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Efficient and Safe Learning-based Control of Piecewise Affine Systems
Using Optimization-Free Safety Filters*

Kanghui He1, Shengling Shi2, Ton van den Boom1, and Bart De Schutter1

Abstract— Control of piecewise affine (PWA) systems under
complex constraints faces challenges in guaranteeing both safety
and online computational efficiency. Learning-based methods
can rapidly generate control signals with good performance, but
rarely provide safety guarantees. A safety filter is a modular
method to improve safety for any controller. When applied
to PWA systems, a traditional safety filter usually need to
solve a mixed-integer convex program, which reduces the
computational benefit of learning-based controllers. We pro-
pose a novel optimization-free safety filter designed to handle
state constraints that involve a combination of polyhedra and
ellipsoids. The proposed safety filter only utilizes algebraic and
min-max operations to determine safe control inputs. This offers
a notable advantage compared with traditional safety filters by
allowing for significantly more efficient computation of control
signals. The proposed safety filter can be integrated into various
function approximators, such as neural networks, enabling safe
learning throughout the learning process. Simulation results on
a bicycle model with PWA approximation validate the proposed
method regarding constraint satisfaction, CPU time, and the
preservation of sub-optimality.

I. INTRODUCTION

Backgrounds. There is a growing interest in controlling
piecewise affine (PWA) systems due to their ability to
represent hybrid models and to approximate nonlinear dy-
namics [1]. Control of PWA systems with constraints faces
challenges in balancing multiple performance measures, such
as safety, optimality, and online computational efficiency.
In particular, hybrid model predictive control (MPC) can
be applied to PWA systems, with mature results on sub-
optimality and safety guarantees [2]. With a PWA prediction
model, the MPC problem can be converted into a mixed-
integer convex programming (MICP) problem. However, this
comes at a large online computational price to solve the
MICP problem, especially when there are complex state con-
straints such as a combination of polyhedral and ellipsoidal
constraints. Explicit MPC, which finds the analytical solution
of the hybrid MPC problem, also suffers from computational
complexity issues [3]. In contrast, other methods that use a
simple control structure, such as adaptive control [4] and
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piecewise linear feedback control [2], can be implemented
rapidly but lack formal performance guarantees.

In recent years, various learning-based methods have been
employed to design controllers. There are two main classes
of learning-based methods: learning models and learning
control policy parameters. In this paper, we assume the
PWA model is given and thus focus on the second class
of methods. A common issue of learning-based controllers
under constraints is that they can lead to infeasible solutions.
To deal with this issue, one can add a penalty to the learning
objective [5] or design a safety filter [6]–[8]. The penalty
method cannot always provide strict constraint satisfaction.
In comparison, safety filters usually involve a constrained
optimization problem to determine a safe control input. The
main constraint of the problem is that the successor state
should be within a controlled invariant set. Safety filters
can be applied to any learning-based controllers but can
introduce significant computational complexity. In this paper,
our primary emphasis is on the safety filter approach, with
a specific focus on mitigating its computational burden.

Related work. Simplifying hybrid MPC: To reduce the
computational burden of hybrid MPC, research has been con-
ducted to simplify or approximate the solution of the MICP
problem. [9] considers warm start of MPC. [10] focuses on
predicting the discrete solution of the MICP problem by
machine learning and solving convex programs online. These
methods provide safety and optimality certificates, but still
require some online convex or mixed-integer optimization.
The computational issue is thus not completely addressed.

Safety filters for PWA systems: For PWA systems en-
compassing linear or PWA constraints, a less conservative
controlled invariant set is usually a union of polyhedra,
making the optimization problem in the safety filter an MICP
problem [6]. This means that the process of imposing safety
comes at the expense of high computation times. Some
papers have investigated how to enforce constraints without
solving any optimization problems. For linear systems with
linear constraints, leveraging their vertex representation can
help to produce safe control actions [11]. [12] finds the ex-
plicit solution of an RL safety filter comprised of a quadratic
program. In [13], an output-constrained neural network (NN)
structure is proposed to approximate the solution of convex
optimization problems. The optimization-free methods in
[11]–[13], [13] require the convexity of both the model and
constraints, and thus are not applicable to PWA systems.

Contributions. In this paper, we consider PWA systems
with complex constraints consisting of a union of polyhedra
and ellipsoids. We aim to impose safety for any reference



controller with a low online computational price. We design a
safety filter that computes the safe control input closest to the
reference input along a predetermined direction. We obtain
the analytical expression of the mapping from the reference
input to the safe input. The computation of control inputs is
thus based on some basic algebraic, min, and max operations.
As a significant benefit, this usually in practice enables a
much more efficient computation of control efforts compared
to classical safety filters. The proposed safety filter requires
a precomputed controlled invariant set consisting of a union
of polyhedra and ellipsoids. To achieve this purpose, we
transform the invariant set construction problem into a binary
classification problem and propose a PWA and piecewise
quadratic (PWQ) classification approach that can efficiently
estimate a controlled invariant set with low conservativeness.

II. PRELIMINARIES AND PROBLEM FORMULATION

Notations. The sets of non-negative integers, positive in-
tegers, non-negative integers less than or equal to a, and
positive integers less than or equal to a are denoted by N,
N+, Na, and N+

a , respectively. The boundary of the set S is
denoted by ∂S. The operator min{·, ·} returns the smaller
of two scalars, min(·) outputs the minimum element of a
vector, step(·) is a unit step function.

A. Problem formulation

We consider a deterministic discrete-time PWA system

xt+1 = fPWA(xt, ut) = Aixt+Biut+ fi, if xt ∈ Ci, (1)

where xt ∈ Rnx and ut ∈ Rnu are the state and the input
at time step t, fPWA(·, ·) : Rnx × Rnu → Rnx satisfies
fPWA(0, 0) = 0, {Ci}si=1 is a strict polyhedral partition
[1, Definition 4.5] of the state space, s is the number of
polyhedral regions, and the matrices Ai, Bi and the vectors
fi define the affine dynamics in the regions Ci. The system
is required to satisfy the state and input constraints xt ∈
X ⊆ Rnx , ut ∈ U(xt) ⊆ Rnu for all t ∈ N. We assume that
X = ∪mx

i=1Xi where each Xi is a polyhedron or ellipsoid, and
mx is the number of these sets. We also assume that U(x) is
a projection of a polyhedron or ellipsoid in Rnx ×Rnu onto
Rnu . Note that U(·) accommodates the case when there is
a state-dependent input constraint. Besides, we assume that
fPWA is known and there is no disturbance.

We will explore imposing safety on PWA systems in a
computationally cheap manner, either by modifying a given
unsafe controller or by directly learning a safe controller.

Main problem P1: Given a PWA system (1) and a refer-
ence controller πr(·) : Rnx → Rnu , adapt inputs πr(x) to
π∗(x) online in a computationally efficient way such that the
trajectory of the closed-loop system with π∗(·) satisfies the
constraints xt ∈ X and π∗(xt) ∈ U(xt), ∀t ∈ N.

Extended problem P2: Given a PWA system (1), syn-
thesize offline a controller πθ(·) : Rnx → Rnu with the
parameter θ such that the trajectory of the closed-loop
system with πθ(·) satisfies the constraints ∀t ∈ N, and
simultaneously minimizes a predefined cost J(θ).

The reference controller is a baseline control strategy
intended to optimize performance in certain aspects but
does not provide safety guarantees. This includes, but is not
limited to, controllers based on reinforcement learning.

B. Safety filter

Without considering the online computational complexity,
problem P1 can be solved by constructing a safety filter
[6]–[8]. In particular, suppose that a controlled invariant
set S ⊆ X [1, Definition 10.9] is available. In the online
situation, when receiving πr(x) and x, the safety filter solves
the constrained optimization problem

πp(x)=arg min
u∈U(x)

||u−πr(x)||2, s.t. fPWA(x, u)∈S, (2)

and applies πp(x) to the system. The problem (2) thus
implicitly determines the projected policy πp(·). The invari-
ance of S guarantees the recursive feasibility of (2) for any
x0 ∈ S, and the relation S ⊆ X ensures the safety of the
closed-loop system with πp(·).

Because of (2), πp(·) is usually different from πr(·), and
some other good performance of πr(·) could be sacrificed
if πp(·) is applied. To reduce the conservatism of πp(·), we
expect to use a large S in (2), ideally the maximal controlled
invariant set. However, for PWA systems, especially those
with complex state constraints such as x ∈ X considered in
this paper, a large S is usually a union of many polyhedra
and ellipsoids, which has a very complex representation. As
a result, globally solving (2) needs a mixed-integer encoding
of the constraint fPWA(x, u) ∈ S. Therefore, the online
computational issue is not completely solved by (2). To this
end, we under-approximate the solution of (2) by finding
an explicit map from πr(·) to a suboptimal solution of (2),
without solving any mixed-integer program. This method
will determine the safe control inputs through algebraic
operations, and thus solve the computational issue.

To solve problem P2, existing literature [7] has made (2)
an optimization layer when parameterizing the policy, and let
(2) be included in the training loop of πθ(·). In particular,
when training θ, this optimization layer is considered in the
backward pass, such that the cost J(θ) is minimized for the
projected policy. There are two advantages brought by this
idea. First, safety can be ensured even during the learning
process. Besides, some good performance of πθ(·) can be
preserved. However, when performing the backward pass, it
is difficult to compute the policy gradient ∇θJ . To deal with
this issue, our method for solving P1 allows for a closed-
form representation of πθ(·) and thus makes πθ(·) end-to-end
trainable. Consequently, problem P2 will be solved.

III. OPTIMIZATION-FREE SAFETY FILTER

Our main focus is on problem P1. We propose a safety
filter that finds an analytical solution to a policy optimization
problem. This solution can be directly applied to solve P2
by integrating the filter into the learning process of πθ(·).

We need a stronger assumption than the availability of the
controlled invariant set S.



Assumption 1: A controlled invariant set S ⊆ X and a
safe policy πs(·) : Rnx → Rnu on S are available. In
other words, S is positive invariant [1, Definition 10.7] for
the autonomous system xt+1 = fPWA(xt, πs(xt)) under the
constraints x ∈ X and πs(x) ∈ U(x).
Assumption A1 is not restrictive, because for many methods
of synthesizing S such as the LMI-based method [2], poly-
topic trees [14], and learning control barrier functions [15],
a safe policy πs(·) on S is obtained as a by-product. We
assume that S = ∪wi=1Si, where each Si is a polyhedron or
an ellipsoid, and w ∈ N+ . For each polyhedral Si, it can
have the representation Si = {x ∈ Rnx | Hix ≤ hi}. For
each ellipsoidal Si, it has the representation Si = {x ∈
Rnx | (x − ei)

TEi(x − ei) ≤ 1}. Here, hi ∈ Rnhi ,
Hi ∈ Rnhi

×nx , Ei ∈ Rnx×nx ≻ 0, and ei ∈ Rnx .
Inspired by [13], our method consists of a direction

determination followed by a line search. In the online phase
when the reference control signal πr(x) is received, we find
a safe control input u ∈ U(x) along the line segment with
the endpoints πs(x) and πr(x), such that fPWA(x, u) ∈ S
and the L2 distance between u and πr(x) is minimized. In
other words, we consider the optimizer of the problem

λ∗(x) ≜ max
λ∈[0,1]

λ (3a)

s.t. u = πs(x) + λ(πr(x)− πs(x)), (3b)
u ∈ U(x), fPWA(x, u) ∈ S, (3c)

and apply the input

π∗(x) = πs(x) + λ∗(x)(πr(x)− πs(x)) (4)

to the system.
The reasons why we consider polyhedral and ellipsoidal

invariant sets are that (i) most existing methods [2], [6], [14]
of synthesizing S for linear or PWA systems result in these
types of sets, and that (ii) considering these types allows us to
compute the optimizer λ∗(·) in a closed form. The methods
of synthesizing S will be discussed in the later section.

Let R(·) : Rnx → N+
s represent the function that maps

x to the index i of Ci such that x ∈ C. Since {Ci}si=1 is a
strict polyhedral partition of the state space, R(x) is well-
defined. The constraint fPWA(x, u) ∈ S in (3) is equivalent
to ∃i ∈ N+

w s.t. AR(x)x + BR(x)u + fR(x) ∈ Si. After
substituting the expression (3b) of u into (3c), constraints
(3b)-(3c) are equivalent to λ ∈ Πu(x) and λ ∈ ∪i∈N+

w
Πi(x),

where Πu(x) = {λ ∈ R | πs(x) + λ(πr(x) − πs(x)) ∈
U(x)}, and Πi(x) = {λ ∈ R | u = πs(x) + λ(πr(x) −
πs(x)), AR(x)x+BR(x)u+fR(x) ∈ Si}. Each Πi represents
the set of λ making fPWA(x, u) ∈ S, while the successor
state fPWA(x, u) is restrained in Si.

If U(·) is polyhedral (ellipsoidal), λ ∈ Πu(x) is a linear
(quadratic) constraint on λ. As a result, problem (3) can be
expressed as

λ∗(x) = max
λ

λ (5a)

s.t. aλ2 + bλ ≤ c (5b)

∃i ∈ N+
w , a

(i)λ2 + b(i)λ ≤ c(i), (5c)

where all the coefficients depend on x, and (5b) and (5c) are
element-wise inequalities. If U(x) is polyhedral, a = 0. If
Si is polyhedral, a(i) = 0. The coefficients a, b and c are
vectors. If Si is ellipsoidal, a(i), b(i), and c(i) are scalars,
otherwise, they are usually vectors. The constraint λ ∈ [0, 1]
is included in (5b) with the form of [1 − 1]Tλ ≤ [1 0]T .
Due to the positive definiteness of Ei, a and a(i) are non-
negative. For any x, the value of these coefficients can be
easily obtained by substituting (3b) and the affine dynamics
into the inequalities of U(x) and Si.

The following proposition characterizes the optimizer
λ∗(·). A detailed proof is given in the appendix.

Proposition 1: Consider problem (5), the optimizer λ∗(·)
has the representation:

λ∗(x) = min

{
min(λ(0)), max

i∈N+
w

{min(λ(i))}
}
, (6)

with

λ0j =


cj/bj if aj = 0, bj > 0;
1 if aj = 0, bj ≤ 0;
−bj+

√
b2j+4ajcj

2aj
if aj > 0,

(7)

λ
(i)
j =



c
(i)
j /b

(i)
j if a(i)

j = 0, b
(i)
j > 0;

step(c
(i)
j ) if a(i)

j = 0, b
(i)
j = 0;

step

(
c
(i)
j − b

(i)
j min

{
min(λ(0)), min

k s.t. λ(i)
k

∈(0,1)

λ
(i)
k

})
if a(i)

j = 0, b
(i)
j < 0;

0 if a(i)
j > 0, δ

(i)
j ≜ b

(i)
j

2
+ 4a

(i)
j c

(i)
j < 0;

−b
(i)
j +

√
δ
(i)
j

2a
(i)
j

step

(
2a

(i)
j min(λ(0)) + b

(i)
j +

√
δ
(i)
j

)
if a(i)

j > 0, δ
(i)
j ≥ 0.

(8)
In (6)-(8), λ∗ is a scalar and λi, i ∈ Nw are vectors. The
subscript j represents the jth element of a vector.

The equations (4), (6)-(8) constitute the proposed safe
controller π∗(·), which makes the system (1) safe on S
under Assumption 1. At the same time, π∗(x) is the closest
safe input along the line connecting πs(x) and πr(x) for
any x. This means that if πr(x) is a safe control input,
i.e., πr(x) ∈ U(x) and fPWA(x, πr(x)) ∈ S, we have
π∗(x) = πr(x). These mechanisms make (4) and (6)-(8)
work as a safety filter for the system (1). Fig. 1 illustrates
the geometric meanings of λ∗(·) and π∗(·).

To solve Problem P2, since we have obtained the closed-
form of the mapping from x, πr(x) and πs(x) to λ∗(x), we
can easily involve (4) in the training loop of the learning-
based policy πr(·). Compared to [7], which requires differen-
tiating the optimizer of an optimization problem, our method
enables efficient policy gradient computation by applying the
chain rule to (4) and (6)-(8).

Our design draws inspiration from [13], in which the
solution of convexly constrained optimization problems is
approximated while constraints are strictly satisfied. In con-
trast, our method accommodates non-convex constraints (a



Fig. 1. Geometric interpretation of the proposed safety filter. We consider
the case when S = S1 ∪S2. Each region with a green boundary represents
the constraint on u such that fPWA(x, u) ∈ Si, i = 1, 2. The input
from the reference policy πr is outside U and thus unsafe. We search for
the least conservative input along the segment from πs to πr. According
to (6)-(8), we have min(λ(1)) =

|a−πs|
|πr−πs|

, min(λ(2)) =
|b−πs|
|πr−πs|

, and

min(λ(0)) =
|c−πs|
|πr−πs|

. Then, λ∗ =
|b−πs|
|πr−πs|

, and the filtered input is b.

union of polyhedra and ellipsoids). Furthermore, unlike [13],
we do not necessitate πs(x) to lie in the interior of each
polyhedron and ellipsoid.

While the computational advantage of the proposed safe
filter based on min-max operations cannot be formally or
religiously proved, it is typically true in practice. Besides, in
[16], it is also verified by simulation that the min-max based
approach is faster than MPC for PWA systems.

IV. SYNTHESIZING S AND πs(·)
In this section, we discuss and present the methods of

synthesizing the controlled invariant set S and the safe policy
πs(·) for the PWA system (1).

Existing methods of synthesizing S for PWA systems
include the LMI approach [2], polyhedral iteration [6],
and polytopic trees [14]. In this section, we first inner
approximate the original state constraint by a polyhedral
constraint. The above-mentioned approaches can then be
adopted to compute a controlled invariant set S0 under the
inner approximated constraint. Then, we propose a PWA
and PWQ classification approach to estimate a large S that
is a union of polyhedra and ellipsoids. The approach can
approximate the maximum control-invariant set under the
original constraint.

A. Inner approximation of the state constraint

To apply the existing methods of synthesizing S, we need
to inner approximate the state constraint by a polyhedron
{x ∈ Rnx | Gx ≤ g} with G ∈ Rng×nx and g ∈ Rng .
The matrix G should be determined in advance. The choice
of G is problem-specific and the simplest choice is G =
[Inx −Inx ]

T , which makes the polyhedron a hyper-rectangle.
Then, we decrease g until the following condition is verified:

x ∈ X, ∀x s.t. Gx ≤ g. (9)

The constraint x ∈ Ci or x ∈ Xi can be easily represented by
linear or quadratic inequalities, and the state constraint is the
intersection of ∪i∈N+

s
Ci and ∪mx

i=1Xi. With this knowledge,

for the state constraint we can compute a validation function
hX(·) : Rnx → R (as defined below) through some min and
max operators [17].

Definition 1: Given a closed set Z, a function hZ(·) :
Rnz → R is called a validation function for the constraint
z ∈ Z if hZ(z) ≤ 0 ⇔ z ∈ Z.

Then, the condition (9) is equivalent to

max
x∈Rnx

{hX(x), s.t. Gx ≤ g} ≤ 0. (10)

The included problem in (10) can be solved by mixed-integer
linear or quadratic programming.

With a polyhedral inner approximation of the state con-
straint available, we can thereby apply the approaches [2],
[6], [14] to obtain a union of polyhedra or union of ellipsoids
controlled invariant set S0 and a safe policy under the inner
approximated constraint with guarantees.

B. A PWA and PWQ classification approach

In the previous subsection, there are several steps that can
induce conservatism for S. Firstly, the state constraint is
inner approximated. Besides, if the LMI approach [2] is used,
we can only obtain S for the piecewise linear subsystem1,
rather than the original PWA system (1). Conservatism can
also arise when applying the S-procedure to get tractable
LMIs. These simplifications usually result in very small S.
This observation motivates us to consider enlarging S.

According to the reachability analysis [1, Theorem 11.1],
the T -step controllable set ST of a controlled invariant
set S0 is still controlled invariant, and ST expands to the
maximum controlled invariant set as T grows to the infinity.
Exactly computing ST for PWA systems with complex state
constraints is impossible. Therefore, we present a data-driven
approach to approximate ST . First, we need an oracle to
tell whether a particular state is in ST . To achieve this, we
consider the following unconstrained optimization problem:

BT (x) ≜

min
{ut,xt}T

t=0

max

{
max
t∈NT−1

hX(xt), max
t∈NT−1

hU(xt)(ut), hS0(xT )

}
s.t. x0=x, xt+1=fPWA (xt, ut) , t=0, 1, ..., T−1, (11)

representing a discrete-time version of the Hamilton-Jacobi
reachability problem [18]. In (11), S0 is a union of poly-
hedra and ellipsoids controlled invariant set, which can be
obtained by the above-mentioned approaches [2], [6], [14].
The functions hX(·), hU(·)(·), and hS0

(·) are PWA or PWQ
validation functions. Problem (11) can be straightforwardly
cast as an MICP problem.

Lemma 1: The optimal value function BT (·) of (11) is a
validation function for the constraint x ∈ ST , i.e., ST =
{x ∈ Rnx | BT (x) ≤ 0}.
Proof: According to (11), we can straightforwardly get
the following equivalence: BT (x) ≤ 0 ⇔ there exists
{(ut, xt)}Tt=0 such that hX(xt) ≤ 0, hU(xt)(ut) ≤ 0, and
hS0(xT ) ≤ 0 ⇔ x ∈ ST . ■

1The piecewise linear subsystem is obtained by removing every mode i
of (1) such that 0 /∈ closure(Ci).



Lemma 1 implies that BT (·) can serve as the oracle by
testing whether BT (x) ≤ 0 for any particular state x. Then,
we can sample the state space, solve the problem (11) to
generate a data set {(xi, step(−BT (xi)))}Nx

i=1, where Nx is
the number of samples. To learn ST , existing literature has
used a NN binary classification model [19] or support vector
machine [20] to learn the mapping from x to step(−BT (x)).
These approaches, however, are not suitable in our case
because we require the learned set to be a union of poly-
hedra and ellipsoids. To this end, we design the following
parameterized function:

B̂(x, ω) = min
j∈N+

l

{B̂j(x, ωj)} − 1, (12)

where l ∈ N+ and

B̂j(x, ωj) = ||Pj(x− cj)||∞ or (x− cj)
TPj(x− cj) (13)

with the learning parameters ωj = (Pj , cj), Pj ∈ Rnx×nx

and cj ∈ Rnx . All the parameters are condensed in ω. In
(12), each B̂j(·, ωj) is called a component function. For each
state, the smallest component function is called the active
function. The equation (13) means that for each component,
we can use either a PWA function or a quadratic function.
Each Pj is full rank if B̂j(·, ωj) is PWA, or positively definite
if B̂j(·, ωj) is quadratic. The ways of guaranteeing Pj to be
full rank or positively definite can be found in [8], [21],
which leverage singular value or Cholesky decomposition.
The zero sub-level set of B̂(·, ω), denoted by ŜB , is a union
of polyhedra and ellipsoids.

The parameters are trained to minimize the misclassifica-
tion error over the state space. Intuitively, this can be formu-
lated as the following unconstrained optimization problem:

min
ω

∫
ST \ŜB

1dx+

∫
ŜB\ST

1dx. (14)

The objective function represents the volume of the regions
that B̂(·, ω) misclassifies. However, it is hard to find the
analytical relation between the objective function of (14) and
ω. This means that to solve (14), one can only use numer-
ical gradient-based or gradient-free optimization algorithms.
Since w is composed of several matrices and vectors, these
algorithms become inefficient when the total number Nx of
samples is large and w has numerous components. To deal
with this issue, we propose to train the parameters such that
the following optimization problem is solved2

min
ω

∫
x∈Rnx

sign(BT (x))max{−BT (x)B̂(x, ω), 0}
BT (x)

dx,

(15)
where sign(·) returns the sign of a real number and specifi-
cally sign(0)/0 = −1.

Interpretation of (15). For any x, the term in the integral
is a measure of the misclassification. In particular, if x ∈
ST ∩ ŜB or if x /∈ ST and xi /∈ ŜB , the term in the
integral reaches its minimum (zero). Otherwise, the learning

2It is hard to prove that any local optima of (15) is an optimum of (14),
unless BT (·) and B̂(·, ω) are C1 functions.

model (12) misclassifies x and the term in the integral is
−sign(BT (x))B̂(x, ω). This indicates that the objective of
(14) is to make B̂(x, ω) have the same sign as BT (x) for
all x.

As the integral in (15) is difficult to compute, like exist-
ing supervised learning methods [19], we approximate the
objective of (15) by an empirical loss, i.e., the sum of the
terms in the integral over a finite number of samples {xi}Nx

i=1.
Then, we use stochastic gradient descent [22, Section 5.9]
to update ω and the complexity is independent on Nx.

We employ two important strategies to avoid highly sub-
optimal solutions. The first strategy involves multi-start opti-
mization with random initialization of ω [23]. For the second
strategy, we refer to it as multi/random gradient descent.
When applying a classical stochastic gradient descent algo-
rithm to (12), ω is susceptible to falling into sub-optimal
points where many component functions of B̂(·, ω) remain
inactive for all states. The multi/random gradient descent is
thereby proposed as follows. For the sample xi that satisfies
B̂(xi, ω) ≤ 0 but BT (xi) > 0, our algorithm updates all non-
negative B̂j(·, ωj). This targeted update can accelerate the
learning process. Conversely, for the sample xi that satisfies
B̂(xi, ω) > 0 but BT (xi) ≤ 0, we randomly select several
positive B̂j(·, ωj) to update. This randomized selection pre-
vents the repetition of updating the same component during
the learning phase, promoting a more diverse exploration of
the parameter space.

It should be pointed out that the proposed classification
method cannot guarantee the invariance of ŜB . However, as
T increases, the method can approach the maximal controlled
invariant set, thereby reducing the conservatism compared to
existing methods [2], [14].

C. Learning πs
After the training of B̂(·, ω) has been finished, we further

learn a safe policy π̂s(·, β) with the parameter β. The
choice of π̂s(·, β) is flexible, and can accommodate various
forms such as NNs. According to Assumption 1, π̂s(·, β) is
expected to satisfy fPWA(x, π̂s(x, β)) ∈ ŜB and π̂s(x, β) ∈
U(x) for all x ∈ ŜB . This prompts us to optimize β to
minimize the following objective:

max
x∈ŜB

max
{
B̂(fPWA(x, π̂s(x, β), ω)), hU(x)(π̂s(x, β))

}
.

Similar to the proposed method for solving (15), we replace
the above objective by an empirical loss and use stochastic
gradient descent to update β.

V. CASE STUDY

We consider the lateral and yaw dynamics of a bicycle
model [24]:

mÿ = −mvxψ̇ + 2(Fyf + Fyr )

Iψ̈ = 2(aFyf − bFyr ), (16)

where x = [ẏ ψ̇]T is the state, m is the mass, I is the
inertia, a and b are the distances from the front and rear
wheels to the center of gravity, ψ is the heading angle, vx is



the longitudinal speed, which is assumed to be constant, Fyf
and Fyr are front and rear tire lateral forces. Based on the
results of [24], Fyf and Fyr can be approximated as PWA
functions of [ẏ ψ̇ δ]T , where δ is the steering angle (input).
The PWA functions are given by

Fyf =


C2(

ẏ+aψ̇
vx

+ α∗)−C1δ−C1α
∗ for ẏ+aψ̇

vx
< −α∗

C1(
ẏ+aψ̇
vx

− δ) for ẏ+aψ̇
vx

∈ [−α∗, α∗]

C2(
ẏ+aψ̇
vx

− α∗)−C1δ+C1α
∗ for ẏ+aψ̇

vx
> α∗,

Fyr =


C2(

ẏ−bψ̇
vx

+ α∗)− C1α
∗ for ẏ−bψ̇

vx
< −α∗

C1
ẏ−bψ̇
vx

for ẏ−bψ̇
vx

∈ [−α∗, α∗]

C2(
ẏ−bψ̇
vx

− α∗) + C1α
∗ for ẏ−bψ̇

vx
> α∗,

where C1, C2 and α∗ are constants. After discretizing (16)
by Euler Discretization with the sampling time 0.05 s, we get
a discrete-time PWA system (1) with 9 polyhedral regions.
The system is subject to the input and state constraints:
|δ| ≤ 0.17, x ∈ X1 ∪ X2 with X1 = {x | |ẏ| ≤ 1, |ψ̇| ≤
1}, X2 = {x |ẏ2 + ψ̇2 ≤ 1.2}.

The simulations are conducted in MATLAB R2021a on an
AMD Core R7-5800H CPU @3.20GHz machine. All MICP
problems are solved by Gurobi [25].

After applying the LMI approach, we obtain an ellipsoidal
controlled invariant set S0 = {x| xTPx ≤ 1} with P =[

4.606 0
0 7.597

]
. We sample the state space {x| |ẏ| ≤

1.5, |ψ̇| ≤ 1.5} by a uniform grid and get 1002 samples.
Then, the problem (11) is solved with T = 7 for each state
sample. Since the regions near the boundary of ST are of
more interest than the regions away from the boundary, we
copy the samples xi that satisfy |BT (xi)| ≤ ϵ. Here ϵ is a
small positive constant. As a result, we get the training data
{(xi, step(−BT (xi)))}15215i=1 for the proposed classifier (12).

Fig. 2 shows the performance of the proposed classifier
(12) tested on 1000 samples that are randomly selected
from the training samples. We take Np = Ne = 15,
where Np (Ne) refers to the number of PWA (quadratic)
component functions in (12). The classifier is trained by the
proposed multi/random gradient descent. We observe that the
proposed classifier can distinguish between the state samples
inside and outside ST with high accuracy. We also compare
the multi/random gradient descent with the particle swarm
optimization as employed in [26] for Ne = 10 and Np = 0.
The result indicates that the proposed method achieves an
impressive 96.51% classification accuracy within a training
time of 29 seconds, whereas the particle swarm optimization
yields a significantly lower accuracy of 70.32% after 573
seconds of training.

Next, we verify the proposed safety filter. We consider
three kinds of learning-based controllers: supervised learning
of MPC [27], an approximate-dynamic-programming (ADP)
controller [5], and supervised learning of MPC with the
safety filter (4) included in the training loop. The learning-
based controllers as well as the learned safe policy π̂s(·, β)
are represented by NNs with three hidden layers with hyper-
bolic tangent activation functions. The three layers contain

Fig. 2. Performance of the proposed classifier B̂(·, ω). The blue and
green points represent the states within and outside ST , the purple boundary
is {x|B̂(x, ω) = 0}, and the red stars represent the states that B̂(·, ω)
misclassifies.

16, 64, and 16 neurons. To improve the safety, B̂(·, ω) and
πs(·) are trained with 5% state constraint tightening [8].

Table 1 shows the comparative results. The performance
metrics include the total cost

∑50
t=0 x

T
t xt + δ2t , the rate of

safety and the average CPU time for generating the input
per time step. For each ŜB , we compare three methods for
generating safe control inputs. The first one is the proposed
optimization-free safe controller (4). The last two ones are
based on solving (2) (with S replaced by ŜB). “MIQCP” in-
dicates that (2) is solved by mixed-integer quadratically con-
strained programming, while “nonlinear” indicates that (2) is
solved by the active-set nonlinear programming algorithm,
implemented using the MATLAB function “fmincon”3.

Without safety filters, both learning MPC and ADP show
lower safety rates compared to when safety filters are applied,
with the proposed method and MIQCP almost achieving a
100% safety rate. The CPU time of computing the proposed
filter (4) is less than 0.4 ms, significantly lower than that
of solving MIQCP and nonlinear programming problems.
Additionally, the proposed filter (4) generally performs
competitively with MIQCP in terms of cost. These results
suggest that the choice of safety filter and its parameters can
significantly impact the safety and computational efficiency
of learning MPC and ADP policies, with the proposed filter
showing promise for achieving high safety rates at low
computational costs. Additionally, when considering (4) in
the training loop of learning MPC, the total cost is slightly
lower than that of learning MPC without (4) in the training
loop. Besides, although the proposed safe filter (4) outputs a
suboptimal solution to (2), it does not mean that the policy
π∗ results in a higher total cost than πp.

VI. CONCLUSIONS AND FUTURE WORK

This paper has presented a new safety filter, called the
optimization-free safety filter, which can enhance safety for
PWA systems subject to the combination of polyhedral and
ellipsoidal constraints. Compared to standard safety filters

3Since both fPWA and B̂ are continuous functions, we can treat them
as general continuous nonlinear functions without considering the PWA
property of them.



TABLE I
COMPARISON OF SAFETY FILTERS WITH DIFFERENT ŜB AND DIFFERENT SOLVING ALGORITHMS.

Safety filter Algorithm Learning MPC ADP Learning MPC with (4) included
CPU time (ms) Cost Safety rate CPU time Cost Safety rate CPU time Cost Safety rate

No 0.004 4.776 19.53% 0.002 4.728 15.62%

Np = 0
Ne = 30

Proposed 0.209 4.798 100% 0.207 4.728 100% 0.218 4.732 100%
MIQCP 84.5 4.798 100% 84.7 4.728 100%

Nonlinear 8.61 4.798 100% 8.72 4.728 100%

Np = 15
Ne = 15

Proposed 0.339 4.808 100% 0.339 4.738 100% 0.364 4.748 100%
MIQCP 64.7 4.858 100% 64.4 4.787 100%

Nonlinear 8.71 13.07 96.88% 8.43 8.536 96.88%

Np = 5
Ne = 5

Proposed 0.177 4.963 97.66% 0.180 4.954 97.66% 0.164 4.770 100%
MIQCP 44.2 5.823 97.66% 44.3 5.754 97.66%

Nonlinear 8.53 21.33 90.62% 9.20 16.37 90.62%

that need to solve a usually nonconvex optimization problem
online, the proposed safety filter has very small online
computational overhead. To construct the safety filter, we
have developed a new PWA and PWQ classification approach
to learn a controlled invariant set from data. Simulation
on a bicycle model with hybrid approximation has demon-
strated that the proposed method can achieve zero constraint
violations and generate control signals at the millisecond
level. Topics for future work include handling more complex
constraints, improving the applicability in large-scale PWA
systems, and testing the computational advantages in more
complex and realistic problems.

APPENDIX

Proof of Proposition 1: Let λ+ denote the right-hand side
of (6). The task is to prove λ+ = λ∗.

(i) Feasibility of λ+. Since πs(x) ∈ U(x), we have c ≥ 0.
According to (7), we know λ(0) ≥ 0. Meanwhile, as the
constraint λ ∈ [0, 1] is included in (5b), ∃j such that λ0j =

1. Therefore, we also have λ(0) ≤ 1. Since there exists at
least one i ∈ N+

s such that fPWA(x, πs(x)) ∈ Si, we have
that there exists at least one i ∈ N+

s such that c(i) ≥ 0.
Similarly, we know maxi∈N+

w
{min(λ(i))} ≥ 0. Therefore,

we get λ+ ≥ 0.
If λ+ = 0, by Assumption 1 we obtain the feasibility of

λ+. In the remaining proof of the feasibility, we consider
λ+ > 0. Firstly, we consider the case when aj = 0. This
case could occur when U(x) is polyhedral, or when U(x) is
ellipsoidal and πr(x) = πs(x). If bj > 0, bjλ+ ≤ bjcj/bj ≤
cj . If bj ≤ 0, bjλ+ ≤ 0 ≤ cj . Then, we consider the case
when aj > 0, i.e., when U(x) is ellipsoidal and πr(x) ̸=
πs(x). As πs(x) ∈ U(x), the quadratic equation ajλ2+bjλ−
cj = 0 has one non-negative root λ(0)j and one non-positive
root. As λ+ ∈ (0, λ

(0)
j ], it follows that ajλ+2+bjλ

+−cj ≤ 0.
Applying the above argument to all the element of a leads
to the feasibility of λ+ regarding (5b).

Let i′ = argmaxi∈N+
w
{min(λ(i))}. Next, we prove the

feasibility of λ+ regarding (5c) by verifying (5c) for i =

i′. For the jth element a(i
′)

j of a(i
′), we define f (i

′)
j (λ) ≜

a
(i′)
j λ2 + b

(i′)
j λ− c

(i′)
j . We consider the five cases in (8).

Cases (1&2): a
(i′)
j = 0 and b

(i′)
j ≥ 0. In these two

cases, if c(i
′)

j < 0, we have λ+ = λ
(i′)
j = 0, which is

certainly feasible for problem (3) because of Assumption
1. If c(i

′)
j ≥ 0, as f (i

′)
j (·) is monotonically non-decreasing,

we have f (i
′)

j (λ+) ≤ f
(i′)
j (λ

(i′)
j ) ≤ 0.

Case (3): a(i
′)

j = 0 and b(i
′)

j < 0. In this case, If min(λ(i
′)) =

0, we have λ+ = 0 and the feasibility of λ+. If min(λ(i
′)) >

0, it follows from (8) that

κ
(i)
j ≜ c

(i)
j − b

(i)
j min

{
min(λ(0)), min

k s.t. λ(i)
k ∈(0,1)

λ
(i)
k

}
≥ 0 for i = i′. (17)

If min(λ(i
′)) = 1, we get f (i

′)
j (λ+) = b

(i′)
j min(λ(0)) −

c
(i′)
j ≤ 0 because of (17). If min(λ(i

′)) < 1, there must exist

k ∈ N+ such that min(λ(i
′)) = λ

(i′)
k = c

(i′)
k /b

(i′)
k , and conse-

quently, f (i
′)

j (λ+) = b
(i′)
j min

{
min(λ(0)), λ

(i′)
k

}
− c(i

′)
j ≤ 0

thanks to (17).
Case (4): a(i

′)
j > 0 and δ(i

′)
j < 0. We have λ+ = 0 and thus

the feasibility of λ+.
Case (5): a(i

′)
j > 0 and δ(i

′)
j ≥ 0. Similarly to Case (3), we

only need to consider the case when

τ
(i)
j ≜ 2a

(i′)
j min(λ(0)) + b

(i)
j +

√
δ
(i)
j ≥ 0 for i = i′, (18)

because otherwise we have λ+ = 0. The condition (18)
implies that the smaller root of f (i

′)
j (λ) = 0 is not larger

than min(λ(0)), and that the larger root is λ(i
′)

j . Note that

for ellipsoidal Ei′ , j = 1. Therefore, we have f (i
′)

j (λ+) =

f
(i′)
j (min{min(λ(0)), λ

(i′)
j }) ≤ 0.

Combining the above 5 cases, we know that f (i
′)

j (λ+) ≤
0, which proves the feasibility of λ+ w.r.t. (5c).

(ii) Optimality of λ+. If λ+ = 1, the optimality directly
follows from the constraint λ ≤ 1. In the remaining proof,
we consider λ+ < 1, and prove that λ+ +∆λ is infeasible
for problem (5) for any ∆λ ∈ (0, 1− λ+].

Case (1): λ+ = min(λ(0)) = 0. In this case, ∃j such that
either aj = cj = 0, bj > 0 or aj > 0, cj = 0. This implies
that πs(x) ∈ ∂U(x) and πr(x) /∈ U(x). As U(x) is convex,
0 is the only feasible point and thus optimal for (3c).

Case (2): λ+ = min(λ(0)) ∈ (0, 1). In this case, πs(x) is
in the interior of U(x), and πr(x) /∈ U(x). From (7), we see



that min(λ(0)) represents the distance from πs(x) to ∂U(x).
As U(x) is convex, λ+ is the optimal solution to (5).

Case (3): λ+ = maxi∈N+
w
{min(λ(i))} ∈ (0, 1). In this

case, ∀i ∈ N+
w , there exists j such that λ(i)j ≤ λ+. Then, we

can distinguish five sub-cases based on (8):

• If a(i)j = 0, b
(i)
j > 0, then f (i)j (λ++∆λ) ≥ f

(i)
j (λ

(i)
j +

∆λ) ≥ b
(i)
j ∆λ > 0. This means λ+ + ∆λ violates the

jth inequality of (5c).
• If a(i)j = b

(i)
j = 0, c

(i)
j < 0 or if a(i)j > 0, δ

(i)
j < 0,

we have f (i)j (λ) = a
(i)
j λ2 + b

(i)
j λ − c

(i)
j > 0 holds for

any λ ∈ R, which means λ+ + ∆λ violates the jth
inequality of (5c).

• If a
(i)
j = 0, b

(i)
j < 0 and κ

(i)
j < 0, then, for

any ∆λ ∈ (0,min{min(λ(0)),min
k s.t. λ(i)

k ∈(0,1)
λ
(i)
k }−

λ+], we have f
(i)
j (λ+ + ∆λ) = b

(i)
j (λ+ + ∆λ) −

c
(i)
j ≥ −κ(i)j > 0. For any ∆λ > min

{
min(λ(0)),

min
k s.t. λ(i)

k ∈(0,1)
λ
(i)
k }−λ+, we have either λ++∆λ >

min(λ(0)) or λ+ + ∆λ > c
(i)
k /b

(i)
k for a k s.t. λ(i)k ∈

(0, 1). If λ+ + ∆λ > λ(0), it is clear that λ+ + ∆λ

violates the constraint (5b). If λ+ + ∆λ > c
(i)
k /b

(i)
k ,

we have f (i)k (λ+ + ∆λ) = b
(i)
k (λ+ + ∆λ) − c

(i)
k > 0,

which means λ+ + ∆λ violates the kth inequality of
(5c). Therefore, any increase ∆λ ∈ (0, 1− λ+] for λ+

is infeasible for (5).
• If a(i)j > 0, δ

(i)
j ≥ 0, τ

(i)
j < 0, then the smaller root

of the equation f (i)j (λ) = 0, denoted by λ−, is strictly
larger than min

(
λ(0)

)
. As a result, if λ++∆λ < λ−, we

have f (i)j (λ++∆λ) > 0, i.e., λ++∆λ is infeasible for
(5c). Otherwise, we have λ++∆λ ≥ λ− > min

(
λ(0)

)
,

which means λ+ +∆λ is infeasible for (5b).
• If a(i)j > 0, δ

(i)
j ≥ 0, τ

(i)
j ≥ 0, then, λ(i)j is the larger

root of the equation f (i)j (λ) = 0, so we have f (i)j (λ++

∆λ) > f
(i)
j (λ

(i)
j ) > 0 holds for any ∆λ ∈ (0, 1− λ+].

Combining the above five sub-cases and noticing the arbi-
trariness of i and the existence of j and k, we can conclude
that λ+ +∆λ is infeasible for problem (5) in the case (3).
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