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A Generalized Partitioning Strategy for Distributed Control

Alessandro Riccardi, Luca Laurenti, and Bart De Schutter

Abstract— The partitioning problem is a key problem for
distributed control techniques. The problem consists in the
definition of the subnetworks of a dynamical system that can
be considered as individual control agents in the distributed
control approach. Despite its relevance and the different ap-
proaches proposed in the literature, no generalized technique
to perform the partitioning of a network of dynamical systems
is present yet. In this article, we introduce a general approach to
partitioning for distributed control. This approach is composed
by an algorithmic part selecting elementary subnetworks, and
by an integer program, which aggregates the elementary com-
ponents according to a global index. We empirically evaluated
our approach on a distributed predictive control problem in the
context of power systems, obtaining promising performances
in terms of reduction of computation speed and resource cost,
while retaining a good level of performance.

I. INTRODUCTION

The development of a distributed control architecture
for a network of dynamical systems requires the selection
of smaller subnetworks to be controlled independently by
local controllers [1]. Coordination among local controllers
is then achieved through a communication protocol [2].
The selection of the subnetworks is referred to as the
partitioning problem [3]. In the literature concerning the
partitioning problem, one can distinguish between two main
approaches: i) the top-down approach, where a monolithic
system is decomposed into smaller components defining the
subnetworks; ii) the bottom-up approach, where individual
systems, already predefined, aggregate to form bigger con-
trol entities. Despite being a central problem of distributed
control a generalized partitioning technique is not present in
the literature yet. With generalized approach we are referring
to a partitioning technique that can be applied to every
type of control system according to well-defined rules. The
absence of a general theory unifying all the approaches leads
to a superposition of terminology and concepts. Moreover,
the technical problem of the definition of the number of
subnetworks constituting the partitioning is not addressed in
general, and it is often solved by heuristics or assumptions.

A. Contribution

In this work, we propose a novel approach to partitioning
based on integer optimization and a novel global network
metric. To approach the gaps in the literature, we propose
a systematization of the definitions used in partitioning,
supported by an initial mathematical formalization of the
framework for a systematic approach to partitioning. Then,
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we define an algorithm for the selection of the elementary
and indivisible control units in a network, to which we
will refer to as atomic control agents. These elementary
units will aggregate to constitute the subnetworks of the
partitioning. Moreover, we define a global network metric
accounting for both information about the dynamics and
topology of the network. According to this novel metric, we
define a partitioning strategy addressing simultaneously the
two problems of: i) defining the number of subnetworks and
ii) of which elementary system must belong to each set. The
novel metric allows us to define the partitioning problem
as an integer program. To illustrate the partitioning strategy,
we use it to define the subnetworks for the application of a
Distributed Model Predictive Control (DMPC) technique [4].
We test the resulting control architecture on a power system
called the European Economic Area Electricity Network
benchmark EEA-ENB [5].

II. LITERATURE SURVEY

In the following we report some of the most common
partitioning techniques used in the literature, classifying
them according to two main approaches.

A. Top-Down Approaches

Among the most relevant approaches there are the parti-
tioning techniques based on the use of the modularity metric
[6], also referred to as community detection strategies [7],
[8], [9]. Modularity is a metric involving both information
about the state transition matrix of a linear dynamical system,
and topological information about the network. The scope of
modularity-based techniques is to maximize the modularity.
Maximization of modularity is known to be an NP-hard
problem [10], and efficient algorithms have been developed
to obtain approximate solutions to the problem of finding a
partitioning of a network maximizing the modularity metric.
The structure of these algorithms is based on the following
pattern: given a certain network, modularity is maximized
through an exchange procedure of state nodes across these
communities until no further improvement in modularity is
obtained.

Often partitioning techniques are derived in specialized
contexts for ad-hoc applications. This is the case of the tech-
nique proposed in [11], where the partitioning of a wind farm
is performed based on the wake-effect affecting down-stream
turbines in the farm. In [12], flow-based distribution systems
are considered, and more specifically a water distribution
network. [12] proposes a multi-criteria optimization approach
to obtain the partitioning. However, the number of sets of the
partitioning have to be specified a priori.



B. Bottom-Up Approaches

A different approach to the partitioning problem is sought
in coalitional control [13], [14] where control theory and
game theory are used in combination. Coalitional control
can be classified as a bottom-up approach, where individual
control systems are aggregated into coalitions. These elemen-
tary control systems cannot be further divided, and constitute
the fundamental blocks of a coalition, and therefore they are
called agents. Each coalition, which is a collection of agents,
is associated with a performance index, which is a function
of the aggregated state and input values of the coalition. The
performance cost is interpreted as an economic index, i.e. a
transferable utility that can be reallocated among the agents.
According to an iterative procedure, agents are exchanged
across the coalitions until no further optimization of the
coalitional cost is possible. Coalitional control inherits the
complexity of the general clustering problem, thus requiring
the solution of an NP-hard problem. A heuristic solution
has been developed using binary quadratic programming in
[15], thus providing better scalability for large systems when
applying coalitional control.

Some partitioning techniques produce a non-stationary
definition of the subnetworks. This is the case in the
approaches defined in [16], [17], where linear switching
systems and event-driven systems are considered. In these
cases, it is necessary to establish the conditions that trigger
a re-partition of the network, and the associated procedures
to perform it.

Other works explore the effect of different choices of
partitioning on the control properties of the systems, as done
for distributed tube-based MPC in [18].

III. PRELIMINARY CONCEPTS AND NOTATION
A preliminary concept required to approach partitioning

techniques is the one of equation graph, or hypergraph, or
network graph [1]. Consider a linear discrete-time dynamical
system of the form:

x(k + 1) = Ax(k) +Bu(k) (1)

with x ∈ Rn, u ∈ Rp, and A, B are matrices of
appropriate dimensions. The graph G = (V, E) asso-
ciated with the system is defined as a set of nodes
V = {u1, . . . , up, x1, . . . , xn}, and a set of edges E =
{(i, j), |, i, j ∈ V}, where an edge (i, j) exists if and only
if a relation between nodes i and j is defined by a nonzero
entry of matrices A or B. Moreover, we define a set of
control nodes U = {u1, . . . up}, and a set of state nodes
X = {x1, . . . xn}. Accordingly, the entries of matrix B can
be seen as the weights of directed edges in EB connecting
nodes from set U to set X , and the entries of matrix A as
edges in EA connecting nodes in X . Thus, we can see a
dynamical system also as composed of two graphs, denoted
by (U

⋃
X , EB) and (X , EA). We can indicate a dynamical

system with the notation Si = {Ui

⋃
Xi, EAi

⋃
EBi

} =
{Vi, Ei}. For a given node i, the set of all nodes connected
to it is called the neighborhood of i, and denoted by Ni =
{j ∈ V | (i, j) ∈ Ei}. If we define a subgraph Si = (Vi, Ei),

then the frontier of the subgraph is the set of nodes inside the
subgraph that are connected to nodes outside the subgraph,
and we denote it as Fi = {i ∈ Vi | (i, j) ∈ E , j ∈ V \ Vi}.
Once the graph associated with the system is defined, the
partitioning problem is then converted into the problem of
finding suitable subsets of nodes and edges defining sub-
graphs constituting the subnetworks.

IV. THE CONCEPTS OF CONTROL AGENT AND
ATOMIC CONTROL AGENT

For a given dynamical system, the scope of a partitioning
strategy is to select subsystems that can be considered as in-
dividual control units. This partitioning is generally obtained
through specified metrics, topological or non-topological,
and/or objectives, which might be related to the optimality
of the control actions of individual control units, or other
criteria.

In order to formally define a partitioning strategy that can
have a general applicability for control systems, we introduce
the concept of control agent:

Definition 1 (Control Agent): A control agent is a dynam-
ical system whose inputs affect only the state dynamics of
the agent itself. All the dynamic relations that the control
agent has with other control agents occur through dynamical
coupling among the states, or directed output-input connec-
tions.

In this paper, we consider linear discrete-time time-
invariant systems of the form (1). From Definition 1, a
control agent1, indexed by i, will take the form:

x[i](k + 1) = A[i]x[i](k) +B[i]u[i](k) + w[i](k)
w[i](k) =

∑
j∈Ni

A[ij]x[j](k)
(2)

where x[i] ∈ Rni , u[i] ∈ Rpi , and A[i], B[i] are matrices
of appropriate dimensions;

∑
i ni = n,

∑
i pi = p; Ni

represents the neighborhood of agent i, i /∈ Ni; and A[ij]

are matrices representing how the evolution of the states
xj ∈ Ni affect the dynamics of state xi. The signal w[i]

k is the
coupling effect that agent i experiences with its neighboring
states. How this signal is interpreted is often at the basis
of the definition of a non-centralized control strategy: in
decentralized control, wi is regarded as a disturbance; in
DMPC, wi may be considered as a bounded disturbance
in non-iterative strategies, or as a known predicted signal
over which agreement is sought through communication in
iterative strategies [2].

In the definition of a general partitioning strategy, a
fundamental task is to find a collection of smallest control
agents in size that together cover the whole system, where the
size of the control agent is the number of nodes constituting

1Equation (2) defining our control agent is a slightly different version
of this form is used to specify a general subsystem [3], where the term
w

[i]
k also contains the coupling through inputs B[ij]u

[j]
k . This approach is

more general, but not of practical use for distributed control. Instead, it is
advisable to achieve a decomposition of the network such that terms B[ij]

are equal to zero to avoid coupling through input signals among subsystems.
This selection of subsystems is always possible, and in the worst case it will
provide a single agent corresponding to the entire network.



it. We specify this concept through the definition of atomic
control agent.

Definition 2 (Atomic Control Agent): Given a network of
dynamical systems, an atomic control agent is the smallest
control agent definable through any decomposition of the
network.

Atomic control agents represent the smallest individual
components in a network of control agents. If a bottom-up
partitioning approach is used, the definition of control agents
is usually provided, but these might not coincide with the
atomic control agents. We can set up a verification procedure
to ensure these fundamental units are atomic control agents,
and then proceed with the partitioning. Instead, in top-down
partitioning, the definition of the atomic control agents is
not present. These considerations are at the basis of the
definition of an algorithm for the selection of atomic control
agents. We conclude this section with a proposition that
allows the construction of control agents as the result of the
aggregation of other control agents. This result guarantees
that the optimization-based partitioning will produce control
agents by aggregation of the atomic control agents.

Proposition 1: The aggregation of multiple control agents
is a control agent itself.
Proof: The statement can be verified by construction. Con-
sider two control agents, S1 = (V1, E1) = (X1

⋃
U1, E1),

S2 = (V2, E2) = (X2

⋃
U2, E2). By definition of control

agent i, for both S1 and S2 it holds that no edges are present
from the set of nodes U to the set of states X1 or X2.
Now we define the agent resulting from their aggregation
as (V1

⋃
V2, E1

⋃
E2
⋃
{(i, j), (j, i), i ∈ X1, j ∈ X2}). The

aggregation merges the sets of edges, with the addition of
the edges in E linking the two sets of nodes, but not present
in the individual sets of edges. The operation does not add
any edge connecting Ui to Xj . Thus, the agent resulting from
the aggregation is a control agent according to Definition 1
since the operation preserves the characteristics required in
the definition.

V. ALGORITHM FOR THE SELECTION OF
ATOMIC CONTROL AGENTS

The selection of atomic control agents produces funda-
mental entities that should be considered in a control strategy
without further subdivisions. In our generalized approach,
we first select the atomic control agents, and then determine
the partitioning of the network by solving an integer program
based on a global metric. This procedure is only a prelimi-
nary part of the overall network partitioning strategy, which
will be completed by the optimization-based partitioning
problem of Section VIII. We remark that, while the selection
of atomic control agents may not be required for networks
in which the smallest possible agents are given, it is required
for top-down approaches to select the control agents for the
partitioning. Moreover, the selection algorithm can be useful
in bottom-up approaches to verify that the elementary agents
provided are atomic control agents. To define an algorithm to
select the atomic control agents according to the Definitions
1 and 2, we will use the graph representation of the network.

We will indicate the atomic agents as sets Ai, for i =
1, . . . , NAtomic, where NAtomic ≤ |U|, and the collection of all
the atomic control agents as A = {A1, . . . ,ANAtomic}. Also,
we will make use of the additional set L ⊂ X , indicating
the state nodes that remain to be assigned. We will use the
superscript [k] to indicate a certain set during k-th iteration.
The algorithm consists of three main steps that we present in
the following, and that will be performed in a specific order
illustrated in Algorithm 1:

1) Identify the roots of the atomic control agents. These
roots consist of at least one input node and one state
node directly connected by a link. If a state node
is connected to two or more input nodes, then the
entire group constitutes a root, and all are merged
into the same atomic control agent. This procedure is
performed on the graph (U

⋃
X , EB). We can have a

maximum number of roots equal to NAtomic ≤ |U|,
where NAtomic ≤ |U| is the maximum number of
atomic control agents. The roots are the first compo-
nents of the atomic control agents.

2) Perform the assignment of the state nodes not belong-
ing to the roots for which a directed edge from the
state nodes in the roots exists. We call this procedure
forward assignment. Here the graph considered is
(X , EA). For each state node in the roots, e.g. xi, we
scan the set of unassigned state nodes. We assign one
free state, e.g. xj , to the root of xi if the element |Aji|
is the maximum over the row Aj·. Note that, in this
case, we are considering the directed edge ϵji, from
xi to xj with weight Aji, which is different from the
edge ϵij . We call this phase forward assignment, since
we look at the states from the roots to the periphery
of the graph.

3) Perform the backward assignment, from the nodes
belonging to the periphery of the graph toward the
direction of the roots. Following a similar procedure as
above, given a state xj for which a forward assignment
is not possible, and a state xi belonging to a certain
atomic control agent, we assign xj to the agent of xi

if |Aij | is the maximum over the column A·j . In this
case we are considering the directed edge ϵji.

Algorithm 1 Selection of the Atomic Control Agents

Part 1 - Selection of the roots
Given (U

⋃
X , EB) perform step 1)

(U ,X ) → (A[0],L[0])
Part 2 - Selection of the atomic control agentns
Given (X , EA)

k = 0
while L[k] not empty ∨ L[k] connected:

perform forward assignment: step 2)
(A[k],L[k]) → (A[k+1],L[k+1])

perform backward assignment: step 3)
(A[k+1],L[k+1]) → (A[k+2],L[k+2])

k = k + 2



Once atomic control agents have been selected, parti-
tioning techniques for control strategies can be designed
considering as the smallest control agents the sets Ai. We
have implemented the algorithm for the selection of atomic
control agents described above, and made it available in the
open source toolbox [19]. The toolbox is designed to perform
the selection starting from any linear system description of
the form (1) representing a complex network. An example
of the application of the algorithm is presented in Section
IX. We conclude this section with a remark: if outputs are
also specified in the dynamics of the system, the procedure
defined above still holds, but it is necessary to assign the
output nodes to each agent in the same way as done for the
state nodes.

VI. THE OPTIMAL PARTITIONING

Before proceeding with the definition of a partitioning
algorithm, we want to specify some concepts that are of
general relevance for distributed control strategies and parti-
tioning techniques.

Definition 3 (Control Partition of a Network): The con-
trol partition P of a network is defined as the collection
of m control agents:

P = {S1, . . . ,Sm} (3)

where control agents Si are sets of atomic control agents Aj .
For each set Si of the partition, we define the set of its
neighboring nodes as Ni = {j ∈ X \ Vi | (i, j) ∈ EAi}.

The definition of optimal partitioning strategy in the
context of optimization-based control is related to the cost
function used to obtain the control action, which we denote
by J . When comparing a centralized control action uc with
a distributed ud alternative applied to the same network, the
optimal control partition P∗ would be the one minimizing the
difference J(x, ud)−J∗(x, uc). However, this index can not
be computed for the cases in which the centralized control
action uc requires an intractable computation time. Thus, this
is a theoretical index that can only be used to benchmark
small-scale test cases and not as a cost function to obtain
the optimal partitioning directly.

VII. THE PARTITIONING INDEX

A. The Two Main Problems

According to the discussion above, what we would like
to obtain is a partitioning strategy that using information
about the dynamics, and possibly the state, of the system will
result in a distributed control cost as close as possible to the
centralized strategy cost. As an example, for linear systems
with linear constraints, in a completely decentralized control
setting, local optimizers will not account for the interaction
with neighbors to retrieve the local control action. In the ideal
case in which no interaction is present among agents, the
sum of individual contributions will match the overall cost.
The difference between the global cost and the sum of local
costs will increase as the interaction among control agents
strengthens. Thus, for decentralized MPC, it is intuitive to
require a partitioning strategy that will lead to the definition

of control agents that have the least possible interaction
among them. A similar principle applies to distributed MPC
when non-iterative algorithms are considered. A further
extension of this principle will be the one of strengthening
as much as possible the interaction among the atomic agents
participating in the same set.

Another aspect to consider in designing a partitioning
strategy is the definition of the number of sets constituting
the partition. Often, this number is assumed to be fixed,
obtained through heuristics, or with iterative evaluation of
different numbers of sets. What we can do instead is to
define an optimization problem that will try to minimize
a global metric of the network. We select this metric as
the ratio between the inter-agent interaction and the intra-
agent interaction, simultaneously defining to which set of
the partition an atomic agent belongs using binary variables.

B. The Metric

To merge the two previous objectives simultaneously we
define a new metric called partitioning index. The scope is to
obtain a simple and static metric for partitioning. A similar
approach can be used to exploit other types of information
about the system, or the cost function of the optimization-
based controller. Assume that, on the basis of the atomic
control agents, we have a certain partition, constituted by
control agents according to Definitions 1 and 2. We denote
this partition as P = {S1, . . . ,Sl}, with l ≤ m. Each set
Si is obtained as the grouping of atomic agents Aj . As a
consequence, each set Si is associated with a graph (Si, ESi)
where the set of nodes groups all the nodes of the atomic
control agents, and the set of the edges accounts for both the
edges inside and between atomic control agents in the same
set.

For each control agent Si we define two indices, the
intra-agent interaction W intra

Si
, and the inter-agent interaction

W inter
Si

, which are functions of the sets Si, where the sets are
not specified yet at this stage.

Each Si is a network control agent by Proposition 1,
obtained as the union of atomic control agents. Thus, we
denote the state and input matrices associated with Si as
ASi

and BSi
. We define the intra-agent interaction as:

W inter
Si

=

(∑
z∈FSi

∑
j∈NSi

A2
z,j

) 1
2

∑l
k=1

(∑
z∈FSk

∑
j∈NSk

A2
z,j

) 1
2

(4)

where FSi
is the frontier of the control agent Si, i.e. the

set of nodes connecting to nodes outside the control agent,
and Az,j are the entries of matrix A corresponding to the
weights of the edges connecting the frontier nodes of the
control agent Si to its neighbors belonging to other control
agents. The second index is:

W intra
Si

=
∥ASi

∥F∑l
k=1 ∥ASk

∥F
(5)

where ∥ · ∥F indicates the Frobenius norm. Both indices are
normalized, and are in the interval [0, 1]. The normalization



provides numerical results that will be suitable for comparing
the ratios between different partitions, with different numbers
of control agents.

With W intra
i and W inter

i we can associate to the partition
P = {S1, . . . ,Sl} the following specialized partition index:

pidx(P) =

l∑
i=1

(
W inter

Si

W intra
Si

)2

(6)

The term pidx constitutes our metric to define the partition
minimizing the ratio between inter- and intra-agents cou-
pling. The key feature of pidx is that it accounts for global
information about the network, which makes it a global
metric. This fact will allow us to solve the two problems in
Section VII-A simultaneously, as specified later in Section
VIII with the definition of the partitioning strategy.

VIII. THE PARTITIONING STRATEGY

The strategy that we use for partitioning is based on the
solution of a mixed integer optimization problem using the
global metric (6). We introduce binary variables γij ∈ {0, 1}
to specify if an atomic control agent Ai belongs to a set Sj :

γij = 1 ⇐⇒ Ai ⊂ Sj (7)

We have in total a number of m2 binary decision variables,
since i, j = 1, . . . ,m, where i is related to the number of
atomic control agents, and j to the number of sets. The
number of sets Si that will be generated by the procedure is
not known a priori but it can not exceed the number m of
atomic control agents by definition. We solve this practical
problem in the implementation allowing for empty sets in the
partitioning optimization problem. To be precise, we define
the general partition of the network as P = {S1, . . . ,Sm},
where m is the number of atomic control agents. However,
of the m sets in P , a certain number m − l may be
empty sets, where l is the number of non-empty sets. All
decision variables γij are collected into the vector γ, and the
partition of the network is now a function of this vector, i.e.
P(γ). Then, we define the general mixed integer partitioning
problem as:

min
γ

pidx(P(γ))

s.t.
m∑
j=1

γij = 1 ∀i = 1, . . . ,m

γij ∈ {0, 1}

(8)

where the equality constraint expresses the condition that
each atomic control agent must belong exactly to one set,
avoiding multiple assignments. This condition also ensures
that all m atomic control agents are assigned. It can happen
that the assignment will result in some sets being empty as
specified before. In this case, we can just retain the l non-
empty resulting sets. To use the metric (6) in the formulation
(8) it is sufficient to notice that both W inter

Si
and W intra

Si
are

functions of γ.
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Fig. 1: Graph representation of the atomic control agents.
Input nodes are in red, state nodes in blue. The nodes
belonging to the same control agent are connected through
black arrows. The interconnections among the control agents
are represented by blue arrows. The transparency of the
arrows represents the strength of interaction among nodes.

IX. EXAMPLE OF SELECTION OF ATOMIC
CONTROL AGENTS

In this example, we consider a network in the form (1)
with 4 inputs and 12 states. We have sparse matrices A and
B, which we report in the following indicating the element
in the i-th row and j-th column in the subscript:

a1,11 = 0.5 a2,4 = 0.98 a2,6 = 0.31 a3,2 = 0.97
a4,10 = 0.8 a5,3 = 0.11 a5,9 = 0.6 a6,12 = 0.84
a7,2 = 0.54 a7,10 = 0.58 a8,1 = 0.92 a9,8 = 0.53
a10,4 = 0.36 a10,6 = 0.18 a10,10 = 0.02 a11,9 = 0.2
a12,1 = 0.17 a12,3 = 0.06
b5,2 = 0.65 b5,4 = 0.15 b7,3 = 0.84 b10,1 = 0.87

(9)
We represent the network through a graph as indicated
in Section III, thus having a set of input nodes U =
{u1, . . . , u4}, and of state nodes X = {x1, . . . , x12}. No
clear decomposition of this network can be established
just by looking at the matrices. We can decompose this
network by looking at its atomic control agents. Applying
the algorithm presented in Section IV and implemented
in the toolbox [19] we obtain the network in Figure 1,
where input nodes are represented in red, and state nodes
in blue. The selection procedure produces 3 atomic control
agents from the original network, which has 4 inputs. Two
inputs contribute to the same atomic control agent. Also, it is
possible to see that two atomic control agents are not directly
connected. The representation uses blue arrows to highlight
the connection between atomic control agents. Once this se-
lection is performed, distributed control strategies as well as
further partitioning strategies can be applied to the network.

X. CASE STUDY: PARTITIONING FOR
DISTRIBUTED PREDICTIVE CONTROL

A. System Description

In this section, we apply the partitioning strategy derived
in this paper to define the subnetworks of an electrical



system for the application of a distributed control technique.
The system considered is a benchmark for power networks
called the European Economic Area Electricity Network
Benchmark (EEA-ENB) [5]. It consists of 26 interconnected
electrical areas, each representing a portion of the European
power network. The topology of the network is illustrated in
Figure 2.

Each electrical area is modeled as an equivalent electrical
machine subject to a load request that has to be satisfied to
maintain the network operating frequency of 50 [Hz] in the
boundaries of ±0.04 [Hz]. The problem of regulating the
frequency deviation to zero under load variations is referred
to as the Load Frequency Control (LFC) problem.

The benchmark includes data regarding the load demand,
and the renewable energy generation for each area, which
represent known external signals. The presence of renewable
generation, with its intermittent and inertia-less characteris-
tics, complicates the solution of the LFC problem. To help
compensate for the presence of renewable generation, each
electrical area is equipped with an energy storage system
(ESS).

The dynamics of each electrical area is represented by the
linear discrete-time system

∆δi(k + 1) = ∆δi(k) + τ2π∆fi(k)

∆fi(k + 1) =
(
1− τ

Tp,i

)
∆fi(k) + τ

Kp,i

Tp,i
gi(k)

ei(k + 1) = ei(k) + τ
(
ηc
iP

ESS, c
i (k)− 1

ηd
i

P ESS, d
i (k)

) (10)

gi(k) = ∆P disp
i (k)−∆P load

i (k) + ∆P ren
i (k)+

−∆P tie
i (k)− P ESS, c

i (k) + P ESS, d
i (k)

(11)

∆P tie
i (k) =

∑
j∈Ni

Tij(∆δi(k)−∆δj(k)), (12)

where ∆δi, ∆fi, and ei are respectively the power angle
and frequency deviations from nominal conditions, and the
energy stored in the ESS of the i-th electrical area. These
variables represent the state of each area. The inputs of
the system are ∆P disp

i , P ESS, c
i , and P ESS, d

i , respectively
the dispatchable power allocation of the i-th area, and the
charging and discharging powers of the ESS. The signal
∆P load

i and ∆P ren
i are the load demand and the renewable

energy production. The electrical areas exchange power
according to ∆P tie

i representing the power transmission
between the i-th and its neighbors j ∈ Ni. The other symbols
define parameters of the system used to model the network.
A detailed explanation of their meaning and selection is
present in [5], and the source code and documentation for
the benchmark are present at [20]. Data for the load and
renewable generation of the European network have been
acquired from [21].

B. Distributed Control Strategy

To address the LFC control problem using distributed
control, we implemented a distributed model predictive con-
trol scheme based on the alternating direction method of
multipliers (DMPC-ADMM) [4], [22], [23]. This approach
has proven to be suitable for controlling large-scale systems
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Fig. 2: Electrical topology of the EEA-ENB. Each node
represents an electrical area, coinciding with a single country,
whereas each edge is a transmission line.

where the application of centralized model predictive control
(MPC) results unpractical, or not suited for real-time oper-
ation. In this case study we will compare the same DMPC-
ADMM scheme implemented using different partitionings
obtained with the strategy in Section VIII. The performance
of the conventional DMPC-ADMM implementation differs
only marginally from the one of a centralized MPC, which is
in line with the literature [23]. In the DMPC-ADMM scheme,
we select the parameter ρ = 0.1, as in [4].

C. Partitioning Strategy

In DMPC-ADMM it is usually assumed to have a network
where control agents are already defined. In the following,
we refer to this partitioning as PDMPC. In this context, PDMPC
will be our reference case for the other choices to compare
performance, computation time, and computation resources,
i.e. the number of [cores×seconds] necessary to run the
implementation in parallel.

The first approach we consider involves the specialized
partitioning index defined in (6). We use this index as cost
for the integer program (8). The integer program is solved
using the genetic algorithm implementation of Matlab. The
resulting partitioning POpt,1 consists of 10 control agents.

For the second approach to partitioning, we use a modified
version of the index (6). We add the term 1/(1 + |S̄i|)
to the cost of each control agent. Where S̄i is the system
considered for the local DMPC optimization in ADMM.
This system consists of the state and input variables of
agent i and of all its direct neighbors. This choice aims to
obtain the partitioning that simultaneously minimizes (6) and
maximizes the size of the overlapping systems used in the
local minimization of the stage cost for S̄i. This choice will
increase the complexity of local problems, because they will
be larger, but will reduce the communication overhead, and
possibly improve the agreement on shared variables among
the control agents. We denote this partitioning as POpt,2, and
it has 8 control agents.

For an additional benchmark, we also consider a heuristic
approach based on the geographical proximity of the atomic
agents. We start from the consideration that the smallest
previous partitioning is POpt,2 with 8 control agents, thus



TABLE I: Comparison metrics of different partitionings.
Metric → Optimality Parallel Number Core Cost

Partitioning ↓ gap [%] execution time [s] of agents seconds[s] gap [%]

PDMPC 0 113 26 2931 748
POpt,1 3.56 88 10 884 156
POpt,2 4.13 74 8 594 72
PRnd 13.34 103 8 826 139
PGeo 15.44 43 8 346 0

we define 8 geographical areas by manual inspection on the
network topology in Figure 2. We call this partitioning PGeo.

As a final comparison strategy, we select a random net-
work partitioning, still with 8 control agents. We denote this
as PRnd. For each case, we use a static partitioning approach.
This choice is motivated by the fact that the system at study
is linear, and therefore the topology of its associated graph
does not vary with time.

D. Partitioning Results and Discussion

For each of the five partitionings, we have executed the
DMPC-ADMM strategy to control the EEA-ENB for the
equivalent of one hour of network data using the same tuning
parameters. We report the results of these executions in Table
I, which we discuss in the following.

The first column is the optimality gap. In this aspect,
partitioning PDMPC is the best performer, and it is used as
a reference. All other partitionings perform worse. However,
the results for POpt,1, and POpt,2, which are obtained through
optimization, are relatively close with a gap of less than
4.13%. For PGeo and PRnd we start seeing a degradation
of the performance with a gap of more than a 13.34%,
which is much worse than the others. The second column is
the execution time required to run the algorithm in parallel
using the number of cores reported in the third column. In
this category POpt,1 and POpt,2 have a significantly lower
execution time than PDMPC with a comparably small loss
in performance. The fourth column represents the number
of core seconds necessary to implement the strategy, and
it is obtained as the product of the number of cores times
the parallel execution time. This measure is commonly used
in parallel computing to express computation resource cost.
We further clarify that core seconds are computed taking
at each iteration the slowest performing agent. We sum the
computation times of the slowest performer for each step to
obtain the parallel execution time, which is the time that
a number of cores equal to the number of agents have
to operate in parallel to execute the algorithm in the least
amount of time. When the algorithm is running, it occupies
a number of computation resources (e.g. CPU cores) equal
to the number of agents for an amount of time equal to the
parallel computation time. With the product of these two
factors, we obtain the amount of core seconds necessary to
run the algorithm.

The value of the cost gap reported in the last column
represents how expensive it is to run the algorithm in parallel
in terms of computation resources cost w.r.t. PGeo, which
has the lowest computation resources cost, and we take it
as a reference in this category. The strategy PGeo is the
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cheapest in terms of computation resources cost, but it also
is the worst in terms of control performance. With strategy
POpt,2 we have an increase of 11.31% in performance from
PGeo, but a computation cost raise of 72%. To further
improve the performance of a 0.57% from POpt,2 to POpt,1,
we need an additional computation cost of 84%. Strategy
PDMPC is the most expensive, but it also provides the best
performance. Lastly, the random partitioning PRnd has both
a high computation cost and bad performance.

According to these results, we can conclude that the
most balanced partitionings are POpt,1 and POpt,2. These
two strategies provide a comparably small loss in perfor-
mance, but considerable improvements in computation cost.
The selection between POpt,1 and POpt,2 can be performed
according to the specific needs of the application. Moreover,
the cost index (6) can be further refined to suit these needs.

We also present some simulation results for the EEA-ENB
controlled with DMPC-ADMM for the different partition-
ings. The EEA-ENB consists of 26 areas, thus visualizing
the state of each area on a single graph for five different
partitionings is prohibitive. Therefore, to improve the inter-
pretation of the results, we decided to show the evolution of
the norm of each state for each partitioning. In Figure 3 we
report the evolution of the power angle deviation from the
nominal value. The results reflect the situation reported in
Table I, with PDMPC providing the smallest angle deviation,
and POpt,1, POpt,2 closely following. Also, the gap with
PRnd and PGeo is evident in this regard. This situation is
evident also in Figure 4, where we report the variation in
dispatchable power allocation required to compensate for the
load demand.



XI. CONCLUSIONS AND FUTURE WORK

In this article, we have introduced a general method for
partitioning and we have shown how an accurate selection
of the partitioning in the application of distributed control
can significantly reduce the computation speed and resource
cost, with marginal performance degradation. To do this, first,
we introduced the basic definition of atomic control agent
and control agent to construct a generalized partitioning
strategy, and we defined an algorithm to select the atomic
control agents, and a global specialized partitioning metric.
Then, this metric is used to partition the system through an
integer program that returns both the number of sets and the
elements in the sets of the partitioning. We provided a case
study for the distributed predictive control of power systems
in which we tested different partitionings, obtaining with
our novel strategy, considerable improvements in the com-
putation resources required to solve the distributed problem.
Future work could extend the mathematical framework for
the generalized partitioning technique with formal definitions
of atomic control agent and control agent, extend it beyond
linear systems, and perform an extensive assessment of the
proposed method for a wide range of distributed control
benchmarks. Providing a closed form for the optimization
metric is another direction of interest. Also, ensuring control
properties, such as controllability of the agents resulting from
partitioning remains an open issue. Moreover, in a more
general setting where online re-partitioning of large-scale
networks is required, it is important to develop efficient
online distributed optimization strategies for the partitioning
problem.
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