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Distributed Model Predictive Control for Virtually

Coupled Heterogeneous Trains: Comparison and

Assessment
Xiaoyu Liu, Azita Dabiri, Yihui Wang, Jing Xun, and Bart De Schutter, Fellow, IEEE

Abstract—Virtual coupling is regarded as an efficient way
to improve the line capacity of rail transportation systems by
reducing the spacing between consecutive trains. This paper is the
first to compare and assess different distributed model predictive
control (MPC) approaches, i.e., cooperative distributed MPC,
serial distributed MPC, and decentralized MPC, for virtually
coupled trains with a nonlinear train dynamic model. To make
a balanced trade-off between computational complexity and
efficiency, we also propose and assess convex approximations
of the above control approaches. Furthermore, we are the first
to introduce the relaxed dynamic programming approach to
analyze the stability of the MPC-based nonlinear train control
problem. By using the relaxed dynamic programming approach,
a distributed stopping criterion with a stability guarantee is
developed for the cooperative distributed MPC approach. In
real life, masses of trains are different and can change at
stations due to changes in passenger loads. This change in
mass can significantly affect the dynamics and control of the
virtually coupled trains when not taken into account in the
control design. Therefore, we explicitly consider heterogeneous
train masses when designing MPC approaches. We evaluate
the different distributed MPC approaches through case studies
based on the data of the Beijing Yizhuang Line. Simulation
results indicate that the cooperative distributed MPC approach
has the best tracking performance, while the serial distributed
MPC approach can reduce communication requirements and
computation capabilities with sacrifices of tracking performance.

Index Terms—Virtual coupling, train speed control, distributed
model predictive control, heterogeneous train masses, relaxed
dynamic programming

I. INTRODUCTION

The transport demand for rail transportation systems has

increased rapidly, and the need to enhance rail line capacity

while ensuring operational safety remains a paramount con-

cern for rail operators. The line capacity is associated with

the spacing between consecutive trains, which is determined

by the signal systems. Currently, the widely applied signal
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system in urban rail transit is the moving block system [1],

[2], which determines the distance between two consecutive

trains based on the absolute braking distance, i.e., the distance

a train needs to fully stop from its current speed.

In recent years, an advanced signaling technology, i.e.,

virtual coupling, has been recognized as an efficient way to

further improve the line capacity by reducing the spacing

between consecutive trains [3], [2]. In a platoon of virtually

coupled trains, the distance between two consecutive trains

is determined based on the relative braking distance, which

also takes into account the braking characteristics of the

predecessor train [4], [5]. Different from platoons of connected

and automated vehicles (CAVs) in road traffic [6], a platoon of

virtually coupled trains features a long train braking distance,

and trains in a platoon should run on the same rail track,

leading to larger spacing between trains. Furthermore, the

communication between non-adjacent trains is typically not

considered due to the longer headway in railway systems as

communication over longer distances may become unreliable

[7]. Hence, one cannot just adopt control approaches of CAVs

to virtually coupled trains.

As a novel signaling technology, virtual coupling signif-

icantly relies on vehicle-to-vehicle communication and co-

operative train control schemes [8], [9], [10]. Generally, the

communication topology and the cooperative control schemes

are highly intertwined. Several control approaches have been

developed for virtually coupled trains based on different

communication topologies. Cao et al. [11] applied generalized

predictive control (GPC) to virtually coupled trains with the

aim to ensure the expected tracking distance and to prevent

collisions. Xun et al. [12] applied model predictive control

(MPC) to realize centralized control and in addition they

developed a speed protection mechanism for virtually coupled

trains. Su et al. [13] developed a centralized MPC approach for

virtually coupled trains in the cruising phase, and they applied

a generalized minimum-residual-method-based approach to

solve the resulting nonlinear optimization problem. The above

papers focus on centralized control approaches that rely on

a centralized controller, thereby significantly increasing the

communication and computation burden [14].

In contrast to those centralized control approaches, de-

centralized control strategies have gained attention due to

their potential to alleviate the communication and computation

burden. Felez et al. [15] formulated a decentralized MPC

approach for virtually coupled trains based on a linear model

with nonlinear constraints. Two cases are considered in [15],
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i.e., the case that the follower receives predicted states from

its predecessor train, and the case that the followers have to

predict the states of its predecessor train based on the mea-

sured information. Considering uncertainties in the dynamic

model and train positioning, Felez et al. [16] developed a

decentralized robust MPC approach based on the min-max

principle. This work is further extended in [17] by including

more uncertain factors, such as modeling errors, positioning

errors, communication delays, and possible adhesion losses.

Di Meo et al. [18] developed a decentralized control approach

based on local state variables and the information received

from other trains, and they analyzed the exponential stability

under communication delays by introducing a Lyapunov-

Krasovskii function. By using sliding mode control (SMC) and

a nonlinear train control model, Park et al. [19] developed a

robust gap controller based on the measurement of the position

and velocity of the predecessor trains. Basile et al. [20]

developed a deep deterministic policy gradient approach to

design a decentralized control law for virtually coupled trains

with heterogeneous train dynamics and uncertain disturbances,

showing lower computational burden and energy consumption

compared to MPC. However, the safety distance in [20] is con-

sidered by using a penalty term in the reward function, which

does not provide a theoretical guarantee of safety. The above

papers primarily emphasize the significance of decentralized

control strategies for virtual coupling, highlighting their ability

to alleviate the communication burden while ensuring system

performance. However, these decentralized approaches often

rely on measurement information or limited communication

information, and trains make independent decisions without

coordinating their actions with those of other trains. high-

lighting the potential for distributed and/or cooperative control

approaches1 that can leverage communication data even more.

The advanced vehicle-to-vehicle communication technology

enables communication-enhanced information exchange be-

tween virtually coupled trains [7], [8], prompting the explo-

ration of distributed control methods that can leverage more

extensive communication data. Quaglietta et al. [23] analyzed

the safety margin of virtually coupled trains to handle the

safety risk caused by communication delays, control delays,

positioning errors, and train braking characteristics. Su et al.

[24] considered the heterogeneous train braking distance and

developed a feedback control law to ensure the string stability

of the train platoon. Liu et al. [5] linearized the train movement

model and developed a distributed MPC approach for a

platoon of virtually coupled trains, where trains are assumed

to be close to each other, and therefore the slope difference

between different trains is ignored; then, they analyzed the

local stability of each individual train based on a terminal

controller. By ignoring the slope difference between trains, Liu

et al. [25] developed an optimal control (OC) approach based

on Pontryagin’s principle, and analyzed the local stability and

the head-to-tail string stability. By considering the resistance

caused by tracks and winds as bounded disturbances, Luo et al.

[26] introduced tube-based distributed MPC based on a linear

1Each agent in a distributed control scheme only focuses on its own
objective, while cooperative distributed control enables agents to take into
account the objective of the overall system [21], [22].

train model, where the safety constraint can be ensured in any

situation in the robust control scheme. In the aforementioned

distributed control approaches, each train computes its control

input based on the information received from its predecessor

train only, and thus the approach is also called the serial

distributed control approach. Zhang et al. [27] introduced the

fixed-time tracking control (FTC) approach and developed a

cooperative control approach to achieve virtual coupling within

the fixed time. Wang et al. [28] introduced a Q-learning-based

cooperative control approach for virtually coupled trains where

monitoring sensors and wireless communication networks are

used to obtain the operational status of trains; however, only

two virtually coupled trains are considered in [28], and the

extension to more trains still requires further research. In sum-

mary, these studies indicate the potential for enhanced control

and coordination among virtually coupled trains facilitated by

vehicle-to-vehicle communication technologies.

In a set of virtually coupled trains, trains may have different

characteristics, resulting in heterogeneity. In particular, hetero-

geneous trains may have different lengths, masses, and braking

characteristics, which should be considered in the controller

design to ensure efficient and safe operation [4], [24]. Train

mass is a crucial factor influencing train dynamics and varies

according to train type and passenger load. Therefore, as an

illustration, among all the aspects of heterogeneous trains, we

focus on the train mass in the current paper.

Table I summarizes the aforementioned studies, outlining

the differences in the model, control scheme, control approach,

and train heterogeneity they used. From Table I, we can

observe the application of both linear and nonlinear train dy-

namic models. Notably, the nonlinear model generally yields

more accurate results but also comes with a higher compu-

tational burden compared to the linear model. According to

different communication topologies, different control schemes,

i.e., centralized, decentralized, distributed, and cooperative

distributed, are studied. We find that MPC stands out as the

most widely adopted train control approach in virtual coupling

research. For more studies in virtual coupling, we refer to the

recent review papers [10], [8], [29]. It is worth noting that only

the study presented in [19] explicitly incorporates train masses

when designing the controller, and there is still no research

on an MPC design for virtually coupled trains explicitly

considering masses of trains. Furthermore, a comprehensive

comparison and assessment considering different models and

different control schemes for virtually coupled trains is still

unaddressed in the existing literature.

The paper contributes to the state of the art as follows:

1) A comprehensive comparison and assessment of dis-

tributed MPC approaches for virtually coupled trains

are provided, which would benefit the process of control

method design and selection for virtually coupled trains.

2) We are the first to incorporate the relaxed dynamic

programming (RDP) approach into the train control field

and to use it to ensure the stability of the nonlinear train

control problem. By using RDP, a stopping criterion

under the distributed control scheme with a stability

guarantee is developed for the cooperative distributed

MPC approach.
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TABLE I
SUMMARY OF STUDIES ON CONTROL FOR VIRTUALLY COUPLED TRAINS

Literature Model Control scheme Control approach Train heterogeneity

Cao et al. (2021) [11] linear centralized generalized predictive control no
Xun et al. (2020) [12] linear centralized model predictive control no
Su et al. (2021) [13] nonlinear centralized model predictive control no
Felez et al. (2019) [15] nonlinear decentralized model predictive control no
Felez et al. (2022) [16] nonlinear decentralized model predictive control no
Vaquero-Serrano et al. (2023) [17] nonlinear decentralized model predictive control no
Di Meo et al. (2019) [18] linear decentralized proportional–integral–derivative no
Park et al. (2020) [19] nonlinear decentralized sliding mode control train mass
Basile et al. (2024) [20] nonlinear decentralized deep deterministic policy gradient train dynamics
Liu et al. (2021) [5] linear distributed model predictive control no
Liu et al. (2021) [25] linear distributed optimal control no
Luo et al. (2023) [26] linear distributed model predictive control no
Su et al. (2023) [24] nonlinear distributed feedback control braking dynamics
Zhang et al. (2021) [27] nonlinear cooperative fixed-time tracking control no
Wang et al. (2020) [28] nonlinear cooperative Q-learning no

This study
linear,
nonlinear

cooperative,
distributed,
decentralized

model predictive control train mass

3) The mass of trains can significantly affect the dynamics

and control of virtually coupled trains if not considered

in the control design. We are the first to explicitly

account for changes in train masses when designing

MPC approaches, and we demonstrate the impact of

incorporating train masses in the control design through

simulations.

The rest of the paper is structured as follows. In Section II,

the problem statement and preliminaries are provided. In

Section III, the mathematical model of the system is provided.

In Section IV, several distributed MPC approaches are pre-

sented. In Section V, we conducted case studies to illustrate

the performance of the approaches, and in Section VI, the

conclusions and the outlook for future works are provided.

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Problem Statement

In a platoon of virtually coupled trains, trains are coupled

virtually through train-to-train communication. We consider

heterogeneous trains, and in particular, we focus on hetero-

geneous masses in this paper. The leader train receives ref-

erence signals from the infrastructure and operates following

a reference speed profile, and each follower train follows its

predecessor train while keeping a safe distance.

Let us define si, vi, and ui as the position, speed, and

control input of train i, respectively, and define ∆si and

∆vi as the position difference and speed difference between

train i and its predecessor train, respectively. As stated in

[7], ultra-reliable low-latency communications are typically

required when the distance between trains is less than 50

m. Moreover, the latency of 50 ms can be achieved for

wireless train control and monitoring system [30], [7]. The

field tests and simulations in [31] also indicated that the

average transmission delay of train-to-train communications is

below 20 ms. Therefore, in the current paper, we only consider

the case that a train can communicate with its predecessor

train and follower train, and train-to-train communication

under a relatively short distance can be ensured. As shown

in Fig. 1, three possible communication topologies realized

in practice are considered, i.e., bidirectional communication,

unidirectional communication, and measurement, and different

communication topologies require different control methods.

The bidirectional communication in Fig. 1(a) allows trains

to include their neighbors’ real-time control inputs, speeds,

and positions when generating control inputs. Hence, trains

can compute their control inputs in parallel and exchange

information with their neighbors [7], [27], which involves ad-

justing control inputs, to achieve cooperative control; however,

the communication burden of bidirectional communication is

relatively large.

Train 1Train 2Train 3

Train 1Train 2Train 3

Train 1Train 2Train 3

(a)

(b)

(c)

running direction

running direction

running direction

Unidirectional 

communication

Unidirectional 

communication
MeasurementMeasurement

Bidirectional 

communication

Bidirectional 

communication

s2,v2,u2

s2,v2,u2

s2,v2,u2

s3,v3,u3

s1,v1,u1

s1,v1,u1

Δs3, Δv3 Δs2, Δv2

Fig. 1. Illustration of train-to-train communication topologies for virtually
coupled trains occurring in practice.

For the unidirectional communication in Fig. 1(b), trains

compute control inputs sequentially in the virtual coupled train

string: each train computes the control input based on the

real-time control input, speed, and position, received from its

predecessor train, and then, the computed control input, speed,

and position are sent to its successor train. In this context, each

train only requires communicating with its neighbors once per
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control step.

Fig. 1(c) corresponds to the case when the communication

between trains is lost, and thus a train cannot receive the real-

time control input, speed, and position of its predecessor train.

Then, to ensure safe operation, each train should compute

control inputs based on the relative speed and position of its

predecessor train measured by onboard sensors, e.g., radars or

LiDARs, assuming the predecessor train may brake with the

maximum braking force.

In this paper, we consider the three communication topolo-

gies depicted in Fig. 1 and introduce different control ap-

proaches based on the three communication topologies.

Remark 1. Different from platoons of connected automated

vehicles in road traffic, communication between non-adjacent

trains is not considered due to the longer headway in railway

systems compared to that in road traffic control systems, as

communication over longer distances may become unreliable.

The virtual coupling train control problem aims at control-

ling trains operating with a relatively short headway while

ensuring a safe and steady distance between two adjacent

trains. The safety distance can be guaranteed by including

hard constraints in the control problem. The steady distance

between a train and its predecessor train is evaluated by local

stability, while the steady distance between any two adjacent

trains in the platoon is ensured by the so-called string stability.

B. Preliminaries

To introduce the concept of string stability, let us consider

train i in the platoon, and the dynamic of train i is

xi,k+1 = fi(x1,k, . . . , xi,k, . . . , xI,k), (1)

where xi,k represents the state of train i at time step k, I is

the total number of trains in the platoon.

The definitions of local stability and string stability used in

this paper are introduced as follows.

Definition 1 (Lyapunov Local Stability) [32]: For a given

system (1), the equilibrium point x
eq
i is said to be Lyapunov

local stable if

∀ǫ > 0, ∃δ > 0, ||xi,0−x
eq
i || < δ ⇒ ||xi,k−x

eq
i || < ǫ, ∀k ∈ N0.

(2)

In addition, the equilibrium point x
eq
i is said to be asymptot-

ically Lyapunov locally stable if it is Lyapunov locally stable

and xi,k → x
eq
i as k →∞.

Let us further define the dynamic platoon of trains as

xk+1 = f(xk), (3)

where xk = [x1,k, . . . , xI,k]
⊺.

Definition 2 (Lyapunov String Stability) [33], [34]: For a

platoon of trains described by (3), the equilibrium point xeq

is said to be Lyapunov string stable if

∀ǫ > 0, ∃δ > 0, ||x0−xeq|| < δ ⇒ ||xk−xeq|| < ǫ, ∀k ∈ N0.

(4)

In addition, the equilibrium point xeq is said to be asymptot-

ically Lyapunov string stable if it is Lyapunov string stable

and x→ xeq asymptotically.

Notation: A continuous function h(·) : R+ → R+ is of

class K, if it is strictly increasing and h(0) = 0. A continuous

function h(·) : R+ → R+ is of class K∞, if it is of class K and

limu→∞ h(u) = ∞. The quadratic norm corresponding to a

positive definite symmetric matrix Q is ||x||2Q = x⊺Qx. Given

a set X ⊆ R
n, a scalar a ∈ R, we define aX := {ax|x ∈ X}.

III. MATHEMATICAL MODEL FOR VIRTUALLY COUPLED

TRAINS

A. Train Dynamic Model

Although the dynamics of a train is continuous, the con-

trol input of the automatic train operation (ATO) system is

typically implemented in a discrete-time manner due to the

implementation of digital computers. Similar to [15], [35], the

discrete-time model of longitudinal dynamics of a train can be

described as

vi,k+1 = vi,k +
(ui,k − ri(vi,k)− wi(si,k))T

Mi,p

, (5a)

si,k+1 = si,k + vi,kT, (5b)

where i is the train index, T represents the sampling time,

vi,k and si,k represent the speed and position of train i at time

step k, respectively, Mi,p denotes the total mass of train i from

station p to its successor station with p being the station index.

We assume that Mi,p is a piecewise constant function whose

value changes at the station in accordance with the variance of

the passenger load. Moreover, ui,k is the control input, i.e., the

traction/braking force; ri (vi,k) is the basic resistance that is

related to the speed of train i; wi (si,k) denotes the additional

resistance that is determined by the position of train i.

The total mass of train i changes when train i has arrived

at a station and can be calculated by

Mi,p = mi + ni,pmpa, (6)

where mi denotes the mass of train i itself; ni,p is the number

of passengers on board the train at station p, and the value

of ni,p changes when the train has arrived at a station; mpa

represents the average mass of a passenger.

The train basic resistance ri (vi,k) can be described by

ri (vi,k) = Mi,p

(

c0 + c1vi,k + c2v
2
i,k

)

, (7)

where c0, c1, and c2 are parameters that can be identified based

on experiment data [36]. The train basic resistance considers

the effects caused by the rotational inertia for wheelsets, the

number of axles, the effective frontal cross-section, the air

resistance, etc.

The additional resistance wi (si,k) is related to the total

mass of the train and can be approximated as a piecewise

constant function of the train position:

wi (si,k) = Mi,pg sin θ(si,k), (8)

where θ(·) is a function of train position representing slope at

the corresponding position2.

2The additional resistance consists of the resistance caused by slope, curve,
and tunnel. Note that the curve resistance and the tunnel resistance can be
represented by wi

(

si,k
)

= Mi,pgγ(si,k), with 0 ≤ γ(si,k) ≤ 1; so they
can be transformed into the form of (8).
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The decision variable ui,k, the train speed vi,k, and the train

position si,k should satisfy

−Bsb
i ≤ ui,k ≤ Umax

i , (9)

0 ≤ vi,k ≤ vlim(si,k), (10)

si,k + dsafei (vi,k, vi−1,k) ≤ si−1,k, (11)

where Bsb
i and Umax

i are the maximum service braking

force and the maximum traction force of train i, respectively,

vlim(si,k) is a piecewise constant function denoting the speed

limit for train i at position si,k, dsafei (vi,k, vi−1,k) is the safety

distance between train i and its predecessor train, which can

be constrained by

dsafei (vi,k, vi−1,k) ≥ dsbi (vi,k)− debi−1 (vi−1,k) + L+Dsafe,

(12a)

dsafei (vi,k, vi−1,k) ≥ L+Dsafe, (12b)

where dsbi (vi,k) =
v2

i,k

2asb

i

is the braking distance of train i with

the service braking, i.e., when asbi =
Bsb

i

Mi,p
, debi−1 (vi−1,k) =

v2

i−1,k

2aeb

i−1

is the braking distance of train i − 1 with emergency

braking, i.e., aebi−1 =
Beb

i−1

Mi−1,p
, where Beb

i−1 is the emergency

braking force of train i−1, L denotes the length of a train, and

Dsafe is the safety distance applied to address the safety risk

caused by modeling errors, positioning errors, communication

delays, etc [23], [5].

B. Dynamic Model for Virtually Coupled Trains

In a platoon of virtually coupled trains, a train is expected to

follow its predecessor train at a certain distance. We consider

that the relative distance between train i (i > 1) and its

predecessor train is determined by the speeds of the two trains:

ei,k = si−1,k − si,k − dsbi (vi,k) + debi−1(vi−1,k). (13)

The first train (i = 1) tracks a desired speed profile with the

speed and position represented by v0,k and s0,k respectively,

and we define e1,k = s0,k−s1,k. The illustration of calculating

ei,k in (13) is shown in Fig. 2.

Velocity

Distance

Train i Train i – 1

✞☛,�☛,�

✞☛✁✂,�

sb

,( )
i i k
d v ✄☛,�

Service braking 

Emergency braking 

Train i 1

Fig. 2. Illustration of calculating relative distance for train i (i > 1).

Let us define the state and input of train i as xi,k =
[vi,k, ei,k]

⊺
and µi,k = 1

Mi,p
ui,k, respectively. Then, the

evolution of xi,k can be expressed compactly as

xi,k+1 = fi(xi,k, µi,k), (14)

where xi,k ∈ Xi,k and µi,k ∈Wi,k, with Xi,k and Wi,k being

the feasible sets of xi,k and µi,k, respectively. If ui,k ∈ Ui,k,

then Wi,k = 1
Mi,p

Ui,k. Note that, in (14), the states of train

i implicitly depend on the position and speed of train i − 1;

hence we have coupled dynamics.

IV. DISTRIBUTED MODEL PREDICTIVE CONTROL FOR

VIRTUALLY COUPLED TRAINS

In this section, we apply different distributed MPC ap-

proaches for virtually coupled trains based on the nonlinear

model in Section III. We first provide the general nonlinear

model predictive control problem formulation. Considering the

possible communication structures introduced in Fig. 1, the

computational complexity, and the model accuracy, we then

develop the following six distributed MPC approaches:

• nonconvex cooperative distributed MPC: N-CDMPC;

• convex cooperative distributed MPC: C-CDMPC;

• nonconvex serial distributed MPC: N-SDMPC;

• convex serial distributed MPC: C-SDMPC;

• nonconvex decentralized MPC: N-DMPC;

• convex decentralized MPC: C-DMPC;

N-CDMPC, N-SDMPC, and N-DMPC are related to the

bidirectional communication case, the unidirectional commu-

nication case, and the measurement case in Fig. 1, respectively.

However, as the model (14) and constraints (11), (12), and

(13) are nonlinear, the resulting MPC optimization problems

of N-CDMPC, N-SDMPC, and N-DMPC are nonlinear and

nonconvex, which may increase the computational burden of

finding the optimal solution. Hence, we approximate these

problems as convex problems to make a balanced trade-off

between computational burden and accuracy, and the con-

vex counterparts of the methods are labeled C-CDMPC, C-

SDMPC, and C-DMPC, respectively. The details of the above

approaches are provided as follows.

A. General Nonlinear MPC Problem Formulation

To ensure that trains run with consistent speed and steady

distance, we define the quadratic stage cost for train i at time

step k as

ℓi(xi,k, µi,k) = ||xi,k − x
eq
i,k||

2
Q + ||µi,k||

2
R, (15)

where Q ∈ R
2×2 is a positive symmetric matrix, and R ∈ R.

The first term in (15) defines the tracking error, while the

second term corresponds to the energy consumption of train i.

Virtual coupling aims to control trains running with consistent

speed and steady relative distance. Thus, the equilibrium state

of train i (i > 1) is defined as x
eq
i,k =

[

v
eq
i,k, e

eq
i,k

]⊺

with v
eq
i,k =

vi−1,k and e
eq
i,k = L+Ddes, where L is the length of a train,

Ddes represents the desired distance between two trains. The

equilibrium state of the first train (i = 1) is x
eq
1,k = [v0,k, 0]

⊺
.
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The nonlinear MPC optimization problem for train i is

min
xi,k0
µi,k0

Ji (k0) =

k0+N−1
∑

k=k0

ℓi(xi,k, µi,k) (16a)

s.t. xi,k+1 = f(xi,k, µi,k), k = k0, . . . , k0+N−1, (16b)

xi,k ∈ Xi,k, k = k0, . . . , k0+N−1, (16c)

µi,k ∈Wi,k, k = k0, . . . , k0+N−1, (16d)

where xi,k0
= [x⊺

i,k0
, . . . , x

⊺

i,k0+N ]⊺ and µi,k0
=

[µi,k0
, . . . , µi,k0+N−1]

⊺, Xi,k denotes the set defined by con-

straints (10)-(12), and Wi,k represents the set defined by

constraint (9).

The optimization problem (16) is a nonlinear nonconvex

optimization problem. Solving (16) at time step k0 results in

the optimized input sequence µ
∗

i,k0
= [µ∗

i,k0
, . . . , µ∗

i,k0+N−1];
only the first value µ∗

i,k0
is implemented in the system and the

procedure is repeated under a moving horizon scheme.

From (16), we formulate a nonlinear model predictive

controller, and the stability can be analyzed based on relaxed

dynamic programming. The stability condition can be stated

as follows.

Theorem 1 (Lyapunov Stability) [37]. Considering system

(14) with xi,k ∈ Xi,k, let Xi,k be forward invariant3, and

let πi(·) be an admissible control law, i.e., πi(xi,k) ∈ Wi,k,

∀xi,k ∈ Xi,k such that fi(xi,k, πi(xi,k)) ∈ Xi,k+1. Then, the

closed-loop system xi,k+1 = fi(xi,k, πi(xi,k)) is asymptoti-

cally stable on Xi,k with the equilibrium point x
eq
i,k if

JN
i (k) ≥ αℓi(xi,k, µ

∗

i,k) + JN
i (k + 1), (17a)

β1(||xi,k − x
eq
i,k||2) ≤ JN

i (k) ≤ β2(||xi,k − x
eq
i,k||2), (17b)

ℓi(xi,k, µi,k) ≥ β3(||xi,k − x
eq
i,k||2), (17c)

where JN
i (k) represents the optimized value of Ji(k) at time

step k with prediction horizon N , for some α ∈ (0, 1], and

β1(·), β2(·), and β3(·) are of class K∞.

Remark 2. Note that JN
i (k+1) in condition (17a) requires

the control law in time step k + 1, which is not available at

time step k. In the MPC scheme, given the optimized control

variables at time step k as µ
∗

i,k = [µ∗⊺

i,k, . . . , µ
∗⊺

i,k+N ]⊺, we can

directly build a sequence of feasible control variables for time

step k + 1 as

µ̃i,k+1 = [µ̃⊺

i,k+1, . . . , µ̃
⊺

i,k+N , µ̃
⊺

i,k+N+1]
⊺

= [µ∗⊺

i,k+1, . . . , µ
∗⊺

i,k+N , µ̃
⊺

i,k+N+1]
⊺, (18)

where µ̃
⊺

i,k+1, . . . , µ̃
⊺

i,k+N are the inputs in µ
∗

i,k, and µ̃i,k+N+1

can be any admissible control law, e.g., µi,k+N = −
Bmax

i

Mi,p
. The

cost function for µ̃i,k+1 is represented by PN
i (k + 1). Thus,

we can obtain optimized decision variables at time step k+1,

such that JN
i (k + 1) ≤ PN

i (k + 1). Then, the implementable

version of (17a) becomes

JN
i (k) ≥ αℓi(xi,k, µ

∗

i,k) + PN
i (k + 1). (19)

3A family of sets Xi,k is forward invariant if there exists µi,k such that
xi,k+1 = fi(xi,k, µi,k) ∈ Xi,k+1 holds for all xi,k ∈ Xi,k .

B. Nonconvex Cooperative Distributed MPC

With the bidirectional communication as in Fig. 1(a), trains

in a platoon of virtually coupled trains can compute control

inputs in parallel and exchange information several times to

achieve cooperative control. The alternating direction method

of multipliers (ADMM) is an efficient distributed optimiza-

tion approach for problems with coupled constraints [38].

Therefore, we adopt ADMM to solve the resulting distributed

optimization problem in each step of distributed MPC.

For the MPC optimization problem of train i, (16c) and

(16d) collect constraints for xi,k and µi,k, and we can write

(16c) and (16d) compactly as:

hi(yi−1,k, yi,k, yi+1,k) ≤ E1,i,k, (20)

where yi−1,k = [x⊺

i−1,k, µi−1,k]
⊺, yi,k = [x⊺

i,k, µi,k]
⊺,

yi+1,k = [x⊺

i+1,k, µi+1,k]
⊺, and E1,i,k is a constant. We can

observe from (16) that different subproblems are coupled

through constraint (20). The coupled constraints can be relaxed

by introducing ηi,k ≥ 0 as follows:

hi(yi−1,k, yi,k, yi+1,k) + ηi,k = E1,i,k. (21)

Then, in ADMM, the objective function for train i becomes

Li(k0) = Ji(k0) +

+

k0+N−1
∑

k=k0

(

λ
⊺

i,k

(

hi(yi−1,k, yi,k, yi+1,k)+ηi,k−E1,i,k

)

+

+
ρ

2
||hi(yi−1,k, yi,k, yi+1,k) + ηi,k − E1,i,k||

2
2

)

, (22)

where yi,k0
= [y⊺i,k0

, . . . , y
⊺

i,k0+N−1]
⊺, ρ > 0 is the augmented

Lagrangian parameter, and λi,k represents the Lagrangian

multipliers, which are updated by

λ
(z+1)
i,k =λ

(z)
i,k+ρ

(

hi

(

y
(z+1)
i−1,k , yi,k, y

(z)
i+1,k

)

+ηi,k−E1,i,k

)

, (23)

where z represents the iteration index, and λ
(z)
i,k and y

(z)
i,k are

the values of λi,k and yi,k after iteration z, respectively. For

more details about ADMM, we refer the readers to [38], [39].

In each iteration, a nonlinear nonconvex optimization prob-

lem should be solved. We can use gradient-based approaches,

e.g., sequential quadratic programming, to find a solution.

ADMM is a distributed optimization approach, and a stopping

criterion that can be applied in a distributed manner is required

when implementing ADMM in the distributed control scheme.

Lemma 1. If LN
i (k) represents the optimized value of

Li(k), one sufficient condition for (17a) in the distributed

control scheme is

LN
i (k) ≥ αℓi(xi,k, µ

∗

i,k) + PN
i (k + 1), (24)

where α ∈ (0, 1].
Proof: Based on the weak duality theorem, we have

LN
i (k) ≤ JN

i (k). (25)

Then, according to (19), we have

JN
i (k) ≥ αℓi(xi,k, µ

∗

i,k) + PN
i (k + 1). (26)
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Hence, we can conclude that (24) implies

JN
i (k) ≥ αℓi(xi,k, µ

∗

i,k) + JN
i (k + 1). (27)

The iteration of ADMM for N-CDMPC stops when either

the stability condition represented by (24) is satisfied, or the

maximum number of iterations Zmax is reached. Based on

the aforementioned stopping criteria, ADMM may terminate

before reaching its (local) optimal solution. To ensure safe

operations, the safety constraints (11)-(12) can be directly

incorporated as a constraint when optimizing (22), and the

coupled constraint (13) is relaxed by (22).

Lemma 2 (Recursive Feasibility). If a feasible solution that

satisfies the stopping criterion (24) is found at time step k, the

feasibility for the optimization problem (16) of each agent at

time step k + 1 can be found.

Proof: The proof is based on finding a feasible solution

for time step k+1. For a solution µ
∗

i,k at time step k, a feasible

solution at time step k + 1 can be found as stated in Remark

2.

Theorem 2 (Lyapunov String Stability). If a feasible so-

lution that satisfies the stopping criterion (24) can be found,

then the platoon of virtually coupled trains is Lyapunov string

stable.

Proof: If a feasible solution that satisfies the stopping

criterion (24) can be found, according to Theorem 1, we can

show that the equilibrium point of each train is Lyapunov

stable. Then, the Lyapunov string stability for the platoon

of virtually coupled trains can be obtained following the

procedure in [33].

Algorithm 1 elaborates the procedure for implementing the

cooperative distributed MPC algorithm, where z is the iteration

index, and x
(z)
i,k and µ

(z)
i,k represent the values of xi,k and µi,k

after iteration z, respectively.

Algorithm 1 Cooperative Distributed MPC for Virtually Cou-

pled Trains

Input: xi,k0
, Mi,p, N , Umax, Bsb, Beb, Itrain, Dsafe, Ddes,

L, kend, zmax, ρ, λ
(0)
i,k , α; recommend speeds v0,k, s0,k;

Output: control input µi,k

1: k ← k0
2: repeat

3: q ← 0
4: repeat

5: for i = 1, . . . , Itrain do

6: minimize objective (22) subject to (5)-(12)

7: send obtained x
(z+1)
i,k and µ

(z+1)
i,k to neighbors

8: update λ
(z+1)
i,k subject to (23)

9: end for

10: z ← z + 1
11: until z = zmax or (24) holds for each train i

12: apply control decision µi,k to each train i

13: k ← k + 1
14: until k = kend

C. Convex Cooperative Distributed MPC

The problem (16) formulated in Section IV-A is a nonlinear

nonconvex optimization problem. In the N-CDMPC approach

developed in Section IV-B, we cannot ensure the convergence

of ADMM and the optimal solution to the optimization prob-

lem easily. Moreover, solving nonlinear nonconvex optimiza-

tion problems typically requires a larger computational burden

than its convex counterpart.

There are two nonconvex components in the N-CDMPC

formulation, i.e., the nonlinear model (16b) and constraints

(21). By using Taylor expansion at the prior estimate state of

the train, we can linearize dsbi (vi,k) and debi−1(vi−1,k) in (12)

and (13). The prior estimate state of train i at time step k+1
can be calculated according to the current speed vi,k+1, the

current position si,k+1, and control inputs in (18) [15], [5]. The

nonlinear model (16b) can also be linearized at each time step

based on the prior estimate state by using Taylor expansion.

Other settings are exactly the same as the N-CDMPC approach

Hence, we can simplify the N-CDMPC approach to develop

a convex cooperative distributed MPC (C-CDMPC) approach

for the platoon of virtually coupled trains.

D. Nonconvex Serial Distributed MPC

For the unidirectional communication in Fig. 1(b), each train

only communicates with its neighbors once in one control step.

In this context, each train computes control inputs sequentially

based on the information received from its predecessor train.

Specifically, train i calculates control inputs based on the speed

v̄i−1,k, position s̄i−1,k, and control input µ̄i−1,k received from

train i − 1, where v̄i−1,k, s̄i−1,k, and µ̄i−1,k are the results

of the optimization problem in train i − 1. Thus, the safety

constraints in (12) are replaced by

dsafei (vi,k, v̄i−1,k) ≥ dsbi (vi,k)− debi−1 (v̄i−1,k) + L+Dsafe,

(28a)

dsafei (vi,k, v̄i−1,k) ≥ L+Dsafe. (28b)

Furthermore, the relative distance with its predecessor train

becomes

ei,k = s̄i−1,k − si,k − dsbi (vi,k) + debi−1(v̄i−1,k). (29)

Then, the cost function becomes

ℓ̄i(xi,k, µi,k) = ||xi,k − x̄
eq
i,k||

2
Qi

+ ||µi,k||
2
Ri
, (30)

where x̄
eq
i,k =

[

v̄
eq
i,k, ē

eq
i,k

]⊺

is the equilibrium state of train i,

with v̄
eq
i,k = v̄i−1,k and ē

eq
i,k = L+Ddes.

Therefore, in nonconvex serial distributed MPC (N-

SDMPC), each train solves the MPC optimization problem

as follows

min
xi,k0
µi,k0

Ji (k0) =

k0+N−1
∑

k=k0

ℓ̄i(xi,k, µi,k) (31a)

s.t. xi,k+1 = f(xi,k, µi,k), k = k0, . . . , k0+N−1, (31b)

gi(ȳi−1,k, yi,k)≤E2,i,k, k = k0, . . . , k0+N−1, (31c)

where (31c) is the compact form of constraints corresponding

to yi,k = [x⊺

i,k, µi,k]
⊺, i.e., constraints (9)-(11) and (28).
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The MPC optimization problem (31) is a nonlinear non-

convex optimization problem, and we can use gradient-based

approaches, e.g., sequential quadratic programming, to find

a solution. At each MPC step of N-SDMPC, each train

calculated its control input µi,k for implementation by solving

(31) with received x̄i−1,k and µ̄i−1,k, and then send the

obtained xi,k and µi,k to its succeeding train.

Remark 3. As each train only communicates with its neigh-

bors once per control step in the unidirectional communication

case, the global optimal solution to the overall problem cannot

be guaranteed. The serial distributed MPC approach follows a

first-come first-serve fashion for the coupled constraint (31c),

i.e., the predecessor train calculates and sends states and

control inputs to its follower train, and the follower train then

calculates states and control inputs that satisfy the coupled

constraint (31c) based on the received information.

E. Convex Serial Distributed MPC

To reduce the computational burden of solving the nonlinear

nonconvex optimization problem (31) for each train, (31) can

be approximated to develop convex serial distributed MPC (C-

SDMPC) for the platoon of virtually coupled trains based on

the prior estimate state [5]. See also Section IV-C for detailed

information on the convex approximation using the prior

estimate state. Then, we can obtain the convex counterpart

of (31) by linearizing dsbi (vi,k) and debi−1 (v̄i−1,k) in (28a) and

(29). Other settings of the C-SDMPC approach are exactly the

same as the N-SDMPC approach in Section IV-D.

F. Nonconvex Decentralized MPC

The virtually coupled train control approaches should be

able to ensure safe operation when the communication be-

tween trains is lost, i.e., the case in Fig. 1(c). In this con-

text, each train should compute control inputs based on the

relative speed and position of its predecessor train measured

by onboard sensors, e.g., radars or LiDARs, assuming the

predecessor train brakes with the maximum braking force. This

leads to a nonconvex decentralized MPC (N-DMPC) approach

elaborated in this section.

For train i, the relative speed and position with respect to its

predecessor train, i.e., train i−1, at time step k are represented

by ∆vi,k and ∆si,k, respectively, which can be obtained by

onboard sensors. At time step k, the estimated speed v̂i−1,k

and position ŝi−1,k of train i− 1 are

v̂i−1,k = vi,k +∆vi,k, (32a)

ŝi−1,k = si,k +∆si,k. (32b)

Then, the predicted state of train i − 1 is estimated by

assuming the control value as µ̂i−1,k =
−Beb

i−1

Mi−1,p
. Thus, the

safety constraints in (12) are replaced by

dsafei (vi,k, v̂i−1,k) ≥ dsbi (vi,k)− debi−1 (v̂i−1,k) + L+Dsafe,

(33a)

dsafei (vi,k, v̂i−1,k) ≥ L+Dsafe. (33b)

Furthermore, the relative distance with its predecessor train

becomes

ei,k = ŝi−1,k − si,k − dsbi (vi,k) + debi−1(v̂i−1,k). (34)

To ensure the safety operation, train i should follow the

desired state x̂
eq
i,k =

[

v̂
eq
i,k, ê

eq
i,k

]⊺

with v̂
eq
i,k = v̂i−1,k and

ê
eq
i,k = L+Ddes. Then, the cost function for N-DMPC is

ℓ̂i(xi,k, µi,k) = ||xi,k − x̂
eq
i,k||

2
Qi

+ ||µi,k||
2
Ri
. (35)

Hence, the optimization problem of train i for N-DMPC

becomes

min
xi,k0
µi,k0

Ji (k0) =

k0+N−1
∑

k=k0

ℓ̂i(xi,k, µi,k) (36a)

s.t. xi,k+1 = f(xi,k, µi,k), k = k0, . . . , k0+N−1, (36b)

gi(ŷi−1,k, yi,k) ≤ E3,i,k, k=k0, . . . , k0+N−1, (36c)

where (36c) collects constraints (9)-(11) and (33). The op-

timization problem (36) is also a nonlinear nonconvex opti-

mization problem. At each MPC step of N-DMPC, each train

calculated its control input µi,k for implementation by solving

(36) with estimated x̂i−1,k.

G. Convex Decentralized MPC

Similarly, we can obtain the convex counterpart of (36),

named as convex decentralized MPC (C-DMPC) by linearizing

dsbi (vi,k) and debi−1(v̂i−1,k) in (33a) and (34). Then, the non-

linear model (36b) can be linearized at each time step based

on the prior estimate state. Other settings of the C-DMPC

approach are exactly the same as the N-DMPC approach.

V. CASE STUDY

In this section, we conduct simulations to validate the

developed distributed MPC approaches. We first introduce

general settings for simulations. Then, we perform simulations

for a platoon of trains with uniform masses. Finally, we

explore simulations involving trains with varying masses.

A. General Setup

The simulations are conducted based on the real-life train

operation data of trains on the Beijing Yizhuang Line from

Station YH to Station CQ. The values of the main parameters

are provided in Table II. The value of ρ is set as 0.5, and

the initial value of λ
(0)
i,k is set as 1. The values of the safety

distance and the desired distance are the same as those in

papers [15], [16]. The distance from Station YH to Station

CQ is 1398.6 m, and the slope and the speed limit information

along the line are shown in Fig. 3. Model mismatches exist

between the control model and the simulation model. The

controller design considers the prediction model with the

values of the maximum traction and braking forces Umax
i , Bsb

i ,

and Beb
i given in Table II, while the assessment experiments

use the simulation model considering the traction and braking

characteristics given in Fig. 4 (see also [40]).

Sequential quadratic programming (SQP) is an efficient

gradient-based algorithm for solving nonlinear programming
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TABLE II
PARAMETERS FOR THE CONTROLLER DESIGN

Parameter Symbol Numerical value

Prediction horizon N 5
Sampling time T 0.2 s
Number of trains Itrain 4
Average train mass Mi,p 60 t
Resistance parameter c0 0.0078
Resistance parameter c1 0.00085
Resistance parameter c2 0.000076
Maximum traction force Umax

i 60000 N

Maximum service braking force Bsb
i 48000 N

Emergency braking force Beb
i 60000 N

Safety distance Dsafe 5 m
Desired distance Ddes 10 m
Train Length L 10 m
Weight of tracking error Q1 100
Weight of relative speed error Q2 1
Weight of control variable R 1
RDP parameter α 0.5
Maximum iterations qmax 5
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Fig. 4. Traction and braking characteristics of the simulation model.

problems [41] and has also been applied to solve the optimiza-

tion problem of virtually coupled trains [5]. Similar to [5], in

each MPC step, the resulting optimization problem is solved

by SQP through the fmincon function in the MATLAB

optimization toolbox. All simulations are implemented in

MATLAB (R2019b) on a computer with an Intel Xeon W-

2223 CPU and 8GB RAM.

B. Control Performance with Uniform Train Masses

This case study is conducted to evaluate the performance

of the distributed MPC approaches in the case that trains in

the platoon have the same mass. The parameters are provided

in Section V-A. We consider a platoon of 4 trains in the

simulation, and all trains weigh 60 t. The simulation results

are presented in Table III, wherein the relative distance is cal-

culated as defined in (13), and the speed difference represents

the velocity error between a train and its predecessor train.

Note that the relative distance represents the distance be-

tween two trains, assuming that the predecessor train performs

emergency braking and the succeeding train performs service

braking. As the train length is set as 10 m and the safety

distance Dsafe is 5 m, the relative distance should be larger

than 15 m to ensure safe operation. Furthermore, since the

desired distance is 10 m, the ideal relative distance should be

20 m considering the length of the train (i.e., 10 m).

It can be observed from Table III that convex coopera-

tive distributed MPC (C-CDMPC), convex serial distributed

MPC (C-SDMPC), and convex decentralized MPC (C-DMPC)

exhibit a performance that is comparable to that of their

nonconvex counterparts in terms of the relative distance and

the speed difference. The average CPU time is reduced

when the underlying problem is convex, with a reduction

of 64.25%, 17.86%, and 17.86% for C-CDMPC, C-SDMPC,

and C-DMPC, respectively, compared with their corresponding

original approaches, indicating that a computational burden

reduction is achieved by transforming these problems to their

corresponding convex problems. As the performance, in terms

of the relative distance and the speed difference, of the original

approaches is comparable with their corresponding convex

counterparts, we will focus on C-CDMPC, C-SDMPC, and

C-DMPC to compare the performance of different distributed

control schemes in the following for brevity.

Table III shows that all approaches can ensure safe operation

when trains have the same mass with a minimum relative

distance larger than 15 m. The average relative distance

of C-CDMPC and C-SDMPC is close to the ideal relative

distance (20 m), while C-DMPC has the largest average rel-

ative distance. Furthermore, C-CDMPC exhibits the smallest

fluctuation, with the relative distance fluctuating within the

range [18.47 m, 22.62 m] and the speed difference fluctuating

within [-1.1059 m/s, 1.3927 m/s].

For further demonstration, the speed profiles obtained by

C-CDMPC, C-SDMPC, and C-DMPC are provided in Fig. 5,

Fig. 6, and Fig. 7, respectively, where we include the speed

difference between a train and its predecessor train. For the

first train, the speed difference denotes the difference with the

reference speed. It can be observed from Fig. 6 that due to the

speed limit, train 4 cannot accelerate, causing a rapid change in

speed difference. Thanks to the bidirectional communication

as represented in Fig. 1(a), the rapid change is avoided in

Fig. 5, i.e., by using C-CDMPC, a train can include the

information of its follower train when calculating its control

input, thereby achieving a more homogeneous speed profile via

cooperative control. Table III and Fig. 7 show that C-DMPC

exhibits the largest fluctuation in both relative distance and

the speed difference. As a train cannot receive information

from its predecessor train in Fig. 1(c), a train should always

assume its predecessor train will perform emergency braking.

The decentralized control scheme tends to be conservative;

thus, the relative distance and the speed difference of C-DMPC
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TABLE III
SIMULATION RESULTS FOR DIFFERENT APPROACHES WITH UNIFORM TRAIN MASSES

Approach RDP Total cost
Relative distance (m) Speed difference (m/s) CPU time (s)

max average min max average min max average

N-CDMPC yes 2.1506 · 104 22.63 19.89 18.50 1.3927 0.0099 -1.1059 4.74 4.00

C-CDMPC yes 1.8412 · 104 22.62 19.91 18.47 1.3886 0.0083 -1.1071 1.62 1.43

N-SDMPC no 2.8826 · 104 27.64 20.02 19.35 1.6091 0.0025 -1.2273 0.40 0.28

C-SDMPC no 2.8825 · 104 27.64 20.02 19.35 1.6091 0.0025 -1.2273 0.30 0.23

N-DMPC no 9.1687 · 105 31.50 21.91 19.08 1.7582 0.0035 -1.3627 0.37 0.28

C-DMPC no 9.2349 · 105 31.64 21.92 19.08 1.7488 0.0035 -1.3778 0.30 0.23
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Fig. 5. Speed profiles and speed difference of C-CDMPC (with the same
mass).

are larger than those of C-CDMPC and C-SDMPC.

C. Control Performance with Heterogeneous Train Mass

In general, the masses of trains within a platoon are different

due to variations in the total passenger loads on each train. The

mass of a train influences the acceleration and deceleration

(see (5a)), and determines the upper bound and the lower

bound of the control input. Therefore, the mass inconsistency

will influence the control performance of the platoon. In this

case study, we consider a platoon of 4 trains, where the weights

of the trains, from the leader train to the follower trains, are

60 t, 66 t, 57 t, and 66 t, respectively; so the heaviest train is

more than 15% heavier than the lightest train.

In order to show the importance of incorporating the infor-

mation on weights into the control design, we first conduct

simulations with all trains assumed to have the same mass in

the control design. Then, we compare the results with the true

masses of the trains used in the control design. The simulation

results are provided in Table IV.

From Table IV, we can find that all approaches have compa-

rable performance in terms of the relative distance and speed

difference with their convex counterpart under both cases.
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Fig. 6. Speed profiles and speed difference of C-SDMPC (with the same
mass).

Therefore, in the following, we only use convex approaches

for the comparison between the two cases in which the mass

information is disregarded or included in the design.

In Table IV, if we assume all trains have the same mass in

the control design, the minimum relative distance across all

approaches is less than 0 m, implying the potential collision

between trains, i.e., a train cannot ensure safety operation by

using service braking when the predecessor train performs

emergency braking. The relative distance between trains dur-

ing the operation process of each approach when assuming

all trains have the same mass in the control design is shown

in Fig. 8. Fig. 8 shows that the relative distance between

Train 1 and Train 2, Train 3 and Train 4 are lower than

the given threshold. As the follower train has a larger inertia

than its predecessor train, if the predecessor train starts to

perform emergency braking, the follower train cannot perform

braking with the same deceleration. Therefore, when a train

is heavier than its predecessor train, the required safe tracking

distance becomes difficult to ensure. Train 3 is lighter than

Train 2; thus, the braking distance of Train 3 is shorter than

expected and the safety distance between trains can be ensured.

However, the relative distance between Train 2 and Train 3 is
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TABLE IV
SIMULATION RESULTS FOR DIFFERENT APPROACHES WITH DIFFERENT TRAIN MASSES

Approach RDP Total cost
Relative distance (m) Speed difference (m/s) CPU time (s)

max average min max average min max average

With all trains assumed
to have the same mass

N-CDMPC yes 3.9359 · 107 44.26 16.34 -4.39 1.3943 0.0102 -1.1032 4.71 4.02

C-CDMPC yes 3.9348 · 107 44.26 16.35 -4.39 1.3902 0.0087 -1.1049 1.78 1.41

N-SDMPC no 3.9198 · 107 44.26 16.44 -4.40 1.5643 0.0030 -1.2313 0.55 0.26

C-SDMPC no 3.9198 · 107 44.26 16.44 -4.40 1.5643 0.0030 -1.2313 0.30 0.22

N-DMPC no 3.7318 · 107 46.31 18.35 -2.66 1.7237 0.0041 -1.3598 0.47 0.26

C-DMPC no 3.7330 · 107 46.31 18.35 -2.67 1.7254 0.0041 -1.3747 0.27 0.22

With true masses of trains
in the control design

N-CDMPC yes 2.5846 · 104 21.96 19.86 17.86 2.2300 0.0126 -1.5705 5.04 4.35

C-CDMPC yes 1.9643 · 104 21.92 19.88 18.16 2.2387 0.0106 -1.5715 1.82 1.39

N-SDMPC no 3.0343 · 104 27.42 20.01 18.69 2.5732 0.0042 -1.6251 0.34 0.26

C-SDMPC no 3.0342 · 104 27.42 20.01 18.69 2.5732 0.0042 -1.6251 0.31 0.23

N-DMPC no 9.2421 · 104 31.33 21.87 18.18 2.7396 0.0057 -1.7608 0.35 0.27

C-DMPC no 9.3093 · 104 31.47 21.88 18.17 2.7339 0.0057 -1.7748 0.30 0.23
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Fig. 7. Speed profiles and speed difference of C-DMPC (with the same
mass).

larger than the desired distance, with the maximum value being

more than twice the desired distance, which is unnecessary and

negatively influences the tracking performance.

The relative distance between trains of each approach when

considering the true masses of the trains is shown in Fig. 9.

From Table IV and Fig. 9, we can find that by including train

masses explicitly, the safety distance between trains can be

ensured, and the relative distance between trains is comparable

to the case of uniform masses in Table III.

The speed profiles obtained by C-CDMPC, C-SDMPC, and

C-DMPC considering the true masses of trains are provided

in Fig. 10, Fig. 11, and Fig. 12, respectively. The C-CDMPC

approach has the smallest fluctuation, with the relative dis-

tance fluctuating between [18.16 m, 21.92 m] and the speed

difference fluctuates between [-1.5715 m/s, 2.2387 m/s]. In the

cooperative control scheme, a subsystem can include the status

of its neighbors and try to reach consistency with its neighbors

regarding the relative distance and speed difference. Fig. 10,
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Fig. 8. Relative distance of different approaches (with all trains assumed to
have the same mass in the control design).
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Fig. 9. Relative distance of different approaches (with the true masses of
the trains used in the control design).

Fig. 11, and Fig. 12 show that for all three control methods,

the speed difference between Train 2 and Train 3 is lower than

the speed difference between Train 1 and Train 2, Train 3 and

Train 4, implying that if the follower train is lighter than the

predecessor train, the tracking performance would be better.

From the above simulations, we can conclude that the



12

0 500 1000 1500

Distance (m)

0

5

10

15

20

25

S
p

e
e

d
 (

m
/s

)

speed limit

reference speed

train 1

train 2

train 3

train 4

0 500 1000 1500

Distance (m)

-2

-1

0

1

2

3

S
p

e
e

d
 d

if
fe

re
n

c
e

 (
m

/s
)

train 1 - reference

train 2 - train 1

train 3 - train 2

train 4 - train 3

Fig. 10. Speed profiles and speed difference of C-CDMPC (with the true
masses of the trains used in the control design).
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Fig. 11. Speed profiles and speed difference of C-SDMPC (with the true
masses of the trains used in the control design).

cooperative control approach has the best tracking perfor-

mance while requiring ample communication and computation

capabilities. Hence, C-CDMPC can be selected when suffi-

cient communication bandwidth and computation power are

available. The C-SDMPC approach can be selected in case

of limited communication bandwidth and limited computation

power. Moreover, in the worst case when two neighbor trains

cannot communicate with each other, C-DMPC can be selected
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Fig. 12. Speed profiles and speed difference of C-DMPC (with the true
masses of the trains used in the control design).

to control trains in a decentralized manner. Moreover, the

simulation results also indicate that arranging heavier trains

at the front of the platoon can help to improve the control

performance of the virtually coupled trains.

D. Highlights of Results

1) Convex approximation: In Sections V-B and V-C, we

have conducted simulations for cooperative distributed MPC,

serial distributed MPC, and decentralized MPC under both the

cases of uniform masses and heterogeneous masses. For all ap-

proaches and cases, we have tested nonlinear MPC approaches

and their convex approximations. The simulation results in-

dicate that MPC with convex approximation can achieve a

speed tracking accuracy that is comparable to that of the

original nonconvex counterpart, while significantly reducing

the computation time. Therefore, using convex approximation

is an effective way to improve the computational efficiency of

MPC in virtually coupled trains.

2) Relaxed dynamic programming (RDP): Sections V-B

and V-C provide case studies for uniform and heterogeneous

masses, respectively. The simulations indicate that cooperative

distributed MPC, when accompanied by RDP, can achieve

better performance with lower speed and distance tracking

differences. By using RDP, we can develop a stopping criterion

for the string stability of the platoon, which, in general, cannot

be achieved with serial distributed MPC and decentralized

MPC. Overall, RDP is an effective approach to analyze the

stability of MPC approaches. Moreover, sufficient computa-

tional capacity should be ensured to support the efficient im-

plementation of the RDP-based stopping criterion developed.

3) Heterogeneous masses: Train masses influence the dy-

namics of trains and should be considered explicitly in the
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controller design to improve control performance. In Sec-

tion V-C, we have conducted simulations for cases with

and without true masses of trains. The simulation results

indicate that incorporating the true masses of trains in the

controller design ensures safety and achieves the desired

tracking performance while significantly reducing the total

costs for all the mentioned MPC approaches. In this context,

we conclude that, in general, detailed train information should

be included to improve control performance when designing

control approaches for virtually coupled heterogeneous trains.

TABLE V
CHARACTERISTICS OF INCLUDING DIFFERENT ELEMENTS

Elements Characteristics

Convex approximation Reduce computational burden while maintaining
tracking accuracy

RDP Incorporate a stopping criterion into cooperative
distributed MPC for string stability

Heterogeneous masses Improve tracking accuracy and ensure safety

To summarize, the advantages of considering convex ap-

proximation, relaxed dynamic programming, and heteroge-

neous masses are listed in Table V. In this paper, we consider

communication between two consecutive trains (as stated in

Fig. 1). In this context, each train only needs to consider the

status of its preceding and succeeding trains when calculating

its control decision. Thus, the approaches can be extended

to larger train platoons without increasing the computational

burden for each individual train.

VI. CONCLUSIONS

In this paper, cooperative distributed MPC, serial distributed

MPC, and decentralized MPC have been compared and as-

sessed for controlling virtually coupled trains, considering the

nonlinear train model and changes in the masses of trains.

We introduced the relaxed dynamic programming approach

into the train control field, and a distributed stopping crite-

rion with a stability guarantee has been developed for the

cooperative distributed MPC approach. We have also proposed

and assessed convex approximations of the above control ap-

proaches to make a balanced trade-off between computational

burden and accuracy. The three control approaches and their

convex counterparts have been evaluated considering their

distance tracking error, speed tracking error, and CPU time.

Simulation results indicate that: 1) the convex approaches can

achieve a performance that is comparable to that of their

original nonconvex version, while the computational burden

is reduced; 2) the cooperative control approach has the best

tracking performance while requiring ample communication

and computation capabilities; 3) by considering heterogeneous

train masses explicitly, the safety distance between trains and

the desired tracking performance can be ensured while the

total objective function value is significantly reduced.

Future research could explore uncertainties related to re-

sistances and train dynamics to enhance the performance of

the control methods. Additionally, distributed control under

conditions of intermittent communication is also promising,

which can be achieved by designing appropriate self-triggered

or event-triggered control strategies to address communication

latency. Furthermore, future work could involve extending the

research into other types of rail transportation modes, such as

freight and heavy haul trains.
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