively, the sets {slightly likely,moderately likely,very likely}×
{sPF1,sPF2}, {slightly likely, moderately likely,very likely}×{cPF1,cPF2}, {slightly likely, moderately likely
{dPF1,dPF2}, with sPF1 and sPF2 any of the state probability density func-
tions shown in the first four plots of Figure 11, cPF1 and cPF2 the control
probability density functions shown in the 6th plot of Figure 11, and dPF1 and
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Figure 11: Class 3 type-2 model: Fuzzy-probabilistic membership functions for state variables,
control inputs, and external disturbances.
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dPF2 the disturbance probability density functions shown in the 8th plot of
Figure 11. Hence, the total number of parameters to be identified for the type-2
fuzzy-probabilistic model is 4(216), i.e., 864 parameters, per state variable.

Consider the antecedent of a type-2 fuzzy-probabilistic rule that is described
by “if x is slightly likely 5 veh and u is very likely 65 s and ν is moderately likely
0.35 veh/s”. The corresponding three fuzzy-probabilistic events are ex:SL-5,
eu:VL-65, and eν:ML-0.35, with primary probability degrees πx:5

i , πu:65
j , πν:0.35

k ,

where i, j ∈ {1, 2}, and with secondary fuzzy membership degrees µ
SL(x:5)

i

2 ,

µ
VL(u:65)

j

2 , µ
SL(ν:0.35)

k

2 . There are 23, i.e., 8, possible combinations for a rule. To
reduce the number of combinations, one may make a setup similar to that made
for models in class 1 and class 2. For instance, moderately likely only corresponds
to the probability density functions that are illustrated by the dotted blue curves
and very likely and slightly likely only correspond to the solid red curves. This
way, the number of combinations per rule reduces to one, as we had for the
models in class 1 and class 2. In this particular case study, however, we did not
impose these assumptions since the computation time for the class 3 model was
still reasonable.

For a combined event ex:SL-5 ∧ eu:VL-65 ∧ eν:ML-0.35 the primary probability
degree and the secondary fuzzy membership degree are determined by:

p
(

ex:SL-5 ∧ eu:VL-65 ∧ eν:ML-0.35, i, j, k
)

= πx:5
i · πu:65

j · πν:0.35
k , (11)

µ2

(

ex:SL-5 ∧ eu:VL-65 ∧ eν:ML-0.35, i, j, k
)

= (12)

min
{

µ
SL(x:5)

i

2 , µ
VL(u:65)

j

2 , µ
SL(ν:0.35)

k

2

}

.

5.2.5. Model identification

In this section, we explain the procedure of identifying the type-1 model in
class 0 and the type-2 models within classes 1, 2, and 3.

First, an extensive dataset was collected for the urban traffic network shown
in Figure 7 using micro-simulation. NetLogo [53] was used to develop the micro-
simulator and Gipps’ car following model [54] was implemented into the overall
model in order to ensure a more realistic simulation.

The resulting dataset included the realized values for the traffic state vari-
ables (i.e., the total number of vehicles on the lanes and the number of vehicles
idling in the queues) for all the lanes of the traffic network for a long enough
simulation, with varying demands at the source links and varying green lights
for the traffic signals.

It was made sure that many variations for these inputs were considered, so
that different modes of traffic were simulated and that the corresponding dataset
was sufficiently comprehensive. Next, as is standard in the field [55], the dataset
was split into 2 parts: one used for training, and one for validation, and these
sub-datasets were used to identify and validate the models. More specifically,
80% of the collected data was used for the identification and the other 20% was
used for the validation of the models.

We considered the shape and parameters of the type-1 and type-2 sets in
the antecedent of the rules of the models to be fixed in our case studies (for the
details and motivation of this choice see Section 4.1), whereas the consequent
parameters in (6) were identified using the minimization approach explained in
Section 4.2.
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5.3. Results and discussions

We have assessed the accuracy of the different type-1 and type-2 models,
based on their level of precision in estimating the two state variables (i.e., total
number of vehicles and the number of vehicles idling in the queues per lane)
for the two sub-networks of the urban traffic network that is shown in Figure 7.
The comparison is based on the relative validation errors of these models, after
the parameters of each model have been identified. The relative error reflects
how accurate the estimation of the state variables is, with respect to the ground
truth values, that have been generated by a NetLogo micro-simulation model
[56]. Moreover, we have run the Wilcoxon signed rank test for the identified
models for various datasets, in order to rank the models based on their relative
precision.

The average relative validation errors of the type-1 and type-2 models, after
being trained, have been shown in Figure 12. Note that since no restraining
boundary conditions have been defined for the sink nodes of the urban traffic
network, all the vehicles on the sink lanes (4L, 5L, 6L, 4R, 5R, 6R) can freely
leave all the time. Therefore, there is no queue on these lanes, and hence the
errors corresponding to the queue lengths of these lanes have not been shown.
Overall, out of the 22 results shown in Figure 12:

• In 12 (almost 55% of the) cases, the type-1 model results in the most
accurate estimations, whereas in 5 (almost 23% of the) cases, it results in
the least accurate estimations.

• In 5 (almost 23% of the) cases, the type-2 probabilistic-fuzzy model results
in the most accurate estimations, while only in 1 case (i.e., less than 5%
of the cases) it results in the least accurate estimation, jointly with the
type-2 fuzzy model.

• In 3 (almost 14% of the) cases, and all jointly with the type-2 probabilistic-
fuzzy model, the type-2 fuzzy membership function results in the most
accurate estimations, whereas in 7 (almost 32% of the) cases, it results in
the least accurate estimations.

• In 5 (almost 23% of the) cases, the type-2 fuzzy-probabilistic model results
in the most accurate estimations, whereas in 10 (almost 45% of the) cases,
it results in the least accurate estimations.

The main observations and deductions from these results are the following.
The estimation error for none of these models exceeds 1%. More accurately,
for the state variable n, for lanes 1L-7L the maximum error realized is almost
0.75% (which corresponds to the class 1 type-2 membership function) and for
lanes 1R-7R it is 0.6% (which corresponds to the type-1 trapezoidal membership
function). For the state variable q, for lanes 1L, 2L, 3L, and 7L the maximum
estimation error is almost 0.93% (which corresponds to the class 1 type-2 mem-
bership function) and for lanes 1R, 2R, 3R, and 7R it is 0.9% (which corresponds
to the fuzzy-probabilistic membership function). It is crucial to consider that
these very low errors are likely due to the simplicity of the considered traffic
network compared to a large-scale real-life traffic network that, e.g., covers a
metropolitan. However, at this stage of the research, we are mainly interested
in a comparative analysis for the newly introduced concepts and in finding
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Figure 12: Comparison of the relative validation errors (as percentages) for estimation of the
state variables by the fuzzy models, for sub-network 1 (top row) and sub-network 2 (bottom
row), where the ground truth values are taken from a microscopic urban traffic simulation
model developed in NetLogo. The blue bars correspond to the type-1 model [40] and the yellow
bars correspond to the type-2 fuzzy model [42], whereas the purple and the red bars correspond
to type-2 models with a, respectively, fuzzy-probabilistic and probabilistic-fuzzy membership
function, which have been introduced in Section 2 of the current paper. Note that a shorter

bar corresponds to a better performance for that particular estimation. In other

words, from the 4 bars in each cluster of bars, the one with the least height

corresponds to the best performing model and the one with the largest height

corresponds to the worst performing model.
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answers for questions Q1 and Q2, rather than being interested in analysis of
real-life traffic data.

In reply to question Q1, these results confirm our initial assumption that
a model that runs based on data with one level of uncertainty (i.e., a type-1
model) is in general more accurate in more than half of the case studies (to
be more precise, for almost 55% of the performed simulations), than the other
models that perform on data with two levels of uncertainties. Next come the
combined probabilistic-fuzzy and fuzzy-probabilistic models with outperforming
in about a quarter (almost 23%) of the case studies. When we look at the worst
performances, however, from the type-1 model and type-2 probabilistic-fuzzy
and fuzzy-probabilistic models, the probabilistic-fuzzy model shows the worst
performance for only less than 5% of the cases, whereas the type-1 model and
the fuzzy-probabilistic model under-perform in their estimations in, respectively,
23% and 45% of the cases.

This, in the first place, may sound counter-intuitive, because probabilistic
uncertainties, which are already quantified, are expected to be less prone to in-
accuracies than fuzzy uncertainties, which are interpreted and quantified based
on human perceptions. Accordingly, when the primary uncertainty is proba-
bilistic (i.e., for a fuzzy-probabilistic model), since the fuzziness gets involved
only in the secondary computations, the results are expected to be less erro-
neous than for a probabilistic-fuzzy model, where a primary fuzzy uncertainty
is also involved in and affects the computations regarding the secondary uncer-
tainties. The results of the case study, however, show the opposite, which may
very likely be because of the flexibility of fuzzy membership functions, compared
to probabilistic density functions, in being fine-tuned. In fact, fuzzy member-
ship functions for various fuzzy events are not constrained to add up to 1 for
the same input values, whereas the probabilities of various random events must
satisfy that condition.

These results, in summary, imply the effectiveness of incorporating fuzzy
information and data into the analysis and modeling of traffic dynamics, as well
as the significance of the identification procedure.

Finally, the worst-performing model, as was expected, is the class 1 type-
2 model, which deals with fuzziness on both levels of uncertainties. Despite
the positive aspects that were just mentioned regarding the flexibility of fuzzy
membership functions, when such functions exist on two (or more) levels, the
complexity in running the identification and later on model computations on the
multiple fuzzy levels will rise significantly. Thus, simplifications (e.g., reducing
the number of the rules) is inevitable for identifying the model in a reasonable
time and for running it online. Therefore, the compensation of the performance
for obtaining a computationally affordable model is inevitable for type-2 fuzzy
models.

Note that when running the Wilcoxon signed rank test, the most accurate
model for various datasets was the type-2 probabilistic-fuzzy model, followed by
the type-2 fuzzy-probabilistic model.

In reply to question Q2, note that the computation time for identification
and running a type-1 model was very reasonable for the performed case studies,
because the total number of parameters that needed to be identified was only
32 and the number of rules that were involved in the online computations was
at most 8.

The computational burden for the class 1 type-2 model, however, was gener-
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ally very high and grew rapidly when adding extra rules. In particular, the iter-
ative Karnik–Mendel algorithms [57] that are commonly used in type-reduction
when interval class 1 type-2 fuzzy systems are considered, or the required dis-
cretization level (for achieving the desired accuracy) via α-planes [58] when gen-
eral class 1 type-2 fuzzy systems are considered, are the main sources of this high
computational cost. Due to these reasons, in our case studies, we have reduced
the number of possible verbal interpretations for the fuzzy uncertainties and
hence, reduced the computational burden and computation time accordingly.
This, however, compensates the precision and the impact of (re-)identification
of the model .

The same conditions hold for the type-2 probabilistic-fuzzy sets, where due
to the high computation time experienced during the simulations, we had to
reduce the number of linguistic interpretations for the fuzzy uncertainties. Al-
though this compensates the precision of the model, our results showed that
the resulting type-2 probabilistic-fuzzy model still outperformed, in terms of
precision, the other type-2 models, and in some cases even the type-1 model.
Therefore, based on our results, we foresee the highest potential for such type-2
models, although for a more general conclusion further case studies and designed
scenarios will be needed.

In general, when two levels of uncertainties exist in the traffic data, type-2
models are preferred, in particular, those with a probabilistic-fuzzy membership
function, when accuracy is crucial, and those with a fuzzy-probabilistic mem-
bership function, when a trade-off between accuracy, computational efficiency,
and ease of implementation is desired. While the accuracy and computational
efficiency of type-2 models were discussed earlier, regarding the ease of im-
plementation, note that while statistical data may be collected and stored in
advance for later use, the fuzzy uncertainty that is included to the data due to
the perception and varying mental states of human users of the road is provided
only in real time. An example for a rule that is formulated according to the
historical observations for regular, off-peak traffic is “75% of the drivers avoid
a detour in traffic area A”. In case of heavy congestion in area A, due to road
construction or an accident, the varying mental states of the road users will
impact this rule, i.e., while in a normal situation there is certainty about 75% of
the traffic flow not selecting a detour, this certainty is affected and should best
be represented as a fuzzy term, which properly represents the direct feedback
of humans. In other words, the rule will become “It is quite likely that 75%
of the drivers avoid a detour in traffic area A”. This natural way of adapting
the rules when a secondary uncertainty is introduced to the dataset generates a
type-2 model with a fuzzy-probabilistic membership function. Note that build-
ing a rule base with probabilistic-fuzzy membership functions, however, is not
similarly straightforward (since the existing statistical information by nature
corresponds to the primary uncertainties, not the secondary).

In addition to the above discussions, observing the variations of the accu-
racy for different models across different estimations in Figure 12 of the results
section, yields the following specific insights about the strong and weak points
of each model.

First, all models are in general more accurate in estimating the first traffic
state, i.e., the total number of vehicles per lane, compared to the second traffic
state, i.e., the queue length per lane. This is not unexpected, since the dynamics
of traffic queues is in general more complex and prone to variations at the
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microscopic level. Hence, when a macroscopic representation of the evolution of
the queues is used, as is the case in (6), such microscopic dynamics are ignored
and this will normally impact the estimations of the queue lengths more than
the estimations of the total number of vehicles (also see [45] and [49]).

Second, in 4 out of the 8 cases, i.e., for lanes 1L, 2L, 3L, 1R, which are
all source lanes (i.e., the traffic flow to the traffic network enters the network
via these lanes) the type-1 model shows the best performance for estimation of
the queue lengths. The best performing type-2 model for estimating the queue
lengths on the source lanes is the one with a probabilistic-fuzzy membership
function. A similar trend is observed for the estimation of the total number of
vehicles on the source lanes, i.e., the type-1 model and the type-2 model with a
probabilistic-fuzzy membership function show the highest accuracies.

Third, the most challenging lanes for a traffic model to estimate or predict
the states of, include the sink lanes (i.e., lanes through which traffic leaves the
traffic network), which in this case include lanes 4L, 5L, 6L, 4R, 5R, 6R in
Figure 7, and the connecting lanes (i.e., lanes that are neither a source nor a
sink lane), which are lanes 7L and 7R in Figure 7. In fact, while the inflow to
the source lanes 1L, 2L, 3L, 1R, 2R, 3R is given or measured per simulation time
step, for the sink lanes (numbered 4, 5, 6) and the connecting lane (numbered
7) the inflow and outflow are both estimated. Due to this, a larger cumulative
error is expected for the states estimated by a model for these lanes. For 5 out
of the 8 sink and connecting lanes, the type-1 model shows the highest accuracy
in estimation of the total number of vehicles.

However, in case of lane 6, the type-1 model not only under-performs with
respect to the other models in estimating the total number of vehicles, but
also the estimation error of this model is relatively significant. The next best
performing model in estimating the total number of vehicles on the sink and
connecting lanes is the type-2 model with a probabilistic-fuzzy membership func-
tion, which shows a stable behavior for all the lanes. Thus, the best choice for
estimation of the total number of vehicles for complex (i.e., sink and connect-
ing) lanes, based on these results, is the type-2 model with a probabilistic-fuzzy
membership function. Although, as discussed above, the type-1 model and the
type-2 model with a probabilistic-fuzzy membership function show the highest
accuracy for estimating the queue lengths of the source lanes, for neither of the
complex lanes (i.e., 7L and 7R) does the type-1 model or the type-2 model with
a probabilistic-fuzzy membership function perform the best. In fact, for both
of these connecting lanes, the type-1 model under-performs compared to the
other models, whereas the type-2 model with a fuzzy-probabilistic membership
function shows the highest accuracy in estimating the queue lengths.

Generally speaking, type-1 models are the easiest to design [59, 60]. How-
ever, they are not always the best choice considering the accuracy and efficiency
of the computations, as confirmed by our results and by other comparisons
run in the literature (see [61, 62]). Our observations based on the results pre-
sented in this paper, in summary, imply that when larger cumulative errors are
expected (e.g., because the lane is a sink or a connecting lane) modeling the
traffic dynamics incorporating two levels of uncertainties is in general preferred
over considering one level of uncertainty only. Moreover, when the primary and
secondary uncertainties are represented via, respectively, probabilistic and fuzzy
data, the type-2 model shows the best overall performance. Moreover, such a
model is also preferred due to its ease of implementation in real-time, since
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the implementation simply requires including the newly received fuzzy informa-
tion, as the secondary uncertainty, on top of the existing statistical information
that exhibits the primary uncertainty about the traffic dynamics (this has been
explained earlier in detail via an example above).

Note that in a realistic urban traffic network that is larger than that shown
in Figure 7, there are many more connecting lanes. In such cases, a wise choice
for estimation of the queue lengths is, thus, again a type-2 model with a fuzzy-
probabilistic membership function.

Finally, our case studies showed a reasonable time for identification and
computations for the type-2 fuzzy-probabilistic model, which eliminated the
need for shrinking the linguistic interpretation sets. However, as indicated be-
fore, by swapping the primary and secondary membership functions, i.e., for a
probabilistic-fuzzy counter-part model, the precision of the estimations is still
higher than the other type-2 models.

In summary, these results indicate that by using the proposed concepts of
probabilistic-fuzzy and fuzzy-probabilistic membership functions (possibly de-
pending on the type of the traffic scenarios and the data available), one can
obtain estimations for traffic states with the introduced human-inspired models
that are comparable to the estimations of a type-1 fuzzy model when data is
prone to only one level of uncertainty. This implies that the type-2 sets and mod-
els introduced in this paper can properly handle the additional uncertainty that
is introduced to traffic data via humans. In the design of such type-2 models,
one may consider (to the level that the nature of the data allows) symmetrical
type-2 membership functions. Such a symmetry, for instance, will translate into
a trapezoidal primary and a triangular secondary membership function (more
details can be deduced from [58]), and is expected to reduce the computational
burden of these models.

Moreover, due to the large number of identification parameters for each
type-2 model (i.e., 864 parameters per state variable) compared to the type-1
model (i.e., 32 parameters per state variable), and considering the fact that the
identification procedure involves a non-convex optimization procedure, which is
performed several times using multiple starting points, it is possible that the
type-1 model is more accurately identified compared to the type-2 models.

6. Conclusions and future research

This paper has addressed an important challenge of autonomous driving
in smart cities: Handling various levels and types of uncertainties in traffic,
including both quantified and non-quantified data, in analysis and prediction
of the traffic dynamics via mathematical modeling. Via the introduction of
novel type-2 sets, called probabilistic-fuzzy and fuzzy-probabilistic sets, and by
exploiting these sets through human-inspired rule-based models, the following
major impact is expected for smart cities: Improved, in terms of performance
and safety, autonomous control of traffic, incorporating both statistical and
human factors within the decision making procedure.

In a case study, we used a type-1 model and the different type-2 models
to mathematically represent the dynamics of an urban traffic network using
extensive data collected from this traffic network, using NetLogo for micro-
simulations. The case study was performed to show-case the potentials of these
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type-2 models. We noticed that for data-sets that already include uncertainties
of fuzzy, probabilistic, or both types, the added value of using type-2 models
is more prominent. In particular, type-2 probabilistic-fuzzy models provide a
balanced trade-off between accuracy and efficiency of the computations. This
is likely because of the presence of fuzzy membership functions in the primary
level that handles the uncertainties and the higher flexibility of such functions
in being tuned compared to probabilistic density functions.

In general, when data collected from the traffic network involves multiple
levels of uncertainty, in particular both fuzzy and probabilistic, type-2 models
are the most effective tools to capture and represent the dynamics of traffic.
This is commonly the case when traffic dynamics is (significantly) impacted by
the dynamics of the cognition and mental states of humans. For instance, in
regular, ideal traffic conditions, such as during the off-peak hours when traffic
flows freely, historical data that provides the pattern of traffic dynamics as a
function of the time of day may be used to estimate and predict the upcom-
ing traffic states. Such historical data, stored as probabilistic values or fuzzy
terms, can properly be modeled via a type-1 model. However, when drivers and
other road users are emotionally impacted (e.g., are angry, frustrated, stressed-
out, or anxious due to a blocked road, slow traffic, or bad weather conditions),
a second level of uncertainty will impact the traffic dynamics that is due to
the dynamics of the mental states of the road users. This uncertainty, due to
its nature, is interpreted and mathematically represented via fuzzy variables.
For such examples, type-2 models (including type-2 fuzzy, fuzzy-probabilistic,
and probabilistic-fuzzy models) outperform type-1 models in representing and
predicting the traffic dynamics. Moreover, since road users send out such data
about their mental states individually, and the data is thus perceived or received
asynchronously and/or delayed, the general formulation of type-2 models pro-
vided by (1)-(3), which capture this asynchrony/delay, is particularly suited.

Future research should investigate how the choice of the probability density
functions, when aligned with specific interpretations of fuzzy terms, may pos-
itively impact the computational burden of type-2 models. Moreover, further
investigation about the impacts on the precision and computation time when
the type of the primary and secondary membership functions are swapped for
modeling the same phenomena for various traffic scenarios is required. Analysis
of these aspects is relevant, specially for cases where the type and shape of these
functions can be designed, noting that in the context of the current paper, we
assume that data has already been collected in a combined way and we represent
and model it according to the available dataset.

For future research, comparison with other validated traffic models that can
handle uncertain data will be performed. Additionally, we propose to combine
the proposed rule-based modeling methods with a supervisory optimization-
based control system, in order to coordinate different traffic sub-networks, while
optimizing global performance criteria, including total travel time and total
emissions of the vehicles. Moreover, further research on collection, filtering, and
calibration of heterogeneous data from human users and managers of the roads
is a highly relevant and essential step for using the proposed models in real-life
smart cities. These may require novel data fusion and/or soft sensing techniques
based on machine learning or other relevant (combined) methods.

Various fields and applications that involve humans in the system will also
benefit from the novel approaches of this paper. Accordingly, it is recommended
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to implement the proposed modeling approaches for the analysis and control of
search-and-rescue robots (which should process data from dynamic environ-
ments and from firefighters and trapped victims), and for steering social robots
that should understand and interact with humans. In such cases both statis-
tical and fuzzy-logic-based models are relevant and thus such novel integration
of probability theory and fuzzy logic, as proposed in this paper, will be of high
relevance.

Finally, extensive analysis (based on traffic micro-simulation or real-life data)
is needed to provide insights about traffic scenarios and datasets where type-
2 models will exceptionally improve the accuracy of the estimations, thus the
safety of traffic when a control system has been designed and is performing upon
these estimations. Running statistical tests (e.g., the Wilcoxon signed-rank test)
is a logical next step in validating the proposed models for larger scale, real-life
traffic networks.
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