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ABSTRACT In this article we consider the problem of tether entanglement for tethered mobile robots. One
of the main risks of using a tethered connection between a mobile robot and an anchor point is that the tether
may get entangled with the obstacles present in the environment or with itself. To avoid these situations,
a non-entanglement constraint can be considered in the motion planning problem for tethered robots. This
constraint is typically expressed as a set of specific tether configurations that must be avoided. However, the
literature lacks a generally accepted definition of entanglement, with existing definitions being limited and
partial in the sense that they only focus on specific instances of entanglement. In practice, this means that
the existing definitions do not effectively cover all instances of tether entanglement. Our goal in this article
is to bridge this gap and to provide new definitions of entanglement, which, together with the existing ones,
can be effectively used to qualify the entanglement state of a tethered robot in diverse situations. The new
definitions find application in motion planning for tethered robots, where they can be used to obtain more

safe and robust entanglement-free trajectories.

INDEX TERMS Tethered mobile robots, tether entanglement, entanglement avoidance, motion planning.

I. INTRODUCTION

ETHERED mobile robots are a class of mobile robots

characterized by a cabled connection of the robot with
an anchor point, or with another robot [1]. Tethered mobile
robots (from now on referred to as ‘tethered robots’ for
brevity) find application in a large number of tasks, such
as exploration, inspection, or maintenance, and they are em-
ployed in ground [2]]-[4]], underwater, [5], [6], aerial [[7]-[9],
and space [10]-[12] applications. These tasks are typically
addressed either using remotely operated vehicles (ROVs)
or unmanned autonomous vehicles (UAVs). In both cases,
the cabled connection of a robot to an anchor point can be
used as a power source, a communication channel, a lifeline
to retrieve the robot in case of malfunctioning, and for ac-
cessing additional computational power [1], [13]. However,
these advantages do not come without challenges. The tether
exerts an external force on the robot, due to gravity, drag, and
inertia acting on it [14], and it limits the reachable workspace,
due to its finite length [15]]. In addition, the tether may get
entangled with obstacles present in the environment or with
itself, forming knots. In case of multi-robot systems, this
problem is amplified as the tethers of different robots can also
get entangled with each other [6], [16].

Broadly speaking, entanglement occurs when the move-
ment of a tethered robot is restricted due to the physical inter-
action of the tether with other objects in the environment [6]].
This can happen, for example, when the tether forms a loop
around an obstacle, when it gets in contact with an obstacle,
or when it gets in contact with the tether of another robot
(in multi-robot systems). Since this condition is, in general,
disadvantageous or even dangerous for a tethered robot, it is
important to avoid it during the robot’s motion. This is typ-
ically achieved through the addition of a non-entanglement
constraint. Non-entanglement constraints capture the fact that
some tether configurations, despite being achievable by a
tethered robot within the maximum tether length, may hinder
the mobility of the robot, requiring it to perform specific
operations to recover full motion capabilities. To be able to
consistently prevent entanglement, we first need a definition
that captures the occurrence of entanglement and that is mea-
surable. Despite the interest in motion planning for tethered
robots, entanglement has not been studied extensively in
the literature. The existing definitions are generally limited
and partial, as they focus only on specific applications and
specific instances of entanglement. Moreover, the existing
definitions often require specific assumptions on the tether
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FIGURE 1. Example of a motion planning problem for a tethered robot in
a 2D environment. The robot must reach the location x. from its
current location x,. Three possible paths A1, X2, A3 are depicted in the
image. Given the initial tether configuration ~o, the three possible paths
would result in three different tether configurations after the motion of
the robot, which are represented by the gray dashed lines. Each of the
resulting tether configuration can have a different entanglement state
depending on the entanglement definition being used.

and on the environment, which limits the applicability of
those definitions.

The main application of the entanglement definitions is to
use them to add a non-entanglement constraint to the motion
planning problem for tethered robots. Several works that use
non-entanglement constraints in the motion planning problem
for tethered robots already exist in the literature [[16]-[20].
However, the resulting motion planning algorithms are often
application-specific and tailored to a specific entanglement
definition. The introduction of more general entanglement
definitions can help in the development of more versatile
entanglement-aware motion planning algorithms for tethered
robots. In the example of Figure[T} a non-entanglement con-
straint can be used to exclude one or more of the possible
motion paths by evaluating the entanglement state of the
tether configuration that would result from the robot moving
along such paths. Alternatively, the entanglement definitions
can be used to compute a safe set in which the robot must stay
to maintain the tether in a non-entangled state. Such a set can
then be used as the domain for an existing motion planning
algorithms for tethered robots, resulting in safety guarantees
in terms of entanglement avoidance. The new entanglement
definitions can also provide tools to address the additional
challenges that are typical of some application domains of
tethered robots. For example, in underwater and aerial ap-
plications, the water (or air) current can bring the tether in
undesirable configurations, while in space applications the
absence of gravity and air drag must be taken into account
when predicting the dynamical behavior of the tether.

In this work we provide and analyze a broad set of new
entanglement definitions. After reviewing the existing en-
tanglement definitions, we expand and generalize them by
considering new entanglement definitions that can be used to
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complement the existing ones in the characterization of the
entanglement state of a tether. We analyze the properties of
the definitions to highlight their advantages, disadvantages,
and specific characteristics. In particular, we investigate the
restrictions that these definitions introduce on the workspace
of a tethered robot. We also compare the definitions with each
other and with the existing ones, highlighting the relations
between them. Finally, we validate the definitions empirically
by comparing them against the opinion of experts in the field
of tethered robotics using a survey.

In summary, the contributions of this work are:

« an extensive review and classification of the existing
entanglement definitions;

o the introduction of a broad set of new entanglement
definitions to expand and supplement the existing ones.
Unlike most of the existing entanglement definitions,
the new definitions are agnostic to the type of robot,
environment, or tether considered, and can be applied
both in 2D and 3D environments, to single-robot and
multi-robot systems, to loose and slack tethers, and to
fixed-length and variable-length tethers;

« the analysis of the properties of the proposed definitions,
and the characterization of the workspace of a tethered
robot under different entanglement definitions;

« a formal analysis of the relations between all the entan-
glement definitions, where we highlight the connections
and the mutual relations between them;

« an empirical validation of the entanglement definitions
against the opinion of experts in the field of tethered
robotics.

We remark that, in order to keep this article more focused,
in this work we focus exclusively on the presentation, anal-
ysis, and comparison of the entanglement definitions. The
actual application of these definitions to the motion planning
problem will be addressed in our upcoming works.

The article is organized as follows. Section [[I] contains a
review of the existing literature on motion planning for teth-
ered robots, with particular attention to the approaches used to
define entanglement in previous works. Preliminary concepts
and the problem statement are introduced in Section [[TI} In
Section [TV] the new entanglement definitions are stated. The
properties of the proposed entanglement definitions are inves-
tigated in Section[V] while the relations between the proposed
definitions and the existing ones are analyzed in Section [V1]
The analysis of the entanglement definitions is concluded in
Section with their empirical validation by experts in the
field of tethered robotics. Conclusions and open points are
given in Section VIl The proofs of the results presented
throughout the article are collected in Appendices[A] [B] [C]

Il. RELATED WORK

In the last decades, significant attention has been devoted to
the motion planning problem for tethered robots. A variety
of different approaches has been investigated to tackle this
problem [21]-[25]]. Despite the large number of works on
the topic, most of the works in the literature on tethered
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mobile robots do not consider any entanglement constraint,
and focus only on finding a feasible solution for the mo-
tion planning problem under the geometric constraints posed
by the presence of the tether [21]], [26]-[30]]. In the works
were entanglement has been considered, it has typically been
considered only from limited application-specific perspec-
tives. The majority of those works can be grouped into a
few distinct categories depending on how they define and
manage entanglement. The resulting categories are comprised
of works that (i) consider entanglement as the contact between
the tether and obstacles; (ii) consider entanglement as the
contact between the tethers of different robots (in multi-robot
systems); (iii) consider entanglement as the tether looping
around obstacles. Most of the works in the literature regard
single-agent systems. Some works (in particular those in the
third category) consider multi-robot systems instead, where
several robots share the same environment.

The works in the first category define entanglement as the
contact between the tether and an obstacle. In [31]-[33] a
robot connected to an anchor point via a taut tether in a 2D
obstacle-rich environment is considered. Entanglement is not
strictly prohibited, and its detection is used instead to keep
track of the tether configuration, and to obtain information
on the location of the obstacles. In [8]], [34] the same entan-
glement definition is applied to an aerial drone moving in
a 3D environment. There the goal is to plan the motion of
the robot and the variableﬂ length of the tether in order to
avoid any contact between the taut tether and the obstacles
in the environment. This definition of entanglement is used
also in [36], where entanglement is avoided through the use
of micro-thrusters placed along the tether which allow to
actively control its shape and keep it away from obstacles.

Works in the second category consider multi-robot systems
where entanglement is defined as the interaction between the
tethers of two different robots. In [19], [26], [37] a multi-
robot system in an obstacle-free 2D environment is consid-
ered. The tethers of all robots are kept taut, so entanglement
happens when a bend is formed in a tether. A centralized path
planning algorithm is tasked with finding a set of trajectories
for the robots that avoid intersections between the tethers
of the robots. When avoiding entanglement is impossible,
the planner returns instead a motion strategy that minimizes
the number of tethers getting entangled. The algorithm is
extended to the 3D case in [[18]], [[38]]. A more general setting
is tackled in [6]], [16], where a multi-robot system with slack
tethers in a 3D environment is considered. [16] focuses on
providing non-entanglement guarantees for a large number
of robots in a crowded, obstacle-free environment. In [|6]] a
decentralized algorithm is used to compute kinodynamically
feasible paths in the presence of obstacles. To identify tether
configurations that are at risk of entanglement, [6]], [16] ana-
lyze their topological properties through the computation of

In some works such as [[17], [34], [35]] the length of the tether is varied
over time in order to keep it always taut by using a winch or a dedicated tether
length control system.

a signatureﬂ of each tether configuration, and relate specific
patterns in the signatures to the entanglement state of the
tethers.

The last group of works considered here defines entangle-
ment as the looping of the tether around obstacles. In [[17]],
[39], [40]] a robot moving in a 2D obstacle-rich environment
is considered, and any tether configuration that does a full
loop around an obstacle is considered to be entangled and is
therefore avoided PJA variation of this definition is considered
in several works [2]], [35]], [43]], [44] that focus on exploration
and inspection tasks in 2D obstacle-rich environments, where
a number of waypoints must be visited by a tethered robot
before returning to the starting location. Since in those works
the robot always returns to the initial location at the end of
its motion, they consider only closed tether configurations,
where the initial point and end point coincide. The non-
entanglement constraint is then stated in the form of a non-
looping constraint for the whole tether. This means that at the
end of the motion there must be no obstacle being encircled
by the tether [5].

lll. PRELIMINARIES
Some preliminary definitions are introduced first to facilitate
the exposition of the entanglement definitions.

A. WORKSPACE TOPOLOGY

Let the workspace X be an open convex subset of R” with
n € {2,3}, and let {O;};=1,... . be a finite set of disjoint
closed obstacles having a non-empty simply-connected inte-
rior and without degenerate boundaryE] [[46]. We indicate with
O = U, 0; the obstacle region, corresponding to the part
of X that is covered by obstacles. We indicate with 0O the
boundary of the obstacle region, and with int O its interior.
The free workspace is defined a{] Xiree = cl(X\ O) [46].
We assume that AXj.. is formed by a single path-connected
component. If this condition were not true, there would be
locations in the free space that could not be reached from a
given starting point through a continuous path. In that case,
the unreachable locations would be considered as parts of the
obstacle region.

A path v is a continuous function v : [0,1] — X [48]. In
the rest of the current article, with a slight abuse of notation,
~ will be used to indicate both the image and the function that
generates it. We denote by len(v) the length of a path 4. In
the following, we only consider finite-length paths. A path ~y
is said to be obstacle-free if y(s) € Xiwee, Vs € [0, 1]. The

2More details on the tether signature are provided in Sectionﬁand
in Appendix[A]

3A similar constraint is introduced for computational reasons also in
other articles on motion planning for tethered robots such as [21]], [41]], [42].
However, therein the constraint is not intended explicitly for entanglement
avoidance, so we do not formally consider those works as part of this
category.

4 An obstacle does not have a degenerate boundary if for any point of the
boundary there is an arbitrarily close interior point [45]].

SWe remark that the closure operator is introduced in the definition of
the free workspace to make sure that the shortest path between any two points
in Xpee eXists (see Lemma [46), [47].
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points (0) and (1) are called respectively initial point and
terminal point of the path, or, collectively, endpoints of the
path. A reparametrization of a path +y is a path yo«, where « is
a continuous, non-decreasing surjective mapping « : [0, 1] —
[0, 1] with a(0) = 0 and (1) = 1 [49]. We indicate with A
the set of all the mappings « : [0,1] — [0, 1] having these
properties. Given two paths 71, v2 such that v1 (1) = ~2(0),
their concatenation 3 = 3 © 7y is the new path defined by

For any path v from x; to xo we define the reverse path
~reverse(s) = y(1 — s), i.e., the path going from xo to x; [48].
The convex hull of a path + is defined as

n n
conv(y) = {Zaixi 1a; € R,Zai =1,a;, > 0,x; € 7} .
i=1 i=1

We define now some relevant paths that will be used in
the rest of this article. The first is the straight line segment
between two points. Given two points x1,x3 € X, the straight
line segment I, ., : [0,1] — X between x; and xo is
defined by Iy, 1, (s) = (1 — s)x1 + sx2. Next, we introduce
the restriction of a path 7 to an interval [sq,s2]. Given a
path « and an interval [s1, s3] C [0, 1], we define the path
Visra) 1 [0:1] = X by Y5y 50 (5) = V(51 + s(s2 — 51)),
which corresponds to the part of the path v between (s1)
and y(s2). We also define the notion of a shortest path among
a set of paths: given a set of paths S we denote a shortest path
in S by

~s € argmin (len(y)),
YES

provided that such a path exists [45], [50]. We denote a
globally shortest path between two points as vy, ., = Wﬁl .
where Iy, ,, is the set of all paths between x; and x., defined
as

Laps = {7 1 0,1] = Xree 1 7(0) = x1,7(1) = X2}

Given the topological properties of X, there always exists
a shortest path between two points, as formalized in Lemma[3]
(see Appendix [A)). Finally, we define a raut path as a locally
shortest path. Formally, a path ~ is called taut if for all s €
[0, 1] there exists an interval J; containing a neighborhood of
s such that v, is a shortest path [51]].

B. PATHS AND HOMOTOPY EQUIVALENCE

We focus now on paths lying in Xj... In a topological space,
the presence of obstacles (or ‘punctures’) gives rise to mul-
tiple homotopy classes in which a path can lie. Informally,
two paths 71,72 are said to belong to the same homotopy
class if they can be continuously transformed into one another
without crossing any obstacle. Three types of homotopic
equivalence relationships are considered in this work:

4

1) Free Homotopy

Two paths 1,72 are said to be freely homotopicﬂ (or to
belong to the same free homotopy class) if there exists a
continuous function H : [0,1] x [0,1] — Xjee such that
H(s,0) = ~v1(s),H(s,1) = 7va(s),Vs € [0,1] [48]. Being
freely homotopic is an equivalence relation on the set of all
continuous maps from [0, 1] to X [52]. We indicate the
existence of a freely homotopic relation between two paths
with 1 ~ 72 [52]. The set of all the free homotopies between
two curves 71, 2 is indicated with H.,, ., . Given a homotopy
H, we denote by H (s, -) : [0, 1] = X the path t — H (s, 1)
that goes from the point 7, (s) to the point y5(s).

2) Path Homotopy

Two paths 71,72 with the same endpoints, i.e., such that
71(0) = 12(0) = x1 and y1(1) = 72(1) = x2, are said to
be path-homotopic if there exists a continuous mapping H :
[0,1] x [0,1] — Aee such that H(s,0) = v1(s),H(s,1) =
~Ya(s), Vs € [0,1], and H(0,1) = x1, H(1,1) = x2,¥¢t € [0,1]
[48]. Given a pair of fixed points x; and xo, path homotopy
is an equivalence relation on I'y, ., [52]. We indicate the
existence of a path homotopy relationship between two paths
with y1 ~ v [52]]. We indicate by Ty, .,/ ~ the set of all
path homotopy classes between the points x; and x2, and by
[+] the path homotopy class of a path + [52]]. We denote the
path homotopy between a path ~ and a point xy with v ~ x,
where xq indicates a constant map from the interval [0, 1] to
the point xg [52].

A common approach to determine the path homotopy class
of a path consists in computing its signature. In 2D, a sig-
nature is a function h : T'y, ,, — T,/ ~ that maps
every path + to its path homotopy class [53]]. For more details
on the constructions of signatures see [48]], [53]], [54]], and
Construction[T]and Proposition [5]in Appendix [A]

3) Relative homotopy

The third type of homotopy equivalence considered is that of
relative homotopy [49]In this case we consider paths with
distinct endpoints, and we require the homotopic transfor-
mation between the two paths to make the endpoints move
along pre-specified paths. Let 1,2 be two paths, A be a
path from 71 (0) to 72(0), and X be a path from ~;(1) to
~v2(1). The paths ; and 7, are said to be relatively ho-
motopic along X\, X' if there exists a continuous mapping
Hy [0,1] x [0,1] — e such that Hy y/(s,0) =
1 (S),H)H)\/ (S, 1) = ’)/Q(S),VS S [O, 1], and that H)\,)\/(O,l‘ =
Aa(t)), Han(1,8) = XN (o (1)), Vr € [0,1], where o,/ €

6In the literature the word ‘freely’ is often omitted when defining this
type of homotopic relation. We use it to distinguish it more clearly from the
other two types of homotopy, following the naming convention used in [52].

7We largely base the definition of relative homotopy on [49]. A defini-
tion of relative homotopy is given also in [52], but it is different from the one
we use. We also want to remark that, while we use a number of definitions
and concepts from [49]], the notation and the naming convention has been
changed. This has been done mainly to uniformize the notation with the other
homotopy definitions. In particular, we do not look for a leash map between
two leashes, but for a relative homotopy map between two paths.
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A are, respectively, reparametrizations of A and )\’. For any
fixed pair of paths A, \’, being relatively homotopic along
A and X is an equivalence relation which we indicate as

Y1 =AM V2.

C. HOMOTOPIC Fréchet DISTANCE

The homotopic Fréchet distance is a metric suitable to mea-
sure the distance between two paths [55]. The homotopic
Fréchet distance, which is a variation of the Fréchet distance
[[56[, measures the distance between two obstacle-free paths
v1, 2 while taking into account the presence of obstacles
between them [49]. More precisely, the homotopic Fréchet
distance computes the distance between two paths 71, v2
as the maximum length of a path H(s,-) that belongs to a
free homotopy H between a reparametrization of +; and a
reparametrization of . The homotopic Fréchet distance is
defined as

F = inf len (H (s, -
(715 72) welf | max en (H(s,-))|,
where we recall that /., ., is the set of all the free homo-
topies between the paths ;1 and 7.

D. PROBLEM FORMULATION

Let X, O, Xfee be respectively the workspace, the obstacle re-
gion, and the free workspace where a tethered robot operates.
The tether is represented by a finite-length obstacle-free path
v called tether configuration. The tether initial point x, =
~(0) represents the anchor point, while the tether terminal
point x, = (1) represents the robot location. Given a tether
configuration vy, we seek to determine its entanglement state.
In particular, we aim to obtain a set of general entanglement
definitions that do not depend on the properties of the tether
nor on the properties of the environment, and that align with
the human intuition of what entanglement is.

The proposed definitions work both for single-robot and
multi-robot systems. In case of multi-robot systems, a set of g
robotsZ = {1,2,..., g} is considered. The robots are located
in distinct points x;;,i € Z, and their tethers have distinct
anchor points x,;,i € Z. For the sake of simplicity, it is
assumed that the tethers do not intersect with each other, i.e.,
Ny = D, Vi # j. The entanglement state is determined for a
single robot i € Z. From the point of view of robot i the other
tethers ;,j € 7'\ {i} are seen as obstacles; specifically, the ob-
stacle region for robot i is O; = OUUL, ;; Oc(;) for some
e > 0, where O.(v;) is the a—inflatiorﬂ of the tether ~; [45]]. In
multi-robot systems, a tether is then considered not entangled
according to some non-entanglement definition if there exists
an € > 0 for which the tether is not entangled under the
corresponding e-inflation of the other tethers.

8The e-inflation of a path ~; is the set Oz (y;) = {x : dist(x,7;) <
€,x € X'}. We introduce this representation of the tethers of the other robots
in order to unify the treatment of all the entanglement definitions, and to make
the definition of X consistent with the use of homotopy transformations. In
fact, if the tether of another robot were represented solely as a curve, it would
have no effect on X due to the use of the cl(-) operator in its definition,
and thus it would be ignored when defining homotopic transformations [45].

It is worth mentioning here that in the literature a difference
is sometimes made between taut and slack tethers. The defi-
nitions proposed in this article can handle both types of tether
configurations and we will typically not distinguish between
them. In addition, all the proposed definitions can handle
both a 2D and a 3D workspace. Following an assumption
commonly used in the literature, in 2D the tether is allowed to
intersect with itself, forming loops, which in practice allows
the robot to cross its own tether.

IV. NON-ENTANGLEMENT DEFINITIONS

In this section we present the new non-entanglement defi-
nitions. The proposed definitions provide a criterion to de-
termine when a given tether configuration is not entangled,
which is why from now on we will refer to the definitions as
non-entanglement deﬁnitionsﬂ We start this section with the
review of the definitions available in the literature (Section
[[V-A)), which is organized following the categories that have
been introduced in Section[[Il We then proceed to present the
proposed non-entanglement definitions (Section [V-B). We
conclude this section by discussing a relaxation of the non-
entanglement definitions (Section[[V-C).

A. EXISTING NON-ENTANGLEMENT DEFINITIONS
The non-entanglement definitions found in the literature are
reviewed here. Not all the definitions are stated as found in the
literature, but in some cases they are reported in an equivalent
formulation in order to adhere to our convention of providing
non-entanglement definitions and to keep a uniform notation.
The first category of works identified in Section |lI|defines
entanglement as a situation where a taut tether forms a bend
at the point of contact with an obstacle [31], [32].

Definition 1 (Taut Tether Contact with Obstacle). Given two
points x,,x;, € X and a taut tether configuration ~, the
tether is to not entangled if v = I,_,,, i.e., if the taut tether
coincides with a straight line segment.

Works in the second category consider multi-robot systems
in obstacle-free environments and define entanglement as the
creation of a bend in a tether due to the interaction with
another robot’s tether [[18]], [26]].

Definition 2 (Taut Tether Contact with Other Tethers). Let
T = {1,2,...,4q} represent a set of g robots composing a
multi-robot system in an environment where the tethers of the
robots are the only obstacles. Given the robot i € Z, which is
located in x;; and is connected through a taut tether -; to its
anchor point x, ;, the tether ~; is not entangled if v; = I, , . ..

A more general version of Definition [2]is provided in [6]],
[16], where entanglement between multiple slack tethers is
defined.

9The reason for this choice versus considering entanglement definitions
is that, in most of the problems in which we plan to use the definitions,
the goal is to maintain a non-entangled tether configuration. Therefore, we
state the definitions using conditions that identify a non-entangled tether
configuration, so they can be applied directly in the form in which they are
presented here.
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FIGURE 2. Example of entanglement with respect to Definition El Two
robots and their respective tethers are shown in an obstacle-free 3D
environment. If the robots continue moving along the dashed lines, the
tethers will come into contact, restricting the motion capabilities of the
two robots. The image is adapted from [6].

Definition 3 (Entanglement between Slack Tethers). LetZ =
{1,2,...,q} represent a set of g robots composing a multi-
robot system in a 3D environment. Consider a robot i € Z,
its tether configuration ;, and a homotopy signature of its
tether h(-y;) computed on a projection of the environment on
a2b planemThe tether configuration +; is not entangled if its
signature h(~;) contains the letter z; corresponding to another
robotj € 7 \ {i} at most once.

Intuitively, the definition corresponds to requiring that the
tethers of two different robots do not cross each other more
than once. Otherwise, they could be at a configuration like the
one shown in Figure[2] where the tethers are at risk of coming
in contact if the two robots continue moving in their current
directions.

The third category of non-entanglement definitions consid-
ers tethers that form loops around obstacles. The first version
of this definition considers only 2D scenarios and defines as
entangled all configurations containing a loop (i.e., a self-
intersection of the tether) around an obstacle [[17]).

Definition 4 (2D Tether Loop around Obstacle). In a 2D
workspace, a tether configuration v is not entangled if, for
any s1,s2 € [0,1],s1 < so such that v(s1) = ~(s2), it holds
that 5, 5,1 ~ 7(51).

Definition [] requires that every loop in the tether is path-
homotopic to a constant map]''| The second version of this
definition uses the same type of constraint but extends it to
the whole tether configuration, considering only closed tether
configurations, i.e., those where x, = x;. This corresponds to
the situation where a robot has traveled in the environment
and has returned to x,. In this case, the requirement for non-
entanglement is that the tether configuration can be homo-
topically deformed to the anchor point [5].

Definition 5 (Closed Tether Homotopy to Constant Map). A
tether configuration « such that v(0) = ~(1) = x, is not
entangled if v ~ x,, i.e., if 7y is path-homotopic to x,.

10More details on the projection procedure can be found in [|6], [[16].

In [17] this definition is stated as y(s) =~(s') <= s=s’. However, in
[17] a taut tether is assumed, which implies that loops can only happen around
obstacles. The version of the definition reported here is a generalization of
the definition to any type of tether configuration.

6

Ty ® robot location
@ anchor point
7 tether

M obstacle

5

FIGURE 3. Example of the Obstacle-free Convex Hull and Obstacle-free
Linear Homotopy non-entanglement definitions (Definition [6|and[7)
applied to a tether configuration ~. The blue shaded region represents
the set of points covered by the linear homotopic transformation H from
~ and to x,. The blue shaded region does not intersect with the obstacle
01, so the configuration is not entangled with respect to the
Obstacle-free Linear Homotopy definition (Definition 7). However, the
same configuration is entangled with respect to the Obstacle-free Convex
Hull definition (Definition[6). In fact, the light-orange shaded area, which
corresponds to conv(~), intersects with 0;.

B. PROPOSED NON-ENTANGLEMENT DEFINITIONS

The first two proposed non-entanglement definitions focus on
some transformation that the tether must be able to achieve
in order to be considered not entangled. In the first case, we
want that any part of the tether can be made taut without
encountering obstacles (i.e., that for any two points x1,x3 € ¥
we have [, ,, Nint O = @). We express this condition by
requiring that the convex hull of the tether is obstacle-free.

Definition 6 (Obstacle-free Convex Hull). A tether configu-
ration 7y is not entangled if its convex hull does not intersect
with any obstacle, i.e., conv(vy) Nint O = @.

In the second definition we require instead that the tether
can be continuously retracted to the anchor point by shorten-
ing/rewinding the tether without encountering any obstacles
in the path.

Definition 7 (Obstacle-free Linear Homotopy). A tether con-
figuration v is not entangled if the linear homotopic map
H :[0,1] x [0,1] — X defined by

H(s,t) = (1—1)v(s) + txa ¢))

does not intersect with the interior of the obstacle region O,
ie., if
17(5)7)(& Nint O =@, Vs € [0, 1].

An example of application of the Obstacle-free Convex
Hull and Obstacle-free Linear Homotopy non-entanglement
definitions (Definition[6]and[7) is shown in Figure 3]

In practice, the Obstacle-free Convex Hull and Obstacle-
free Linear Homotopy non-entanglement definitions (Defini-
tion [6] and [7) result to be quite conservative in determining
if a tether configuration is entangled or not. However, these
definitions represent two simple criteria to define a set of
non-entangled configurations that can be used as a starting
point to define more complex and general non-entanglement
definitions.

A less conservative definition is introduced next. This def-
inition determines if a given tether configuration is entangled
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or not on the base of the configurations that can be achieved
by moving the terminal point of the tether, rather than evalu-
ating the entanglement state of the tether solely based on its
current configuration. More specifically, we consider the set
of configurations that can be obtained by moving x, along
some path A belonging to a set A, ,. The set A,, p consists of
obstacle-free paths (i.e., such that A\Nint O = @, VA € A, p)
having their initial point in the current location of the robot
(i.e., A(0) = x,), and satisfying some property P. For ex-
ample, the property P can be defined as the length constraint
maxlen : len(\) < dpa, Where dpax > 0 is the maximum
path length.

Definition 8 (Path Homotopy to Safe Set). Let chfl‘f"' be a
set of tether configurations that have their initial point at x,,
and which are considered to be safe, and let A € A, p be
a set of obstacle-free paths along which the robot can move
from its current location and that satisfy property P. A tether
configuration v from x, to x; is not entangled if there exists
apath A € A, p and a configuration ¥ € I‘j?fe such that v is
relatively homotopic to 4 along A, i.e., if v ~, 1 7.

We remark that the equivalence ~,_ » indicates that the two
paths 7y, 4 must be relatively homotopic along the paths A and
X,, which means that the initial point of v and 4 remains fixed
at x, during the homotopic transformation.

In the Path Homotopy to Safe Set non-entanglement defi-
nition, both the sets Ff;‘fe and A, p can be defined arbitrarily
and can be adapted to the specific application, environment,
and tethered robotic system being considered. This provides
considerable flexibility to this entanglement definition, which
can be made more or less conservative in detecting entan-
glement. For example, the sets I’;Z‘fe and A, p could be de-
fined starting from the dynamic models of the tether and the
robot, ensuring that safe tether configurations can actually be
reached under the kynodynamical properties of the system.
This, however, is at the same time also the main drawback
of this definition since, in practice, the proper selection of the
sets chi‘fe and A, p requires some knowledge of the properties
of the robot and of the environment. An example of appli-
cation of the Path Homotopy to Safe Set non-entanglement
definition is illustrated next.

Example 1. Let I'* be the set of all tether configura-
tions having x, as initial point and satisfying the Obstacle-
free Convex Hull non-entanglement definition (Definition 6).
Also, for each x,,, let Ax,[.,maxlen be the set of obstacle-free
straight paths having their initial point in x,, and satisfying
the property maxlen : len(\) < dma. Figure {4 shows two
example tether configurations for which we check the Path
Homotopy to Safe Set definition given the sets Ff;‘fe and
Ay, maxlen just described. The blue shaded area represents
the set of all the points that can be reached through a tether
configuration that is not entangled according to Definition
[6l The tether configuration ~; is not entangled. In fact, the
path \; allows to reach the point x;, for which there exists a
safe non-entangled configuration according to the Obstacle-

® robot location

@ anchor point

7 tether

M obstacle

A motion path

® robot location
after motion

FIGURE 4. Example of the application of the Path Homotopy to Safe Set
definition. The set of safe configurations T'" is visualized as the set of all
points that are reachable through at least one configuration that is not
entangled with respect to the Obstacle-free Convex Hull definition
(Definition [6), and is represented as the blue shaded area. The sets of
paths A, maen,7 = 1,2 are defined as the sets of all straight line paths
starting from X, ,i = 1,2 and having length less than or equal to d,,,. The
sets AIrl ‘maxien and A,(rz _maxien are visualized by the orange shaded areas.

free Convex Hull definition (Definition[6). Most importantly,
the non-entangled path 77, which reaches x; from x, and
which is not entangled according to the Obstacle-free Convex
Hull definition (Definition [G), is relatively homotopic to 71
along A;. On the contrary, 5 is entangled. In fact, despite
the existence of the path Ay that goes from x;, to xs, the
point x3 is only reachable from x, through safe configurations
that are not relatively homotopic to v, along A, e.g., the
configuration 5.

One more non-entanglement definition is introduced now.
This definition is topology-based and determines the entan-
glement state of a tether configuration based on the tether
location relative to the obstacles, and possibly to the other
tethers, present in the environment. This definition has some
similarities with Definition [3] as it identifies as entangled
tether configurations that go around an obstacle, as in the
example of Figure[2] However, this non-entanglement defini-
tion improves Definition [3]in two ways, namely, it considers
both 2D and 3D environments with general types of obstacles,
and it does not rely on the projection of the tether config-
urations on 2D planes. In this definition we require that, if
between two points x1, xo € -~ there are no obstacles, i.e.,
Ly, x, Nint O = @, then it must be possible to make the piece
of tether between those two points taut without crossing any
obstacles, i.e., the piece of tether between x;, xo must be path-

homotopic to Iy, ,.

Definition 9 (Local Visibility Homotopy). A tether configu-
ration -y is not entangled if, for any pair of points x; = y(s1),
x2 = y(s2) such that I, , Nint O = @, it holds that

Vsaosa] ~ bz @

An example of application of the Local Visibility Homo-
topy definition is shown in Figure 3]
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T2 ® robot location
@ anchor point
/7 tether
M obstacles
2 / straight line

71

T
Ta 1

FIGURE 5. Example of the application of the Local Visibility Homotopy
non-entanglement definition for two different tether configurations.
Configuration ~, is not entangled. On the contrary, ; is entangled. In fact,
the part of the path ~, between x; and x; is not homotopic to the straight

line /., ., between the points x; and x; due to the presence of obstacle 0,.

We remark that for 3D multi-robot scenarios, the Local
Visibility Homotopy non-entanglement definition (Definition
) does not always identify as entangled tether configurations
that go around the tether of another robot. In fact, when the
tether of another robot does not form a loop, there always
exists a homotopy between a curve 7, ,] and the correspond-
ing straight-line segment /,, ,,. A possible solution for this is
to require that the homotopic Fréchet distance between the
curves 7, s,) and ly, v, is equal to or less than some value s,
i.e., F(Vsy 5] b1 o) < B. A possible choice for the value of

Bis B = len(v, s.])-

C. RELAXATION OF THE NON-ENTANGLEMENT
CONSTRAINTS

In this section we introduce a relaxation of the non-
entanglement definitions proposed up to this point, in order to
make them less conservative in the detection of entanglement.
Given a tether configuration that is not entangled according
to one of the non-entanglement definitions, we observe that
a small variation in the configuration can lead to it being
identified as entangled, as shown in the example depicted in
Figure[6]for the Local Visibility Homotopy non-entanglement
definition (Definition ). In many applications, limited viola-
tions of the non-entanglement constraints can be considered
acceptable, as they do not immediately harm the mobility of
a tethered robot. For this reason, it may be desirable to make
the non-entanglement definitions less conservative, allowing
a certain amount of violation of the constraint.

To achieve this, we introduce a d-relaxed version of the
non-entanglement definitions, which, given a tether config-
uration ~y that is not entangled according to the original defi-
nition, considers as not entangled any tether configuration v/
that is path-homotopic to y and is d-close to . The closeness
between the two tether configurations «y and ' is measured
using the homotopic Fréchet distance.

Definition 10 (5-Relaxed Non-Entanglement Definition d).
A tether configuration + is considered to be not entangled if
there exists a tether configuration 4 such that:

i) 7/ is not entangled according to Definition d;

@ robot location

@ anchor point
Ly /7 tether

B obstacles

2 / straight line
a 7

lma#”? ) Y

FIGURE 6. An example of the sensitivity of the Local Visibility Homotopy
non-entanglement definition (Definition [9) to variations in the tether
configuration. Configuration ~ is not entangled with respect to the
definition. On the contrary, configuration ~ (which is identical to ~
everywhere except for the variation above obstacle 0,) is entangled, as
the straight line / is not homotopic to ~; ..

*a Xy

i) v~
i) F(y,7') <6
where § € [0, co] is the maximum value that the homotopic

Fréchet distance between ~ and the target tether configuration
~'" can have.

The value of ¢ can be arbitrarily chosen and determines
the allowed amount of violation of the non-entanglement
constraint of a given definition before a tether configuration
is considered to be entangled. We provide now an example of
relaxation of a non-entanglement constraint. In particular, we
discuss the oo-relaxation of the Local Visibility Homotopy
non-entanglement definition (Definition E[) We remark that,
by choosing § = oo, we are effectively removing condition
iii) from Definition [T0} resulting in the following definition.

Definition 11 (Path Class-Relaxed Local Visibility Homo-
topy). A tether configuration -y is not entangled if there exists
a tether configuration 4" € T',_ . such that:

i) 7' is not entangled according to Definition|§|;
i) 7/ ~ 7.

We choose to analyze this specific relaxation because, as
will become more clear in Section [VI] during the comparison
of the definitions, the Path Class-Relaxed Local Visibility
Homotopy definition generalizes well many of the other defi-
nitions. As we show in Section[VI] if a tether configuration is
entangled according to this definition, then it is also entangled
according to many of the other definitions.

The Path Class-Relaxed Local Visibility Homotopy non-
entanglement definition extends the non-entanglement prop-
erty from a path ~ to the path homotopy class [], i.e., if
a path + is not entangled according to the Local Visibility
Homotopy definition (Definition@), then any path 4’ such that
[v'] = [7] is also not entangled. This means that, in the Path
Class-Relaxed Local Visibility Homotopy non-entanglement
definition the entanglement state of a tether does not depend
on the specific tether configuration, but on the path homotopy
class in which it lies. For example, in a scenario such as
the one depicted in Figure [f] both configurations would be
considered not entangled since they belong to the same path
homotopy class.
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V. CHARACTERIZATION OF THE FREE WORKSPACE
UNDER THE NON-ENTANGLEMENT DEFINITIONS

In this section, we characterize the part of the free workspace
that is reachable by a tethered robot under the different
entanglement definitions. In fact, given a non-entanglement
definition, in general only a subset of the workspace can be
reached through a non-entangled tether configuration. This
effectively limits the part of the free workspace in which a
tethered robot can move without getting its tether entangled.
Knowing this restriction is useful during the development of
entanglement-free motion planning algorithms for tethered
robots. The proofs of the results presented in this section are
reported in Appendices

Given a free workspace Xfe, an anchor point location x,,
and a non-entanglement definition d, we find that in general
only a subset of the points of Af.. can be reached through a
non-entangled tether configuration. We call this set the non-
entangled free workspace, and define it as

‘/\/;‘aad :{X : El"}/ € Fxmxr?
s.t. 7y is not entangled under Definition d }.

We start the characterization of the non-entangled free
workspace from the non-entanglement definitions found in
the literature, i.c., Definitions [T — 5] We note that for Def-
inition [3] the non-entangled free workspace is not computed,
since the set \V;, g depends on the tether configurations of the
other robots, and not just on X and x,. We also observe that
Ny, = {*a}, since in DefinitionElonly closed tether config-
urations are considered, i.e., where x; = x,. For Definitions|[I]
and 2] the sets N, mand N, g are straightforward to find.

Proposition 1. The sets N, gand N, g coincide, and they
are equal to the set of points that can be reached from x,
through a straight line segment that does not intersect with any
obstacle,i.e., Ny, m= N, g = {x : 3 1, Ler, Nint O = B}.

For Definition@we show instead that all points in X are
part of the non-entangled free workspace.

Proposition 2. The non-entangled free workspace for the
2D Tether Loop around Obstacle non-entanglement definition
(Definition ) is given by N, m = Xiree-

We move now to the study of the set \;, 4 for the proposed
non-entanglement definitions. We start by observing that the
sets Ny, g and N, 7 coincide, and that they are the same as
the non-entangled workspace of Definitions [T|and 2] that was
characterized in Proposition|[I}

Proposition 3. The sets \;, g and N, 7 coincide, and they
are equal to the set of points that can be reached from x,
through a straight line segment that does not intersect with any
obstacle,i.e., Ny, = Ne.mg = {x : I x,s Lew, Nint O = @Y.

This result, despite its simplicity, highlights well the strict-
ness of the Obstacle-free Convex Hull and the Obstacle-free
Linear Homotopy non-entanglement definitions (Definitions
[6land[7). In fact, Proposition [3] shows how these definitions

.Nza,lsza,ZyNza,&NzaJ

BN,

FIGURE 7. Comparison of the non-entangled free workspace N/, ; for
the Definitions |1} [2] [4] and[6H9} All the sets are computed starting from
the anchor point x, shown in the middle of the image. The sets /., I,
N, N+, i and N,  correspond to all the points that are in an
obstacle-free line of sight with x,. To compute the set A/, B the set ™
is defined as the set of tether configurations that are not entangled wit
respect to the Obstacle-Free Linear Homotopy definition (Definition|[7),
and the set A, , is defined as the set of all paths such that

len(A) < dumax- The sets N, g and NV, g cover the whole X

Nayas Na9

do not allow the tether to go around obstacles, since in both
definitions each point of the tether must always be in the line
of sight of the anchor point.

Moving onto the Path Homotopy to Safe Set definition
(Definition@, we observe that the set NV, g can be computed
by extending the analysis described in Example ] for the two
points x;,, x;, to all the points in Af... To check if a point
X € Xpee belongs to N, g it is necessary to determine if
there exists a tether configuration ~ for which it is possible
to find a path A € A, p and a safe configuration 7 € Fij‘fe
such that v is relatively homotopic to 7 along A, i.e., Ny, g =
{xr 3y e I‘f;fe, A€ Ay pst. (Fo A (1) = xr}. In gen-
eral, ./\/;a cannot be characterized more explicitly, as it de-
pends on the specific choice of the sets F;’jfe and A, p.

Lastly, for the Local Visibility Homotopy non-entanglement
definition (Definition[0)) we show that, given an anchor point
Xa, €very point x € Afee is reachable through at least one
non-entangled tether configuration.

Proposition 4. The non-entangled free workspace for the
Local Visibility Homotopy non-entanglement definition is
given by N, B = Ahree-

To conclude this section, we compare the non-entangled
free workspace for the different definitions. In the comparison
below, for the Path Homotopy to Safe Set (Definition [8) we
define the set chife as the set of tether configurations starting
from x, that are not entangled with respect to the Obstacle-
Free Linear Homotopy definition (Definition [7), and the set
Ay, maxlen 18 defined as the set of all paths starting from x,

T

9
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having length less than or equal to some dp,,x. We obtain then
the following relations

Ne.g=Neog=Ne,g=Nean € Ve, g € Neg = Moot

We also observe that, in case of an obstacle-free workspace
all the sets coincide. An example of the non-entangled
workspace for the different definitions is shown in Figure[7]

VI. RELATIONSHIPS BETWEEN THE DEFINITIONS

In Section a broad set of non-entanglement definitions
has been introduced and discussed. There exist a number of
relationships between the different definitions. We are specif-
ically interested in determining if a definition is a special
case of another one, i.e., if being entangled with respect to
one definition implies being entangled also with respect to
another one. It is worth noting that some of the definitions
can only be applied under specific environment and tether
conditions. These conditions are the following:

C1. Taut tether configuration;

C2. Multi-robot system;

C3. Obstacle-free environment;

C4. 2D environment;

C5. Closed tether configuration (coinciding endpoints).

The definitions that require specific types of tether configu-
rations and environments are summarized below:

Definition[1 C1
Definition 2k C1, C2, C3
Definition 3 C2
Definition 4k C4
Definition 5k C5

Definitions not listed here can handle generic tether configu-
rations and environments.

Table [T] summarizes all the relationships between the dif-
ferent definitions. In the table, a cross indicates that being
not entangled with respect to the definition on a given row
implies being not entangled also with respect to the definition
in the corresponding column (and, conversely, that being
entangled with respect to the definition in a given column
implies being entangled also with respect to the definition in
the corresponding row). When a relationship exists between
two definitions, we assume that the conditions required by
the two definitions, which are indicated in Table [T] next to
the number of each definition, are simultaneously satisfied.
Some of the crosses have additional conditions indicated by
a superscript, which means that the relationship between the
two definitions is true if those additional conditions hold. The
proofs of the relationships listed in Table [I] are reported in
Appendix [C]

From the analysis of Table [I] it is possible to gain an
intuition of which non-entanglement definitions are more
strict and which are less so in identifying a tether config-
uration as non-entangled. The definitions that imply non-
entanglement also according to many other definitions (i.e.,
those whose corresponding row contain many crosses) are
typically more strict. For instance, Definition [I] considers a
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tether configuration as non-entangled only if it coincides with
a straight line segment, which is also considered to be a non-
entangled configuration by most of the other definitions. A
similar argument also holds for Definitions [2] and [6} On the
contrary, definitions according to which non-entanglement is
also implied by many others are usually more general. This
is the case of Definitions [] and [5] which generalize most
of the other definitions in their specific cases of application
(respectively, 2D environments and closed tether configura-
tions). Definition [TT]also turns out to generalize most of the
other definitions.

We remark that the way in which the Path to Safe Ho-
motopy definition (Definition [8)) is related to other defini-
tions depends on the specific choice of Ffj:fe and A, _p. For
this reason, no relationship has been marked in the table
for Definition Bl The same holds for the J-Relaxed Non-
Entanglement definition (Definition @]), as the relations of
Definition [T0]depend on the specific choice of ¢ and d.

VII. EMPIRICAL VALIDATION

The non-entanglement definitions presented in this article
are intended to be applied in tethered robot systems to char-
acterize the entanglement state of the tether. However, the
definitions are not straightforward to validate since, as already
discussed, there is not a well-established and generally ac-
cepted definition of entanglement to compare them with. For
this reason, we have opted for a qualitative validation of the
definitions by experts in the field of tethered robotics. A total
of 12 experts from the field of tethered robotics (mostly from
the field of underwater tethered robotics), have been asked to
evaluate a set of test scenarios. Each scenario is composed
by a set of obstacles, an anchor point x,, a robot location x;,
and a tether configuration . The considered scenarios include
both 2D and 3D environments, single-robot and multi-robot
systems, and both loose and taut tether configurations. Three
examples of test scenarios are shown in Figure [§] The full
list of validation scenarios can be found in the supplemental
material to this article.

All the non-entanglement definitions discussed in this arti-
cle are applied to each scenario to determine the entanglement
state of the tetherThe experts performed the same operation
by indicating, for each scenario, if they would consider the
tether configuration to be entangled or not. In addition to
indicating if a tether configuration is entangled or not, the
experts had the possibility to indicate the extent on the entan-
glement in that given scenario. The four possible answers that
the experts could select are ‘N’ (not entangled), ‘W’ (weakly
entangled), ‘E’ (entangled), and ‘S’ (strongly entangled). The
non-entanglement definitions can produce instead three dif-
ferent outcomes: ‘N’ (not entangled), ‘E’ (entangled), and ‘-’

12For Definition ﬁ the set Fiﬁre is defined as the set of all the tether config-
urations that are not entangled according to Definition[6} while Ay maxlen is
defined as the set of all obstacle-free straight paths starting from x; and having
length less than or equal to some dmax, as done e.g. in Example E} In 3D
multi-robot scenarios, Definitions 0] and [[T] have been considered under the
requirement that F (7, sso]s 1 xo ) < len(vy o), Which was discussed at
the end of Section@
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TABLE 1. Comparison of the Entanglement Definitions.
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By observing the left-hand part of the table, where the

(@)
FIGURE 8. Three examples of validation scenarios used for the empirical validation of the binary non-entanglement definitions. In the figures, gray
represents the tether configuration under analysis. Scenarios (a) and (b) are 2D and single-robot. Scenario (c) is 3D and multi-robot.

regions O; represent the obstacles, the blue dot x, indicates the anchor point location, the red dot x, indicates the robot location, and the black curve ~

opinions of the experts are reported, it is easy to note that
the evaluations of the test scenarios by the experts are often

(definition not applicable, e.g., when the conditions required
very different from each other. In fact, some of the experts
11

by a certain definition are not satisfied in the scenario under
analysis). The results of the validation process are shown in

Table
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TABLE 2. Validation of the entanglement definitions. N: not entangled; W: weakly entangled; E: entangled; S: strongly entangled; -: not applicable.
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tend to classify tether configurations as entangled more of-
ten than others, which indicates that their own definition of
entanglement is more conservative than that of others. On
the other hand, some experts only indicate a few scenarios
as entangled (e.g., experts 2 and 4). The right-hand side of
the table shows the results of the application of the non-
entanglement definitions to the test scenarios. Here it is pos-
sible to observe how the definitions differ in the evaluation of
the scenarios, with some definitions being more conservative
than others. By comparing the two parts of the table, one can
observe which definitions result to be closer to the opinions
of the experts. Definitions [T} [3] and [5] for instance, coincide
almost always with the average opinion from the experts.
However, these definitions need specific conditions to be
satisfied, and can only be applied to a limited number of the
test scenarios. On the contrary, the new definitions proposed
in this work (Definitions [6H9] and can be applied to all
the test scenarios. It can also be noted, as already observed
in Section [V] that Definitions [6] and [7] are quite conservative
in evaluating entanglement, but also that they provide a good
definition of a safe set for Definition [§} which results instead
to be closer to the opinion of the experts. Definitions[9]and[TT]
often coincide with the average opinion of the experts, with
Definition[TT]being the closest one.

VIil. CONCLUSIONS

We have considered the problem of defining tether entan-
glement for tethered robots, in order to determine if a tether
configuration is entangled or not. We have reviewed the en-
tanglement definitions available in the literature and proposed
several new entanglement definitions. All these definitions
can be used to evaluate the entanglement state of a tether
configuration. We have discussed the properties of the dif-
ferent definitions, highlighting their individual strengths and
weaknesses, and analyzed the relationships between them.
In particular, the comparison of the definitions shows how
some of the newly proposed definitions generalize many of
the definitions existing in the literature, resulting in more
comprehensive definitions of entanglement.

The main direction for future work regards the integration
of the proposed definitions in motion planning algorithms for
tethered robots, with the goal of obtaining safer and more
robust trajectories. This entails the development of general
motion planning algorithms for tethered robots that can make
use of different entanglement definitions, that are robust to
uncertainties in the localization of the tether and the obstacles,
and that are able to find disentangling paths in case a robot has
an entangled tether. The definitions can be used, for example,
to introduce a non-entanglement constraint in trajectory plan-
ning algorithms, which, paired with a dynamic model of the
tether that allows to estimate its movement, enables the robot
to avoid motion trajectories that would lead the tether to get
entangled. Alternatively, the definitions can be used offline
for the computation of a set of robot locations for which the
tether is guaranteed to be not entangled. This set can then be
used as a domain for an online motion planning algorithm,

which is able to avoid entanglement by keeping the robot
within the set.

A second important open research direction is the devel-
opment of continuous entanglement definitions based on the
measure of a level of entanglement. By using this type of
entanglement definitions, a set of tether configurations can
be ordered relatively to each other depending on their level of
entanglement. This type of definition can find application in
entanglement-aware motion planning algorithms for tethered
robots that focus on keeping the tether at a minimum level of
entanglement, that is, that focus on optimizing the risk/safety
level of the tethered robot. For example, in the motion plan-
ning problem depicted in Figure[T] a continuous entanglement
definition can provide a way to rank the possible motion
paths depending on the level of entanglement of the tether
configurations resulting from the motion of the robot along
those paths.

Finally, we aim to expand the validation of the entangle-
ment definitions, by considering both more scenarios, and
a larger and more diverse set of experts. An extended val-
idation, coupled with the application of the entanglement
definitions to motion planning algorithms, will allow to deter-
mine the effectiveness of the definitions in real-world tethered
robotic systems. Other open issues include the integration
of self-knotting in the entanglement definitions, which is
an unwanted condition that none of the existing definitions
captures effectively. Self-knotting occurs in 3D when a tether
passes through a loop or ‘eyelet’ created by itself, and can
lead to critical entanglement scenarios.

APPENDIX A. PROOFS OF SECTIONS IV AND V
In this appendix we provide some technical results that have
been used in Sections [l and

Lemma 1 ([48], p.25). Given a convex subset of ) C R”, all
paths in ) with given endpoints x; and x, are path-homotopic
to each other.

Lemma 2 (Path homotopy in loops). Let ) be a path-
connected space, and v : [0,1] — ) be a loop, i.e., a path
such that v(0) = (1) = xo, that is path-homotopic to
its base point xg. Then for any two paths 1, 2 such that

v1 © 75 "¢ =y, it holds that y; ~ s.

Proof. Let x; = v1(0) = 72(0) and xo3 = ~1(1) = y2(1).
Since ) is path-connected, v is path-homotopic to any of its
points, which implies that v ~ x; and v ~ x5. By using
elementary properties of how path homotopy is preserved
under path concatenation [52, Theorem 7.11] we have vy; ~
Y10x2 ~ Y1o(VFV oY) ~ (110757 ) 02 ~ 1072 ~ 2,
i.e., Y1~ V2. O

Lemma 3 (Existence of shortest path). Given any two points
X1,X2 € Xpee there exists a shortest admissible path +* be-
tween those two points, where 7* € argmin,er, , [len(v)].

Proof. The free space Xy is a boundedly compact metric
space, i.e., all closed bounded sets in it are compact [51}
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Definition 1.6.7], since it is a closed subset of R”. Therefore,
by [51} Corollary 2.5.20] there exists a shortest path between
any two path-connected points in Xec. O

Next, we formalize the homotopy signature, which is a
topological invariant that uniquely identifies the homotopy
equivalence class of any path v € I’y .. Given a path v, its
signature is indicated as h(+y). A signature is a word generated
as the free product of a finite set of letters [53]]. All paths
belonging to the same homotopy class have the same signa-
ture. Several approaches are available for the identification of
homotopy classes through the use of signatures, both in two
and three dimensions [41], [57], [58]. We largely base our
definition of homotopy signature on [53]. In the following we
refer to a continuous mapping /3 : I — Xjgee, Where I C Riis
an interval, as a continuous curve.

Definition (Transversality). In R?, a path v and a curve ( are
said to be transversal if at every point of intersection between
them they have distinct tangents [59].

Definition (Complete invariant [60]]). A function h from
Ty, v, to the set Ty, ,/ ~ is called a complete homotopy
invariant if

h(v1) = h(ye) <= 7 ~ 7.

Construction 1 (Signature of a path). Given a 2-dimensional
manifold Xfee, let (1, (2, . . ., {, be continuous curves, called
representative curves, such that 9¢; C 8/1’&@6@ Then, for
any two fixed points x,, x;, given a path -y connecting x,
and x; that is in general position (transverse) with respect
to the (;, and that crosses the (; a finite number of times, it
is possible to construct a word by following the path from
the start to the end and inserting in the word the letter z; or
Z; ! whenever the path intersects the curve ¢; with positive or
negative orientation respectively. By deleting any string of the
type ziz; ! and z; 17: we obtain a reduced word.

Proposition 5 (Signature is a complete invariant). Reduced
words constructed as described in Construction [I] are com-
plete homotopy invariants for paths in &f.. joining two given
points x, and x; if the following conditions hold:

D GNg =p@,Vi75j;

i) Xgee \ U ¢ is path-connected and simply connected,;
i=1

o
111) ’/Tl(Xfree\ U Ct) gZ,VjE {]—w"vp},
i=1ij
where =2 indicates a group isomorphism.

Proof. The proof is provided on page 143 of [53]. O

We call the homotopy invariant obtained from Construc-
tion[TJand Proposition 5| homotopy signature, and we indicate
it with h(-).

139 indicates the boundary of a manifold, which in case of a curve
corresponds to its endpoints. For example, in case of a line segment ¢ the
boundary O¢ corresponds to the two endpoints of ¢, while if ¢ is a ray the
boundary corresponds to the initial point of ¢.
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APPENDIX B. PROOFS OF SECTION VI

Proof of Proposition[l] The proof of this result is trivial. In
fact, Definitions [T] and [2] are only applicable to taut tether
configurations, and require the tether to be a straight line
segment for it to not be considered entangled. O

Proof of Proposition2] In Lemma [3] we have established
that, given the topological properties of Aj, there exists a
shortest path between any given pair of points x1, x5. Since
a shortest path never contains a loop, that means that for any
point x € Xfe. there exists a shortest path x that does not
contain a loop, and that therefore is not entangled according
to DefinitionEl Thus, Ny, @ = e O

Proof of Proposition[3] Proposition [3] states that NV, g =
N, mn= {x : L x,Nint O = B@}. Given a pointx € X Such
that /,, ,Nint O = @, the path y = I, , from x, to x is anon-
entangled tether configuration with respect to both Definition
[6| and Definition [7] and therefore x € N, gand x € N, m
Conversely, if there exists a tether configuration from x, to x
withx € N, gorx € Ny m thenl, . Nint O = @, since
Iy, x is part of conv(y) in the former case, and of the linear
path homotopy defined in (TJ) in the latter case. It follows that
Nog = Nefg = {x € Xhree : L, x Nint O = B}, O

Lemma 4. Given a pair of fixed points x1,xo, the shortest
tether configuration 75, ,, always satisfies the Local Visibility
Homotopy definition (Definition ).

Proof (by contradiction). Let~* be the shortest path between
two points in Xy and suppose that v* is entangled with re-
spect to the Local Visibility Homotopy definition (Definition
EI). This means that there exist two points x; = v*(s1), X2 =
7" (s2), such that L, x, o4 [, ,1- Since L, , is the shortest
path between the two points x; and xz, and [, ., and v[t s3]
are not homotopic, which means that they cannot coincide,
we have len(ly, xv,) < len(yf, ). Therefore, the path 7'
that is obtained by replacing ny‘H 52 by Iy, x, in the path y* is
shorter than v*. However, this is a contradiction since v* was
assumed to be the shortest path between the two points. [

Proof of Propositiond] In Lemma [3] we have established
that, since Afe is path connected, there always exists a
shortest path between any pair of points in Xf.e, and therefore
also between a point x € X and x,. Thus, we obtain
from Lemma E| that between any pair of points in X there
exists a tether configuration that is not entangled according to
Definition O

APPENDIX C. PROOFS OF THE COMPARISONS OF THE
NON-ENTANGLEMENT DEFINITIONS (SECTION VII)

In this appendix the relationships between the non-
entanglement definitions that were introduced in Section [VI]
are proved. The proofs are given in the form ‘Definition d;
implies Definition d>” which means ‘if a tether configuration
v is not entangled according to Definition dj, then it is also
not entangled with respect to Definition d5’. The relationships
proven in this sections are visualized in Figure[9] It is worth
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noting that only the relationships indicated by a black arrow
are proven, while those indicated by the light-grey arrows,
which correspond to relationships that can be proven by
concatenating other relationships, are not.

Proof of Def.[I] = Def.[] Let +y be a taut tether in a 2D
environment that is not entangled according to Definition [T}
i.e., such that v = I, , . Since «y coincides with a straight
line segment, it does not contain any loop. This means that
7(s1) = v(s2) <= s1 = s2, and so the condition 7, 5,1 ~
v(s1) of Definitionis always satisfied since s, 5,] = 7(51).
Thus ~ is not entangled according to Definition 4] O

Proof of Def.[I]| = Def.[f] Let y be a taut tether configu-
ration that is not entangled according to Definition [I] i.e.,
such that v = [, . . By definition, the tether configuration
v lies in Xpee, 1.€., ¥ Nint O = @. Since in the case of a
straight line tether we have conv(ly, ) = I, ,, it follows
that conv(y) Nint O = @, which means that the tether is not
entangled according to Definition [6] O

Proof of Def.[I] = Def.[9 Lety be a taut tether configura-
tion that is not entangled according to Definition[] i.e., such
that v = [, ,,. For any 51,59 € [0,1],51 < s2, we have
Vist,s2] = l’y(s'l),’y(xz)' It follows that Vist,s2] ™ 17(5,1)7,7(52),
which means that v is not entangled according to Defini-
tion [0 O

Proof of Def.[2] = Def.[3] LetZ be a set of robots in a 3D
environment, and 7;, i € Z be a taut tether that is not entangled
according to Definition E}, i.e., such that ; = [, v - Given
the properties of the environment, the signature of each tether
can be computed on a 2D projection of the environment, as
detailed in [6]. For every obstacle O;,i € {1,...,m} in the
environment, a point X; is then selected in its interior and two
rays (; = X; +svand (; = x; — sv are generated from it, where
v is a unit direction vector that is selected at the beginning of
this process and used for every obstacle. The rays are added
to the set of representative curves that will be used to compute
the signature. Then, for every other robot j € T \ {i}, a
piecewise-linear approximation of the tether is computed (see
[6l p. 2791]). Each segment composing this approximation is
added to the set of representative curves. Finally, the signature
of v; is computed. Since the path v; coincides with the straight
line segment I, , . ;, it cannot intersect with any of the rays
or straight line segments more than once. Therefore ~; is not

entangled according to Definition 3] O
Proof of Def.[J| = Def.[4) Same proof as that of Def. [I]
= Def.[lforv; = Iy, , - O
Proof of Def.[2] = Def.[f] Same proof as that of Def.
= Def.[flforvi = Ly, x.- O
Proof of Def.[J| = Def.[9} Same proof as that of Def. [I]
= Def.[f|forv; = Iy, , x, - O

Proof of Def.d] = Def.[5] Let y be a closed tether con-
figuration that is not entangled according to Definition []
i.e., such that 7, ) ~ Y(s1),Vs1,52 € [0,1] such that

~(s1) = ~(s2). From this assumption and the fact that  is
closed we have yjp,1] ~ ~(0), i.e., ¥ ~ x,. Thus, v is not
entangled according to Definition [5] O

Proof of Def. D] = Def.[] Let~ybe a2D closed tether con-
figuration that is not entangled according to Definition[J] i.e.,
such that v ~ x,. For a 2D closed path ~ to be homotopic to
a constant map there cannot be any obstacle being encircled
by 7 [54]. Therefore, in any loop v, s, such that y(s;) =
~v(s2),51 # so there cannot be any obstacle as well. This
means that 7, s,) ~ Y(s1),Vs1,s2 € [0,1], and therefore
7 is not entangled according to Definition 4} O

Proof of Def. 5] = Def.[[1] Let y be a closed path such
that v(0) = v(1) = x, and v ~ x,. It is straightforward that
the constant map x, satisfies the Local Visibility Homotopy
definition (Definition E]) Therefore, there exists a path that
is not entangled according to the Local Visibility Homotopy
definition and that is in the same path homotopy class as ~y.
Thus,  is not entangled according to Definition[T1] O

Proof of Def.[6]| => Def.[l] Let v be a taut path that is
not entangled with respect to Definition [6] i.e., such that
conv(y)Nint O = @. Itis easy to see that the taut path v must
coincide with the straight-line path I, , . In fact, any other
taut path must contain a bend around some obstacle, which
violates the assumption that conv(v) Nint O = @. Thus, v is
also not entangled with respect to Definition [T} O

Proof of Def.[6]| = Def. ] Let -y be a tether configuration
that is not entangled according to Definition [6] i.e., such
that conv(y) N int O = @. If y(s1) # 7(s2),Vs1,52,
then  is trivially not entangled according to Definition [4]
Otherwise, there exist some s1, so for which v(s1) = v(s2).
Since conv(7y, 5,)) € conv(y), we have conv(y, 5,1) N
intO® = @,Vsy,s5 € [0,1]. From Lemma (1| applied with
Y = conv(7[s1,s2)) it holds that g, 4,1 ~ ¥(s1), which means
that  is not entangled according to Definition 4] O

Proof of Def.[6]| => Def.5] Let be a closed tether config-
uration (i.e., such that v(0) = ~(1)) that is not entangled
according to Definition[6] i.e., for which conv(y) Nint O =
@. From Lemma E] applied with )Y = conv(y) we have
~v ~ 7(0), thus ~ is not entangled according to Definition
O

Proof of Def.[]| = Def.[/] Let -y be a tether configuration
that is not entangled according to Definition 6] i.e., for which
conv(y) N intO = @. The straight line segment L) .
consists of all the convex combinations of the points ~y(s)
and x,, and therefore belongs to conv(+y). This holds for all
the points of 7, i.e., Iy, € conv(y),Vs € [0,1]. Since
conv(y) Nint O = @, then also the linear homotopy defined
in (1)) has empty intersection with the interior of the obstacle
region O, i.e., H(s,t) € Xiee, Vs,t € [0,1]. Thus, v is also
not entangled with respect to Definition O

Proof of Def.[6] = Def.[9] Let -y be a tether configuration
that is not entangled according to Definition 6] i.e., for which
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Definition 4
2D Tether Loop
around Obstacle
(c4)

Definition 3
Entanglement between
Slack Tethers
(€2)

Definition 2
Taut Tether Contact
with Other Tethers
(C1, C2, C3)

Definition 1
Taut Tether Contact
with Obstacle
(€1)

Definition 11
Path Class-Robustified
Local Visibility
Homotopy

Closed Tether Homotopy

to Constant Map
(C5)
Definition 6
‘ — Obstacle-Free

Definition 5

Convex Hull

Definition 7
Obstacle-Free
Linear Homotopy

Definition 9
Local Visibility
Homotopy

Definition 8

Definition 10
O-Relaxed

Non-Entanglement

Definition d

Path Homotopy to
Safe Set

FIGURE 9. Graph showing the relationships between the non-entanglement definitions. Only the relationships in black are proven in this appendix. The
ones in light gray can be derived by concatenation of other relationships. The relationships shown in this graph yield those reported in Table ]

conv(y) Nint O = @. For every pair of scalars 51,52 €
[0, 1], 2 > s1, the path ;, ,,] belongs to conv(+y) and so does
the straight line segment L (s, (s,)- From Lemma|l|we have
Vst sa] ~ Iy(s1),7(s2)- Since this holds for all 51,52 € [0,1], v
is not entangled according to Definition 9] O

Proof of Def.[/] = Def.[d] Let y be a tether configuration
that is not entangled according to Definition[7] i.e., for which
Ly(s)x, Nint O = @, Vs € [0, 1]. Given any loop 7y, 4, in the
tether v such that v(s;) = 7(s2), for v to be not entangled
with respect to Definition /] there cannot be any obstacle
inside the area enclosed by v, s,], as otherwise there would
be some point which violates the condition /) ., Nint O =
@. Therefore, 7|, 5,) ~ 7(s1). Thus, 7 is not entangled
according to Definition 4] O

Proof of Def.[/] = Def.[5] Let -y be a tether configuration
that is not entangled according to Definition[7] i.e., for which
L), Nint O = @,Vs € [0, 1]. The existence of a linear
homotopic mapping H between 7y and x,, directly implies that
v is path-homotopic to the constant map x,. Thus, v is not
entangled according to Definition 5] O

Proof of Def.[/| = Def.[I1] Let v be a tether configura-
tion that is not entangled according to Definition [/] i.e., for
which the linear homotopic map H defined in (I) has an
empty intersection with the interior of the obstacle region.
By definition of H, the concatenation 7y ¢ l;:’fr“e is null-
homotopic. Therefore, by Lemma@, v ~ Iy, x,. The straight-
line segment [, satisfies Definition [0} as the straight-line
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segment between any two points of [, . is path-homotopic to
itself. This means that there exists a path in the same path class
of 7 that is not entangled according to Definition [0} Thus, ~
is not entangled according to Definition[TT] O

Proof of Def.[9) = Def.[] Let ~ be a 2D tether configura-
tion that is not entangled according to Definition [0} For any
loop, i.e., for any path v, 1 such that y(s;) = ~(s2), it
holds that 7, 5,; ~ 7(s1), which is obtained by () with
Ly(s1),4(s2) = 7(s1). Thus, ~ is not entangled according to
Definition 4] O

Proof of Def.[9) = Def.[5] Let v be a closed tether config-
uration that is not entangled according to Definition [9] For
s1 = 0,50 = 1 we have lw(O),'y(l) = X,. Since ~y is not entan-
gled according to Definition (9)it holds that (g1 = 7 ~ Xa.
Thus,  is not entangled according to Definition [5}

Proof of Def.[9) = Def.[[1] Lety be a tether configuration
that is not entangled according to Definition [0 Definition|TT]
states that a tether configuration is not entangled if it is path-
homotopic to another tether configuration that is not entan-
gled according to Definition [9} Since a path is always path-
homotopic to itself, then + is also not entangled according to
Definition [Tl O
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