
Delft University of Technology
Delft Center for Systems and Control

Technical report 24-020

A dataset for detection and segmentation
of underwater marine debris in shallow

waters∗

A. Ðuraš, B.J. Wolf, A. Ilioudi, I. Palunko, and B. De Schutter

If you want to cite this report, please use the following reference instead:
A. Ðuraš, B.J. Wolf, A. Ilioudi, I. Palunko, and B. De Schutter, “A dataset for detection
and segmentation of underwater marine debris in shallow waters,” Scientific Data,
vol. 11, p. 921, 2024. doi:10.1038/s41597-024-03759-2

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/24_020

https://doi.org/10.1038/s41597-024-03759-2
https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/24_020


A Dataset for Detection and Segmentation of
Underwater Marine Debris in Shallow Waters
Antun Ðuraš1,*, Ben J. Wolf2, Athina Ilioudi3, Ivana Palunko1, and Bart De Schutter3

1Authors are with the Laboratory for Intelligent Autonomous Systems (LARIAT), Department of Electrical
Engineering and Computing, University of Dubrovnik, Croatia
2Author is with the Bernoulli Institute, Faculty of Science and Engineering, University of Groningen, Netherlands
3Authors are with the Delft Center for Systems and Control, Delft University of Technology, Netherlands
*corresponding author(s): Antun Ðuraš (antun.djuras@unidu.hr )

ABSTRACT

Robust object detection is crucial for automating underwater marine debris collection. While supervised deep learning
achieves state-of-the-art performance in discriminative tasks, replicating this success on underwater data is challenging.
The generalization of these methods suffers due to a lack of available annotated data considering different sources of
variation in the unstructured underwater environment and imaging conditions. In this paper, we present the Seaclear Marine
Debris Dataset, the first publicly available shallow-water marine debris dataset annotated for instance segmentation/object
detection. The dataset contains 8610 images collected using ROVs at multiple locations and with different cameras,
annotated for 40 object categories, encompassing not only litter but also observed animals, plants, and robot parts. As
part of the technical validation, we provide baseline results for object detection using Faster RCNN and YOLOv6 models.
Furthermore, we demonstrate the non-triviality of generalizing the trained model performance to unseen sites and cameras
due to domain shift. This underscores the value of the presented dataset in further developing robust models for underwater
debris detection.

Background & Summary
Persistent objects introduced into the marine environment intentionally or unintentionally, as a result of human-induced
activities, can be defined as marine debris. Marine debris can injure or even kill marine and coastal wildlife; damage and
degrade habitats; interfere with navigational safety; cause economic loss to fishing and maritime industries; degrade the
quality of life in coastal communities; and threaten human health and safety1. Considering the negative social, economic,
and ecological implications associated with pollution, there has been an increase in research dedicated to providing a
framework for systematic monitoring and automated collection of marine debris2. In this context, two major modalities
for detecting marine debris emerged: one focused on surface-floating debris and another dedicated to underwater debris
detection. Floating debris detection methods utilize remote sensing technologies such as satellite imagery3 and aerial
photography45. To locate underwater marine debris, the development of unmanned vehicles (UxVs) equipped with cameras6

and acoustic sensors7 is being pursued to detect debris on the seafloor.
Automated underwater marine debris detection from images shares characteristics and challenges of other automatic

recognition vision-based tasks in the underwater domain. Geometric and photometric distortions, introduced to the imaging
process by the underwater environment, result in numerous quality-diverse data domains8. Visual appearance of aquatic
scenes can vary drastically based on the conditions such as depth, turbidity, and type of camera sensors used to obtain the
imagery. Thus, obtaining diverse data is crucial for the development and evaluation of robust underwater image processing
methods.

Supervised learning methods, which achieve state-of-the-art results on discriminative tasks, e.g. object detection,
instance segmentation, depend on the availability of annotated data. In the underwater domain such annotated data is sparse
compared to the terrestrial domain, which results in an active research area focused on data augmentation6 and visual
restoration for underwater images9.

Underwater Marine Debris Detection The only large publicly available repository of underwater marine debris
images is the Deep-sea Debris Database (https://www.godac.jamstec.go.jp/dsdebris), curated by the Japan Agency of
Marine Earth Science and Technology (JAMSTEC). Available data contains images of marine debris and various types of
marine plants and animals captured in underwater surveys by remotely operated vehicles (ROVs), mainly in the sea of
Japan. The first work on marine debris detection was done by Fulton et al.10 who annotated a selection of 5,720 images
from the JAMSTEC database and trained the models for the task of plastic debris detection based on four deep learning
architectures for object detection - YOLOv2, Faster RCNN, Tiny-YOLO, and Single Shot MultiBox Detector (SSD). The
same group of authors extended their previous work by making the TrashCan dataset11 public, increasing the dataset size
to 7,212 images and providing additional annotations for instance segmentation task as well as more detailed classification
of debris by material and instance type. In addition, a more consistent and balanced version of the TrashCan dataset named
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Table 1. Overview of annotated image datasets for underwater marine debris detection

Dataset Environment No. images Annotation type No. categories Year
Trash-ICRA1916 Underwater

(Plastic, ROV,
bio)

5720 Bounding Box 3 2019

TrashCan-
Material 1.017

Underwater
(Plastic, metal,
paper, rubber,
wood, etc.)

7212 Mask/Bounding
Box

16 2020

TrashCan-
Instance 1.017

Underwater (Bag,
clothing, rope,
wreckage, etc.)

7212 Mask/Bounding
Box

22 2020

UNO12 Underwater (Bag,
clothing, rope,
wreckage, etc.)

5902 Bounding Box 4 2022

PlastOPol18 Land/floating
(Litter)

2418 Bounding Box 1 2022

DeepPlastic19 Underwater
(Plastic litter)

3200 Bounding Box 1 2021

TACO14 Land/floating
(Cigarette, plas-
tic film, broken
glass, styrofoam
piece, etc.)

1500 Mask/Bounding
Box

60 2020

CleanSea20 Underwater (Lit-
ter)

1223 Mask/Bounding
Box

19 2022

UNO12 was produced. In this work, the TrashCan is further processed to correct wrong label annotations or misplaced
bounding boxes, annotating missing objects, and mitigating category imbalance by fusing all trash categories into one
category representing all non-natural objects. The key distinction between our dataset and those derived from the Deep-sea
Debris Database lies in the data collection environment. Our data was collected in optically shallow waters (i.e. where light
reaches the bottom), consequently making the images susceptible to variations in natural light conditions. Another factor
that increases the difference between the appearance of objects in deep water with respect to shallow water and deteriorates
the visual conditions is the growth of marine biological fouling on underwater objects. This effect, however, rarely takes
place in deep water due to the lack of light. Additionally, our dataset includes data from the same sites but captured with
different cameras which can be used to test the generalization of models in the presence of cross-camera domain shift. All
mentioned datasets are presented in Table 1, along with additional datasets1314 of similar modality (i.e. RGB images taken
at close range) containing land litter and floating marine litter.

The main contributions of the current paper are the following:

1. We present Seaclear Marine Debris Dataset15 first publicly available underwater marine debris dataset in shallow-
water environments, annotated for instance segmentation and object detection tasks. The dataset comprises images
gathered from various locations, captured using different cameras, thereby creating a multi-domain dataset.

2. As part of the technical validation we provide baseline results for marine debris detection with Faster RCNN and
YOLOv6 models.

3. To emphasize the significance of multi-domain data in building robust models, we demonstrate that enhancing
objective image quality measures or addressing domain shifts in the input space through image enhancement methods
does not improve detection performance or generalization ability in the presence of cross-site or cross-camera domain
shifts.

Methods
This section provides information about the data acquisition setup, including the robots and camera sensors used to collect
raw data for Seaclear Marine Debris Dataset15. Brief descriptions of each site where data collection was performed are
given, outlining the human activity in the area and potential sources of pollution. Additionally, we provide a brief summary
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of the methods used to analyze and demonstrate the non-trivial nature of performing underwater marine debris detection in
multi-domain settings.

Degradations introduced by turbidity, floating particles, and the properties of light propagation in water, typically
result in images of low visual quality i.e., with color distortion, contrast decrease, and haziness. In addition to camera and
medium dependencies, shallow-water images have a strong dependency on natural lighting, which can result in drastically
different images for the same site depending on capture time and weather conditions. Low visual quality and domain shift
can impair the generalization ability for object detection using deep learning architectures8. These issues are typically
addressed by image processing techniques categorized as image restoration methods, assuming a known image formation
and degradation model, or image enhancement methods that use subjective quality criteria to produce visually pleasing
images. Model-based image restoration methods used in underwater environments typically depend on parameters that
vary depending on water type, depth, lighting, and camera parameters. The data available within the Seaclear Marine
Debris Dataset is collected from multiple trials at different sites and captured with cameras of different characteristics.
Thus estimating these parameters would be difficult if not impossible without performing a calibration procedure in situ for
each conducted survey. Since image restoration is not applicable, in this paper we resort to image enhancement techniques
that only require a single image as an input.

First, we describe UIQM and Underwater Index, quality assessment metrics used to gain insight into the visual
characteristics of each domain. Finally, this is followed by a description of the fusion-based image enhancement method21

which we use as a preprocessing step to improve the visual characteristics of the data and reduce the domain shift.

Data Acquisition
Data collection was performed by deploying camera-equipped Remote Operated Vehicles (ROVs) at different sites. A
BlueROV2 was equipped with two cameras, a Bluerobotics Low-Light HD Camera and a Paralenz Vaquita, while the SST
Mini-Tortuga ROV was equipped with a Smart Security SIP-E323CV camera. Through multiple trials, different lighting
and turbidity conditions were encompassed, with each site having a characteristic source of pollution.

• Portoč (Island of Lokrum), Croatia - situated 600 meters away from the city of Dubrovnik, is used as a small port for
docking of tourist ferries. Data includes footage of debris accumulated mostly as a result of tourist activity together
with the vicinity of cruise ship and yacht anchorage. Moreover, some of the images collected from the Lokrum site
contain debris that was intentionally placed on the seabed and in the water column by divers for Seaclear project
demonstrations (an example can be seen in the LO-II labeled image in Figure 7). The Lokrum site features clear
transparent water and Posidonia Oceanica seabeds at 5−10 m depth.

• Bistrina, Croatia - situated in Mali Ston Bay, the largest production area of the European Flat Oyster (Ostrea edulis).
Oyster farming activities commonly result in the marine environment being polluted with debris such as plastic
shellfish trays, buoys, and nets, which is reflected in the imagery for this site, as seen in Figure 7. The water is turbid,
exhibiting lower visibility due to increased nutrient and sediment concentrations.

• Slano, Croatia - a small village with a harbor located 27 km northwest of Dubrovnik. Pollution is mostly the result of
harbor and tourist activities along with improper disposal of construction waste. The debris is diverse and clustered,
partially covered in construction rubble, which causes it to blend in with the background.

• L’Estaque (Marseille), France - suburb area located north of Marseille, in the vicinity of the old port. Most of the
debris is the result of the industrial activity and waste dumping.

• Jakljan, Croatia - islet belonging to the Elaphites archipelago. The data features a smaller number of individual
pieces of debris, mostly bottles and cans as a result of nautical tourism.

Underwater Image Quality Assessment
The available quality metrics for terrestrial color images are limited in their applicability to underwater images since they
fail to consider the extent of degradation and optical properties involved in underwater image formation. Since no reference
image is available and subjective measures require time-consuming manual labeling, objective underwater quality measures
that aim to capture the objectivity and perception of the human visual system (HVS) are utilized to provide a quality
estimation on the SeaClear Marine Debris Dataset.

In literature22 it was observed on large amounts of underwater image data that the Lab color space has a strong capability
of indicating the color distribution and that its (a,b) components can be used to differentiate between underwater and
terrestrial images. Underwater images typically gather further away from the origin, while terrestrial images are usually
distributed sparsely around it, which allows formulating the score called Underwater Index22 U representing the possibility
of the image being taken underwater:

U =

√
do

10Ldadb
(1)
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where L is an average value of the L channel, while do, da, and db are distances from the origin, along the a axis, and along
the b axis, respectively.

UIQM23 is composed of UICM, UISM, and UIConM, representing a comprehensive quality of an underwater image,
where its sub-indexes evaluate colorfulness, sharpness, and contrast characteristics, respectively.

UICM is calculated in terms of the variance σ2 and the mean µ of the opponent color components:

RG = R−G YB =
R+G

2
−B (2)

where asymmetric alpha-trimmed statistics σ̂2 and µ̂ are used to avoid the effect of outlier intensities on the measure:

UICM =−0.0268
√

σ̂2
RG + σ̂2

Y B +0.1586
√

µ̂RG + µ̂Y B (3)

To account for the sharpness loss, first an edge image is obtained by applying the Sobel-Feldman operator S(·)24 on
each color channel of the input image I. UISM is then defined as a linear combination based on the enhancement measure
estimation function25 E (·) measuring the contrast ratio of blocks in each edge image, as follows:

UISM = 0.299 ·E (S(IR))+0.584 ·E (S(IG)) (4)
+0.114 ·E (S(IB))

where the weights for each channel are chosen to reflect the response of the human visual system.
The final component accounts for the contrast degradation typically caused by backward scattering using the logAMEE

measure on the intensity image. logAMEE combines the logarithmic entropy of the Michelson Contrast and PLIP operators
(⊗, ⊕, ⊖), which provide nonlinear representation consistent with HVS:

UIConM =
1

L ·M
⊗

L

∑
l=1

M

∑
m=1

M (Wl,m) ln(M (Wl,m)) (5)

where L ·M is the number of blocks and M (·) is the PLIP Michelson Contrast26.
The final value of the UIQM23 is given by:

UIQM = c1 ·UICM+ c2 ·UISM+ c3 ·UIConM (6)

where the choice of the coefficients c1, c2, and c3 depends on the application, but generally a higher value of UIQM value
corresponds to an image with a better quality.

Fusion Based Image Enhancement
The Fusion based image enhancement method21 is a framework based on blending filters frequently used for image
enhancement. This method can be summarized with 3 steps:

1. Obtaining classical enhanced versions of a degraded image

2. Deriving weight maps for each enhanced version

3. Multi-scale fusion using the weight maps

The two derived enhanced versions represent the color-corrected version of the image and the contrast-enhanced version
of the underwater image after noise reduction, respectively. These two enhanced versions are referred to as inputs for the
Fusion algorithm. The first input is obtained by applying a white balancing technique, which improves the Gray-World
illumination estimate by adding a weighting based on the size of the detected set of colors. To remove degradation caused
by the scattering in the medium, the second input is derived by applying the local adaptive histogram equalization to a
noise-free and color-corrected version of the original image.

Fusion enhancement utilizes 4 weight maps per input to enhance the contrast, saturation, and exposedness of the image.
The Laplacian contrast weight (WL) tackles the issue of global contrast by applying a Laplacian filter to each luminance
channel of the input and calculating the absolute value of the filter’s output. The local contrast weight (WLC) considers
the relationship between each pixel and the average of its neighboring pixels. This measure enhances the visual effect of
local contrast by emphasizing transitions, particularly in the highlighted and shadowed areas of the second input. The
saliency weight (WS) enhances the visibility of objects that lose their distinctiveness by applying a saliency algorithm based
on the biological concept of center-surround contrast. Additionally, to avoid prioritizing highlighted areas in WS and to
protect the mid tones that might be altered in some specific cases, the exposedness weight (WE ) is defined. Exploiting the
fact that pixels tend to have a higher exposed appearance when their average normalized values are closer to 0.5, WE is
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defined as the Gaussian distance to the 0.5 value. This has the effect of tempering the saliency weight and preserving image
appearance for non-highlighted areas.

The final enhanced image version is obtained by fusing the defined inputs and weights at multiple scales. Inputs Ik

are decomposed into a pyramid by applying the Laplacian operator L(·) to different scales. The weight maps for the k-th
input are normalized to satisfy the constraint ∑W̄ k = 1. For each normalized weight map W̄ a Gaussian pyramid G(·)
is computed. Since both the Laplacian and Gaussian pyramids have the same number of levels l, mixing is performed
independently for each level. Finally, to compute the enhanced image, we use:

E(x,y) =
K

∑
k=1

Gl{W̄ k(x,y)}Ll{Ik(x,y)}

Several examples of Fusion enhanced images are shown in Figure 4.

Table 2. No. images per dataset domains, grouped by data collection sites and cameras

Site Camera Domain Label No. images
Bluerobotics Low-Light BIS-I 1390
Paralenz Vaquita Gen 2 BIS-II 2069

Bistrina,
Croatia

SIP-E323CV BIS-III 193
Bluerobotics Low-Light JA-I 241Jakljan,

Croatia Paralenz Vaquita JA-II 65
Bluerobotics Low-Light LO-I 556
Paralenz Vaquita Gen 2 LO-II 77

Lokrum,
Croatia

SIP-E323CV LO-III 339
Marseille,

France
SIP-E323CV MS-I 3441

Bluerobotics Low-Light SL-I 168Slano,
Croatia Paralenz Vaquita SL-II 71

Total 8610

Data Records
This section describes the annotated image data in the Seaclear Marine Debris Dataset. Taxonomy of debris categories and
debris instance distribution are visualized and followed by a brief overview of the dataset’s annotation format and directory
structure. The dataset is made publicly available at 4TU.ResearchData repository15 under the CC BY 4.0 license.

Dataset Structure
The Seaclear Marine Debris Dataset is comprised of 8610 underwater marine debris images, captured utilizing BlueROV
and Mini-Tortuga ROVs and annotated for instance segmentation/object detection tasks. Object instances annotated in this
dataset can be semantically grouped into 3 super-categories:

• debris - objects found in the marine environment as a result of human-induced activities,

• bio - marine vegetation and animals,

• robot - ROVs used for data collection and their parts.

Debris annotations are categorized by instance type and material, both encoded in the category name as {instance}_{material}.
The taxonomy of the class categories is depicted in Figure 2, while the distribution of the debris categories included in
the dataset is shown in Figure 1. For the bio category, the animal species was indicated in the annotations, while for the
robot category the model of the ROV and specific robot parts such as cable or vehicle leg which frequently appeared in the
images, were indicated. Proportions of specific debris materials in the total number of annotations are shown in Figure 3.

Images were labeled using labelme27, a tool that allows creating polygon annotations for instance segmentation and
that provides easy conversion from the labelme JSON format to the frequently used VOC and COCO formats. The dataset
directory structure reflects the site at which data was captured and the camera used to obtain the images as follows:

Seaclear Marine Debris Dataset
Bistrina

Bluerobotics HD
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Figure 1. Distribution of debris instances in the dataset images by object categories and materials

Figure 2. Visualization of the relations between the debris categories and super-categories.

Paralenz Vaquita Gen 2
SIP-E323CV

Jakljan
Bluerobotics HD
Paralenz Vaquita

Lokrum
Bluerobotics HD
Paralenz Vaquita Gen 2
SIP-E323CV

Marseille
SIP-E323CV

Slano
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Figure 3. A pie chart showing the proportions of annotated objects belonging to specific debris material, robot, animal
and bio categories.

Paralenz Vaquita
Bluerobotics HD

Information on the number of images and annotations for each sub-folder are provided in Table 2. Visualized samples
of annotated images from the dataset can be seen in Figure 7.

Technical Validation
To enable new research and to provide better insight into the characteristics of the provided data and open challenges, the
following experiments were conducted as part of this work:

1. Baseline results on combined data from all sites in Seaclear Marine Debris Dataset15 for the debris detection task are
given with both a two-stage Faster RCNN and a one-stage YOLOv6 detector to provide a reference for future work.

2. Analysis of domain effect on object detection performance in shallow-water imagery is conducted based on cross-
camera and cross-site data splits. By comparing performance on source and fusion-enhanced data we investigate the
effects of image enhancement on improving the generalization ability of trained models.

The results are summarized in Table 4 and Table 5. The experiments and the results are preceded by a brief overview of the
architectures and design choices for Faster RCNN and YOLO V6 models used to conduct the experiments as part of the
technical validation.

Baseline Models
For obtaining the baseline results on the SeaClear Marine Debris Dataset for marine debris detection task we used the
Faster RCNN and YOLOv628 models, which we briefly review in this section. Faster RCNN29 is a two-stage model and
more computationally expensive; on the other hand, YOLOv6 is a lightweight model suited for real-time inference.

FasterRCNN
The Faster RCNN architecture can be divided into the following sub-modules:

• Backbone Network is a CNN used to extract features from the input image (e.g. ResNet, VGG, AlexNet), typically
pre-trained on a large dataset such as ImageNet. The choice of the backbone model determines the number of model
parameters and the representation ability of the model.

• Region Proposal Network (RPN): This is the first stage of the model that generates a set of region proposals, or
regions of interest (RoIs), which are image areas likely to contain objects. The RPN is a lightweight CNN that is
trained to predict the objectness score and to regress the offsets for a fixed number of anchor boxes at each spatial
location.
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Table 3. Per domain UIQM and Underwater Index values, for source and fusion enhanced data

UIQM Underwater Index
Source Fusion Enhanced Source Fusion Enhanced

BIS-I 1.544 3.358 ↑ 13.932 2.246 ↓
BIS-II 1.978 3.507 ↑ 22.672 2.122 ↓
BIS-III 1.898 3.212 ↑ 6.106 2.085 ↓

JA-I 2.692 3.426 ↑ 5.024 2.941 ↓
JA-II 2.252 3.490 ↑ 2.376 1.949 ↓
LO-I 2.279 3.274 ↑ 2.768 3.104 ↑
LO-II 1.991 3.443 ↑ 4.777 1.496 ↓
LO-III 1.598 3.136 ↑ 3.496 3.558 ↑
MS-I 1.606 3.291 ↑ 7.345 1.878 ↓
SL-I 2.928 3.416 ↑ 8.209 4.762 ↓
SL-II 2.084 3.447 ↑ 3.985 2.192 ↓

• RoI Pooling is applied to the feature maps generated by the backbone network, it converts the generated RoIs into
fixed-size feature maps, which can then be fed into the second stage of the model.

• Fast R-CNN Head: The second stage of the model consists of fully-connected layers that produce the final output
by predicting class probabilities and bounding box coordinates.

YOLOv6
As in the Faster RCNN architecture, YOLOv6 uses a CNN backbone network to extract features from the input image;
however, since YOLOv6 is a single-stage detector, it predicts the class probabilities and the bounding box without explicitly
generating regions of interest. Single-stage detectors generally consist of two additional submodules: a neck and a head.
The neck of the network is used for aggregation of low-level spatial features and high-level semantic features, which are
used by the head to produce the final detection results. Design choices for the YOLOv6 submodules are made aiming to
improve the computational efficiency and accuracy trade-off when compared to its predecessors, specifically YOLOv5 and
YOLOX models.

The EfficientRep backbone used in YOLOv6 utilizes the re-parametrization strategy inspired by RepVGG30 to decouple
the multi-branch topology at learning time and to provide a simpler single path topology at inference time. The Rep-PAN
neck is a modified version of the PAN topology from YOLOv4 and YOLOv5 models that replaces the CSP-Block with a
RepBlock for small models and CSPStackRep for large models. Unlike YOLOv5 the design of the YOLOv6 detection head
decouples the classification and regression layers like YOLOX, but reduces the number of convolution layers to increase
efficiency.

Experimental Setup
Baseline results were obtained using a conventional approach to object detection. A two-stage Faster RCNN and a one-stage
YOLOv6 model initialized with COCO dataset weights were finetuned to the Seaclear Marine Debris Dataset. We used a
larger (41.6 M parameters) FasterRCNN model, utilizing a Resnet-50 backbone with FPN (Feature Pyramid Network) for
feature extraction and a smaller YOLOV6 S model (17.2 M parameters).

Faster RCNN training was performed for 150 epochs using the cosine annealing (with warm restarts) learning policy
with a base learning rate of λ0 = 0.001 and T0 = 10 steps, with a multiplication factor of 2. Reported results were obtained
using 640×360 input images and mini-batches of size 2. For YOLOv6 S finetuning was done based on the implementation
available in the official repository. The model was fine-tuned for 400 epochs with a batch size of 32 and an input image
size of 640 × 360.

Table 4. Stratified split baseline results

mAP(%) per site
Model

Fusion
Enhancement

mAP (%) mAR(%)
Bistrina Jakljan Lokrum Marseille Slano

Faster RCNN R50 + FPN 61.7 68.1 60.7 58.2 55.9 80.4 32.6
Faster RCNN R50 + FPN ✓ 59.0 65.6 57.2 51.9 52.4 79.2 28.7

YOLOv6 S 68.3 75.0 69.5 66.7 59.3 79.0 46.9
YOLOv6 S ✓ 68.9 75.4 69.6 70.2 60.3 80.6 46.2
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Table 5. Evaluation of generalization performance in cross-camera and cross-site setting

Cross-camera Domain Generalization
Split

Model
Fusion

Enhancement Train Test
mAP (%) mAR (%)

Faster RCNN R50 + FPN BIS-II BIS-I 14.5 22.0
Faster RCNN R50 + FPN ✓ BIS-II BIS-I 14.21 23.45

YOLOv6 S BIS-II BIS-I 26.2 46.6
YOLOv6 S ✓ BIS-II BIS-I 24.4 44.5

Faster RCNN R50 + FPN BIS-I BIS-II 12.0 18.0
Faster RCNN R50 + FPN ✓ BIS-I BIS-II 14.16 21.41

YOLOv6 S BIS-I BIS-II 24.7 38.8
YOLOv6 S ✓ BIS-I BIS-II 26.0 40.4

Cross-site Domain Generalization
Faster RCNN R50 + FPN {BIS-*} {LO-*} 5.0 9.7
Faster RCNN R50 + FPN ✓ {BIS-*} {LO-*} 3.7 8.3

YOLOv6 S {BIS-*} {LO-*} 20.4 51.1
YOLOv6 S ✓ {BIS-*} {LO-*} 7.2 42.7

Figure 4. The top row showcases the original images from different data collection sites of our dataset, while the bottom
row displays the corresponding Fusion enhanced versions. A more uniform color distribution can be observed in the
Fusion-enhanced images.

To mitigate the impact of categories with a small number of annotations we consolidated categories in the dataset that
had fewer than 50 annotations by grouping them with appropriate, related categories. For example, snack_wrapper_plastic
(8 annotations) and snack_wrapper_paper (172 annotations) were combined into snack_wrapper (180 annotations) category.
This process resulted in the final dataset of 34 categories used to conduct the experiments presented in further text.

Baseline Results
To obtain the training and test set for the baseline evaluation we performed an 80 %-20 % random split on the whole dataset.
Both models exhibited high performance in this setting with YOLOv6 S outperforming the Faster RCNN model by ≈ 7 %.
This is most likely due to better regularization of the smaller model on a dataset of this size and YOLOv6 using multiple
data augmentation strategies, which were not utilized on Faster RCNN. Performance was consistent for both models across
sites, as seen in Table 4, with both models showing the highest performance on the Marseille data, most likely due to
the lowest inter-category variance (as seen in Figure 5) and the static nature in which the data was collected. Also, both
models exhibit the lowest performance on the Slano data, which is the most challenging site in our dataset due to the small
sample size, various types of debris, and partial occlusion of objects by construction rubble causing them to blend with the
background.

Additionally, we evaluated both models on baseline data split with fusion-enhanced images. For Faster RCNN, we
report a 2.7% performance drop in terms of mAP, compared to evaluation on unprocessed data; however, on YOLOV6, a
slight improvement of 0.5 % was achieved.

Effects of Image Enhancement and Evaluating Generalization
As seen in Table 3 processing the images with Fusion-based image enhancement seems to provide a two-fold benefit by
significantly improving the image quality as measured by UIQM and by lowering the Underwater Index. Visualizing the
enhanced images versus the source images in terms of (a,b) components of Lab color space (see Figure 8), shows that
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Figure 5. Distribution of object categories for each site used in the evaluation of baseline results

Figure 6. Category distributions for domains used in cross-camera and cross-site experiments

this sort of processing eliminates the color distribution gap between different domains in the image input space. However,
these improvements in terms of objective quality metrics do not correspond to consistent improvement of object detection
performance nor a better generalization ability of the model. In a cross-site setting, both models perform poorly and no
performance improvements are observed from applying image enhancement.

Evaluating in a cross-camera setting, where the model was trained on BIS-I data and evaluated on BIS-II data we
observed an improvement of 2.1% in terms of mAP. However, this improvement does not hold for the inverse case where
the model is trained on the BIS-II data and evaluated on BIS-I data. It is important to note that for these two domains, the
shift was caused only by camera pose offset and camera type since both were mounted on the same ROV during the data
collection survey. This results in a minimal difference in terms of category distribution between training and validation data
as seen in Figure 6. However, there is still a significant drop in performance compared to the baseline results where data
from all domains is readily available. This suggests that a significant part of the domain shift can be attributed to using
different cameras and the changes in point of view from how each camera was mounted.

In a cross-site setting, imbalanced category distributions between training and validation data are unavoidable because
the marine life and type/quantity of debris depend on specific locations and human activity. This issue is exaggerated by
the large number of categories as objects are less likely to belong to the same category. Using the full 34 categories of
the dataset was not viable in the cross-site setting as there was little overlap between the category distributions. In an
attempt to produce a more balanced distribution, two strategies were explored: aggregating debris categories based on
materials (plastic, metal, rubber, fiber, glass, and other debris) as previously done in literature10 and consolidating all debris
categories into a single category. Non-debris categories were grouped into one of the appropriate categories: robot, animal
or plant. Data from the Bistrina site is used as training data because it provides the most diverse domain. Lokrum site
was chosen for validation data because it has data available from the same set of cameras as the training domain, allowing
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us to isolate the site effect on the domain shift and evaluate its impact on performance. As demonstrated in Table 4, the
performance in terms of mAP degrades further in cross-site scenarios. This outcome is expected, as using different sites for
training and validation significantly affects the variance in category distribution and increases intra-category variance. An
outlier among the cross-site experiments is the top-performing one, reporting a mAP of 20.4%. Upon inspecting the AP
per category, it was observed that this result was driven by the model’s high average precision (AP) for the robot category
and not by improved debris detection performance.

We report the mean Average Precision (mAP) in Table 5 using the full 34 categories of the dataset for cross-camera
experiments and using the 4 aggregated categories for cross-site experiments. Object category distributions for both sets of
generalization experiments can be seen in Figure 6.

Usage Notes
Annotations and additional information about the dataset are stored in COCO (Common Objects In Context) style
format (single JSON file). Using this standard annotations format allows utilizing open-source tools, like COCO API
(https://github.com/cocodataset/cocoapi) for easy access through multiple programming languages (Matlab, Lua, Python).
More complex utility functions for visualizing and modifying annotations are available in open-source Python packages,
such as KWCOCO (https://github.com/Kitware/kwcoco).
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Figure 7. Annotated sample visualization from each domain of the dataset, showing both polygon masks and category
labels
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Figure 8. Scatter plots of source and enhanced data per domain in terms of (a,b) components in Lab color space, showing
the distinct grouping of the Fusion-enhanced data around the origin
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