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Minimal state space realization of SISO systems in the max

algebra∗

Bart De Schutter
†
and Bart De Moor

†

Abstract

First we determine necessary and for some cases also sufficient conditions for a poly-
nomial to be the characteristic polynomial of a matrix with elements in Rmax. Then we
indicate how to construct a matrix such that its characteristic polynomial is equal to a
given monic polynomial in Smax, the extension of Rmax. Next we use these results to
develop a procedure to find the minimal state space realization of a single input single
output (SISO) discrete event system, given its Markov parameters.

1 Introduction

1.1 Overview

There exists a wide range of frameworks to model and to analyze discrete event systems: Petri
nets, generalized semi-Markov processes, formal languages, perturbation analysis, computer
simulation and so on. In this paper we concentrate on discrete event systems that can be
described with the max algebra. We address the minimal state space realization problem
for max-algebraic single input single output (SISO) systems. We show that the characteristic
equation in the max algebra plays an important role in the solution of this problem. Therefore
we first make a study of the characteristic equation of a matrix in the max algebra. Next
we use these results to propose a procedure to find a minimal state space description of a
max-linear time-invariant SISO discrete event system.
In the first section we introduce the notations and some of the definitions and properties
that will be used throughout the remainder of this report. In the second section we give
some necessary and sufficient conditions for the coefficients of a polynomial such that it is
the characteristic polynomial of a matrix in the max algebra. Then we indicate how to
construct a matrix for which the characteristic polynomial is equal to a given polynomial.
These results will then be used to determine a lower bound for the minimal order of the
state space description of a SISO system in the max algebra. This will enable us to find the
minimal realization of a SISO discrete event system, given its Markov parameters. Finally
we shall illustrate this procedure with a few examples.

∗A short version of this report has appeared in the Proceedings of the 11th International Conference on

Analysis and Optimization of Systems, Sophia-Antipolis, France, June 15-17, 1994, pp. 273–282.
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tel. 32-16-32.17.09 (secretary), fax 32-16-32.19.70, email: bart.deschutter@esat.kuleuven.ac.be,
bart.demoor@esat.kuleuven.ac.be. Bart De Schutter is a research assistant with the N.F.W.O. (Belgian
National Fund for Scientific Research) and Bart De Moor is a senior research associate with the N.F.W.O.
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1.2 Notations

One of the mathematical tools used in this report is the max algebra. In this introduction
we only explain the notations we use to represent the max-algebraic operations. A complete
introduction to the max algebra can be found in [1].
In this report we use the following notations: a⊕ b = max(a, b) and a ⊗ b = a + b. ε = −∞
is the neutral element for ⊕ in Rmax = (R ∪ {ε},⊕,⊗). To avoid confusion we always write

the ⊗ sign explicitly. The inverse element of a 6= ε for ⊗ in Rmax is denoted by a⊗
−1

. The
division is defined as follows:

a

b
= a⊗ b⊗

−1
if b 6= ε .

If A is an m by n matrix then the element on the i-th row and on the j-th column is denoted
by aij . En is the n by n identity matrix in Rmax: eij = 0 if i = j and eij = ε if i 6= j. The

operations ⊕ and ⊗ are extended to matrices in the usual way. A⊗
k
= A⊗A⊗ . . .⊗A
︸ ︷︷ ︸

k times

.

We also use the extension of the max algebra Smax that was introduced in [1, 5]. Smax is a
kind of symmetrization of Rmax. We shall restrict ourselves to the most important features
of Smax. For a more formal derivation the interested reader is referred to [5].
There are three kinds of elements in Smax: the positive elements (S⊕max, this corresponds to
Rmax), the negative elements (S⊖max) and the balanced elements (S•max). The positive and the
negative elements are called signed (S∨max = S

⊕
max ∪ S

⊖
max). The ⊖ operation in Smax is defined

as follows: a⊖ b = a if a > b ,
a⊖ b = ⊖b if a < b ,
a⊖ a = a• .

If a ∈ Smax then it can be written as a = a+ ⊖ a− where a+ is the positive part of a and a−

is the negative part of a; |a| = a+ ⊕ a− is the absolute value of a. There are three possible
cases: if a ∈ S

⊕
max then a+ = a and a− = ε, if a ∈ S

⊖
max then a+ = ε and a− = ⊖a and if

a ∈ S
•
max then a+ = a− = |a|.

Example 1.1 Let a = 3• ∈ S
•
max, then a

+ = 3, a− = 3 and |a| = 3.
For b = ⊖2 ∈ S

⊖
max we have b+ = ε, b− = 2 and |b| = 2.

This symmetrization allows us to ’solve’ equations that have no solutions in Rmax. Unfortu-
nately we then have to introduce balances (∇) instead of equalities. Informally an ⊖ sign in
a balance means that the element should be at the other side: so 3⊖ 3 ∇ 2 means 3 ∇ 2⊕ 3.
If both sides of a balance are signed (positive or negative) we can replace the balance by an
equality.
To select submatrices of a matrix we use the following notation:
A([i1, i2, . . . , ik], [j1, j2, . . . , jl]) is the matrix resulting from A by eliminating all rows except
for rows i1, i2, . . . , ik and all columns except for columns j1, j2, . . . , jl. A(i, :) is the i-th row
of A and A(:, j) is the j-th column of A. [1 : n] stands for [1, 2, . . . , n].

1.3 Some definitions and theorems

Definition 1.2 (Determinant) Consider a matrix A ∈ S
n×n
max . The determinant of A is
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defined as

detA =
⊕

σ∈Pn

sgn (σ)⊗
n⊗

i=1

aiσ(i)

where Pn is the set of all permutations of {1, . . . , n} , and sgn (σ) = 0 if the permutation σ is
even and sgn (σ) = ⊖0 if the permutation is odd.

Theorem 1.3 Let A ∈ S
n×n
max . The homogeneous linear balance A ⊗ x ∇ ε has a non-trivial

signed solution if and only if detA ∇ ε.

Proof : See [5]. The proof given there is constructive so it can be used to find a solution.

Definition 1.4 (Characteristic equation) Let A ∈ S
n×n
max . The characteristic equation of

A is defined as det(A⊖ λ⊗ En) ∇ ε.

This leads to

λ⊗
n

⊕
n⊕

p=1

ap ⊗ λ⊗
n−p

∇ ε

which will be called a monic balance, since the coefficient of λ⊗
n
equals 0 (i.e. the identity

element for ⊗).
If we define αp = a+p and βp = a−p and if we move all terms with negative coefficients to the
right hand side we get

λ⊗
n

⊕
n⊕

i=1

αi ⊗ λ⊗
n−i

∇
n⊕

j=1

βj ⊗ λ⊗
n−j

with αp, βp ∈ Rmax. In [8] Olsder defines a variant of this equation using the dominant instead
of the determinant. This leads to signed coefficients: aOlsder

p ∈ S
∨
max or αOlsder

p ⊗ βOlsder
p = ε.

Theorem 1.5 (Cayley-Hamilton) In Smax every square matrix satisfies its characteristic
equation.

Proof : See [6] and [8].

2 The characteristic equation of a positive matrix

A positive matrix is a matrix the elements of which lie in Rmax. In this section we derive
necessary conditions for a polynomial in Smax to be generated by a matrix with elements in
Rmax.

2.1 The characteristic equation

In this subsection we derive a formula for the coefficients of the characteristic equation.

Property 2.1 Consider A ∈ S
n×n
max and k ∈ Smax, then det(k ⊗A) = k⊗

n
⊗ detA .
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Proof : det(k ⊗A) =
⊕

σ∈Pn

sgn (σ)⊗
n⊗

i=1

(k ⊗ aiσ(i))

=
⊕

σ∈Pn

sgn (σ)⊗

(

k⊗
n
⊗

n⊗

i=1

(k ⊗ aiσ(i))

)

= k⊗
n
⊗
⊕

σ∈Pn

sgn (σ)⊗
n⊗

i=1

(k ⊗ aiσ(i))

= k⊗
n
⊗ detA

We know that det(A⊖λ⊗En) ∇ ε represents the characteristic equation of A. But because

of property 2.1 we have that det(A⊖λ⊗En) = (⊖0)⊗
n
⊗det(λ⊗En⊖A) and since a ∇ ε if

and only if ⊖a ∇ ε the characteristic equation can also be represented by det(λ⊗En⊖A) ∇ ε .

Definition 2.2 (Principal submatrix) Let A ∈ S
n×n
max and let {i1, i2, . . . , ik} be a combi-

nation of k elements out of {1, . . . , n} . Then the matrix A([i1, i2, . . . , ik], [i1, i2, . . . , ik]) is a k
by k principal submatrix of A. It can be obtained from A by deleting n− k rows and columns.

Every square n by n matrix A has

(

n
k

)

principal submatrices of size k × k.

We represent the max-algebraic sum of the determinants of all k by k submatrices of A as
Ek(A) :

Ek(A) =
⊕

ϕ∈Ck
n

detA([i1, i2, . . . , ik], [i1, i2, . . . , ik])

where Ckn is the set of all combinations of k numbers out of {1, . . . , n} and ϕ = {i1, i2, . . . , ik}.

Property 2.3 If we represent the characteristic equation of A ∈ S
n×n
max as λ⊗

n
⊕

n⊕

p=1

ap ⊗

λ⊗
n−p

∇ ε then ap = (⊖0)⊗
p
⊗ Ep(A) .

Proof :

det(λ⊗ En ⊖A) = det









λ⊖ a11 ⊖a12 . . . ⊖a1n
⊖a21 λ⊖ a22 . . . ⊖a2n
...

...
. . .

...
⊖an1 ⊖an2 . . . λ⊖ ann









.

Since det(u1, . . . , ui ⊕ vi, . . . , un) = det(u1, . . . , ui, . . . , un) ⊕ det(u1, . . . , vi, . . . , un) we can
split this determinant up as

det









λ ε . . . ε
ε λ . . . ε
...

...
. . .

...
ε ε . . . λ









⊕ det









⊖a11 ε . . . ε
⊖a21 λ . . . ε
...

...
. . .

...
⊖an1 ε . . . λ









⊕ det









λ ⊖a12 . . . ε
ε ⊖a22 . . . ε
...

...
. . .

...
ε ⊖an2 . . . λ









⊕ . . . ⊕

det









λ ε . . . ⊖a1n
ε λ . . . ⊖a2n
...

...
. . .

...
ε ε . . . ⊖ann









⊕ . . . ⊕
⊕

ϕ∈Cp
n

detBϕ ⊕ . . . ⊕ det









⊖a11 ⊖a12 . . . ⊖a1n
⊖a21 ⊖a22 . . . ⊖a2n
...

...
. . .

...
⊖an1 ⊖an2 . . . ⊖ann








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with Bϕ(:, i) = ⊖A(:, i) if i ∈ ϕ ,
Bϕ(:, i) = λ⊗ En(:, i) if i 6∈ ϕ .

If ϕ = {i1, i2, . . . , ip}, we have that

detBϕ = λ⊗
n−p

⊗ (⊖0)⊗
p
⊗ detA([i1, i2, . . . , ip], [i1, i2, . . . , ip])

since Bϕ has n− p diagonal entries that are equal to λ and p columns that contain elements
of ⊖A. We have used property 2.1 to put the ⊖ signs before the determinant. So we find that

det(λ⊗ En ⊖A) =
n⊕

p=0

(⊖0)⊗
p
⊗ Ep(A)⊗ λ⊗

n−p

with Ep(A) the max-algebraic sum of the determinants of all possible p by p principal sub-
matrices of A.

This results in: a0 = 0 ,

a1 = ⊖tr (A) = ⊖
n⊕

i=1

aii ,

an = (⊖0)⊗
n
⊗ detA .

Example 2.4 Consider A =






0 5 9
5 20 10
9 10 18




.

The characteristic equation of A is λ⊗
3
⊖ 20⊗ λ⊗

2
⊕ 38⊗ λ ⊕ 38• ∇ ε.

2.2 Properties of the characteristic equation

Proposition 2.5 In Smax every monic n-th degree linear balance is the characteristic equation
of an n× n matrix.

Proof : Suppose that the linear balance has the following form

λ⊗
n

⊕ a1 ⊗ λ⊗
n−1

⊕ . . . ⊕ an−1 ⊗ λ ⊕ an ∇ ε .

We shall prove that this is the characteristic equation of the matrix

A =











ε 0 ε . . . ε
ε ε 0 . . . ε
...

...
...

. . .
...

ε ε ε . . . 0
⊖an ⊖an−1 ⊖an−2 . . . ⊖a1











.

We use the formula of property 2.3 to calculate the coefficients of λ⊗
n−p

in the characteristic
equation of A. If we take the p by p principal submatrices of A we see that each of them has an
ε-column – and thus a determinant equal to ε – except for Bp = A([n−p+1 : n], [n−p+1 : n]) .
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So ap = (⊖0)⊗
p
⊗Ep(A) = (⊖0)⊗

p
⊗ detBp . Bp is obtained by deleting the first n− p rows

and columns of A, so

Bp =











ε 0 ε . . . ε
ε ε 0 . . . ε
...

...
...

. . .
...

ε ε ε . . . 0
⊖ap ⊖ap−1 ⊖ap−2 . . . ⊖a1











.

If we develop the determinant of Bp to the first column we get detBp = (⊖0)⊗
p−1

⊗ (⊖ap) =

(⊖0)⊗
p
⊗ ap so the coefficient of λ⊗

n−p
equals (⊖0)⊗

p
⊗ (⊖0)⊗

p
⊗ ap = (⊖0)⊗

2p
⊗ ap = ap .

Thus the linear balance is indeed the characteristic equation of A.

In the next section we shall see that not every monic polynomial corresponds to the charac-
teristic polynomial of a positive matrix.

2.3 Properties of the characteristic polynomial of positive matrices

Property 2.6 If A ∈ R
n×n
max then a1 ∈ S

⊖
max.

Proof : We know that a1 = ⊖tr (A) = ⊖
n⊕

i=1

aii with aii ∈ Rmax so a1 ∈ S
⊖
max .

To prove the following property we first need a lemma involving permutations. The parity of
a permutation can be determined in various ways. We use:

Property 2.7 The parity of a permutation is equal to the parity of the number of its elemen-
tary cycles of even length.

First consider a circular permutation σc of n elements:

σc(i1) = i2, σc(i2) = i3, . . . , σc(in−1) = in, σc(in) = i1 .

The graph of this permutation is

◗
◗

◗
◗◗❦
✑
✑

✑
✑✑✸

✲
◗
◗

◗
◗◗s
✑

✑
✑

✑✑✰✛ · · ·
in−1

in

i1 i2

i3

i4

q

q

q q

q

q

This permutation has a cycle of length n.
If n is even, then σc ∈ Pn is odd because there is 1 cycle of even length.
If n is odd, then σc ∈ Pn is even because there are 0 cycles of even length.
If a permutation of n numbers is not circular we can decompose it into r elementary cycles

Ci of length li, with r > 1 and
r∑

i=1

li = n . Each cycle will be a circular permutation.
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Example 2.8 Let σ ∈ P4 be defined as σ(1) = 3, σ(2) = 2, σ(3) = 1 and σ(4) = 4. The
graph of this permutation is

3

1

2

4

This permutation can be decomposed into three elementary cycles, each of which is a circular
permutation of its vertices. There is one cycle of even length (1 → 3 → 1). So σ is an odd
permutation.

Lemma 2.9 If σ2k,even (k > 0) is an even permutation of 2k elements, then it can be decom-
posed into two even permutations of an odd number of elements or two odd permutations of
an even number of elements:

σ2k,even = σ2l+1,even ∪ σ2k−2l−1,even or σ2m,odd ∪ σ2k−2m,odd .

If σ2k+1,odd (k > 0) is an odd permutation of 2k + 1 elements, then it can be decomposed
into an even permutation of an odd number of elements and an odd permutation of an even
number of elements:

σ2k+1,odd = σ2p+1,even ∪ σ2k−2p,odd. .

Proof :

First consider σ2k,even . This is an even permutation of an even number of elements so it is not
circular and it can be decomposed into elementary cycles. Suppose that there are ceven cycles
of even length each having neven,i elements and codd cycles of odd length each having nodd,j

elements. Let ntot,even =
ceven∑

i=1

neven,i and ntot,odd =
codd∑

j=1

nodd,j . Since the parity of σ2k,even

is even, ceven should also be even. ntot,even is always even. The total number of elements
ntot = 2k is even, so we have that ntot,odd is also even and hence that codd is even. There are
two cases: ceven = 0 and ceven 6= 0.
If ceven = 0 then codd 6= 0 because 2k 6= 0. Take one cycle of odd length 2l + 1. This
corresponds to an even permutation of 2l + 1 elements: σ2l+1,even. The other cycles form
a permutation with 0 cycles of even length, so it is an even permutation of the remaining
2k − 2l − 1 elements: σ2k−2l−1,even.
If ceven 6= 0 we take one cycle of even length 2m. This corresponds to σ2m,odd. The remaining
cycles constitute a permutation with an odd number (ceven − 1) of cycles of even length:
σ2k−2m,odd.
So we have proven that σ2k,even can be decomposed as σ2l+1,even ∪ σ2k−2l−1,even or σ2m,odd ∪
σ2k−2m,odd .
Now consider σ2k+1,odd . This is an odd permutation of an odd number of elements so it is
not circular and it can be decomposed into elementary cycles. Since the parity of σ2k+1,odd is
odd, ceven should also be odd. ntot,even is always even, and since the total number of elements
ntot = 2k + 1 is odd we have that ntot,odd is odd and hence that codd is odd. This means
that codd 6= 0. So let us take one cycle of odd length 2p + 1. This corresponds to an even
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permutation of 2p+ 1 elements: σ2p+1,even.
The other cycles will then correspond to a permutation of with an odd number (ceven) of
cycles of even length, so it is an odd permutation of 2k − 2p elements: σ2k−2p,odd .
So σ2k+1,odd = σ2p+1,even ∪ σ2k−2p,odd .

Now we give some properties of ap = (⊖0)⊗
p
⊗ Ep(A) = a+p ⊖ a−p . First we suppose that we

don’t simplify ⊖. This means that for a = 3⊖ 4 we have a+ = 3 and a− = 4. Later we shall
see how we have to adapt the properties to take simplification into account, because then we
shall have that a = 3⊖ 4 results in a = ⊖4 or a+ = ε and a− = 4.

Property 2.10 Let A ∈ R
n×n
max and let ap = (⊖0)⊗

p
⊗ Ep(A) = a+p ⊖ a−p (without simplifying

⊖). Then ∀p ∈ {2, . . . , n} : a+p 6

⌊ p

2⌋⊕

r=1

a−r ⊗ a−p−r , where ⌊x⌋ stands for the largest integer

number less than or equal to x.

Proof : We know that

ap = (⊖0)⊗
p
⊗ Ep(A)

= (⊖0)⊗
p ⊕

ϕ∈Cp
n

⊕

σ∈Pp

sgn (σ)⊗ ai1iσ(1)
⊗ ai2iσ(2)

⊗ . . .⊗ aipiσ(p)

with ϕ = {i1, i2, . . . , ip} .
If we extract the positive and the negative part of ap (without simplifying ⊖), we find for
k > 0 :

a+2k =
⊕

ϕ∈C2k
n

⊕

σ∈P2k,even

ai1iσ(1)
⊗ ai2iσ(2)

⊗ . . .⊗ ai2kiσ(2k)
(1)

a−2k =
⊕

ϕ∈C2k
n

⊕

σ∈P2k,odd

ai1iσ(1)
⊗ ai2iσ(2)

⊗ . . .⊗ ai2kiσ(2k)
(2)

a+2k+1 =
⊕

ϕ∈C2k+1
n

⊕

σ∈P2k+1,odd

ai1iσ(1)
⊗ ai2iσ(2)

⊗ . . .⊗ ai2k+1iσ(2k+1)
(3)

a−2k+1 =
⊕

ϕ∈C2k+1
n

⊕

σ∈P2k+1,even

ai1iσ(1)
⊗ ai2iσ(2)

⊗ . . .⊗ ai2k+1iσ(2k+1)
. (4)

Let us first consider a+2k. The terms of a+2k are generated by even permutations of 2k elements.
According to lemma 2.9 such a permutation can be decomposed into two even permutations
of odd lengths or two odd permutations of even lengths. So if we consider all possible con-
catenations of two even permutations of odd lengths (corresponding to a−2l+1 ⊗ a−2k−2l−1) or

two odd permutations of even length (a−2m ⊗ a−2k−2m), we are sure to have included all terms

of a+2k. In other words a+2k 6

2k−1⊕

r=1

a−r ⊗a−2k−r . Since (a
−
r ⊗a−2k−r) ⊕ (a−2k−r⊗a

−
r ) = a−r ⊗a−2k−r

we find a+2k 6

k⊕

r=1

a−r ⊗ a−2k−r .
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Now consider a+2k+1, the terms of which are generated by odd permutations of 2k+1 elements.
Lemma 2.9 also tells us that such a permutation can be decomposed into an odd permutation
of an even number of elements and an even permutation of an odd number of elements. Using

the same reasoning as for a+2k, we find that a+2k+1 6

k⊕

r=1

a−r ⊗ a−2k+1−r .

Combining the two inequalities leads to a+p 6

⌊ p

2⌋⊕

r=1

a−r ⊗ a−p−r .

We don’t have a similar expression for a−p because then some of the generating permutations
are circular, and these cannot be decomposed into more than one elementary cycle.

Normally we simplify ⊖ , by setting a−p = ε if a−p < a+p and a+p = ε if a−p > a+p .
Therefore we shall from now on represent the characteristic equation of A ∈ R

n×n
max as

λ⊗
n

⊕
n⊕

i=2

αi ⊗ λ⊗
n−i

∇ β1 ⊗ λ⊗
n−1

⊕
n⊕

j=2

βj ⊗ λ⊗
n−j

with






αp = a+p , βp = ε if a+p > a−p ,

αp = ε, βp = a−p if a+p < a−p ,

αp = a+p , βp = a−p if a+p = a−p .

So there are three possible cases: αp = ε, βp = ε or αp = βp. We already have omitted α1

because property 2.6 leads to α1 = a+1 = ε.
We have that αp 6 a+p , βp 6 a−p and |ap| = αp ⊕ βp .

Property 2.11 ∀i ∈ {2, . . . , n} : αi 6

⌊ i
2⌋⊕

r=1

(αr ⊕ βr) ⊗ (αi−r ⊕ βi−r) , where ⌊x⌋ stands

for the largest integer number less than or equal to x.

Proof : Using the fact that a−i 6 |ai| property 2.10 leads to

a+i 6

⌊ i
2⌋⊕

r=1

|a−r | ⊗ |a−i−r|

6

⌊ i
2⌋⊕

r=1

(αr ⊕ βr)⊗ (αi−r ⊕ βi−r) .

We also know that αi 6 a+i . So

αi 6

⌊ i
2⌋⊕

r=1

(αr ⊕ βr)⊗ (αi−r ⊕ βi−r) .

We even have a more stringent property:

Property 2.12 ∀i ∈ {2, . . . , n} at least one of the following statements is true :

9



1) αi 6

⌊ i
2⌋⊕

r=1

βr ⊗ βi−r

2) αi <

⌊ i
2⌋⊕

r=2

αr ⊗ αi−r

3) αi <
i−1⊕

r=2

αr ⊗ βi−r

where ⌊x⌋ stands for the largest integer number less than or equal to x.

Proof : Take an arbitrary i ∈ {2, . . . , n}. Then according to property 2.10 there exists an

s 6

⌊
i

2

⌋

such that

αi 6 a+i 6 a−s ⊗ a−i−s .

We have that either a−s = βs or a−s < αs and the same goes for a−i−s.
This means that at least one of the following inequalities holds:

1) αi 6 βs ⊗ βi−s 6

⌊ i
2⌋⊕

r=1

βr ⊗ βi−r

2) αi < αs ⊗ αi−s 6

⌊ i
2⌋⊕

r=2

αr ⊗ αi−r

3) αi < βs ⊗ αi−s ⊕ αs ⊗ βi−s 6
i−1⊕

r=2

αr ⊗ βi−r .

In the last two max-algebraic sums we can start from r = 2 because α1 = ε.

Property 2.12 gives necessary conditions for the coefficients of an Smax polynomial such that
it is the characteristic polynomial of a positive matrix.

3 Necessary and sufficient conditions for a polynomial to be

the characteristic polynomial of a positive matrix

We now give some necessary and sufficient conditions for the coefficients of the characteristic
equation of a positive matrix. These conditions will play an important role when one wants
to determine the minimal order of a SISO system in the max algebra, as will be shown in
section 4.
We shall prove that the conditions are sufficient by giving for each set of conditions a matrix
the characteristic equation of which will satisfy the conditions.
So if we have a monic polynomial in Smax the results of this section will allow us to

1. check whether the given polynomial can be the characteristic polynomial of a positive
matrix and

2. construct a matrix such that its characteristic polynomial is equal to the given polyno-
mial.

10



For the lower dimensional cases we can give an analytic description of the matrix we are
looking for. For higher dimensional cases we shall first state a conjecture and then develop a
heuristic algorithm that will (in most cases) find a solution.
In this section we shall encounter matrices with the following structure:

A =













κ0,1 κ0,2 κ0,3 . . . κ0,n−1 κ0,n
0 κ1,2 κ1,3 . . . κ1,n−1 κ1,n
ε 0 κ2,3 . . . κ2,n−1 κ2,n
...

...
...

. . .
...

...
ε ε ε . . . κn−2,n−1 κn−2,n

ε ε ε . . . 0 κn−1,n













The coefficients of the characteristic equation of A (without simplification of ⊖) are given by:

a+k =
⊕

φ∈Cp
n , p even

⊕

∑p

r=1
(jr−ir)=k , ir<jr6ir+1

κi1,j1 ⊗ κi2,j2 ⊗ . . .⊗ κip,jp (5)

a−k =
⊕

φ∈Cp
n , p odd

⊕

∑p

r=1
(jr−ir)=k , ir<jr6ir+1

κi1,j1 ⊗ κi2,j2 ⊗ . . .⊗ κip,jp (6)

where φ = {i1, i2, . . . , ip} .

Proof : We know that ak = (⊖0)⊗
k
⊗ Ek(A) with

Ek(A) =
⊕

φ∈Ck
n

detA([i1, i2, . . . , ik], [i1, i2, . . . , ik])

and by reordering if necessary: i1 < i2 < . . . < ik.
Now let B(i1, i2, . . . , ik) = A([i1, i2, . . . , ik], [i1, i2, . . . , ik])

=











κi1−1,i1 κi1−1,i2 κi1−1,i3 . . . κi1−1,ik

γi2,i1 κi2−1,i2 κi2−1,i3 . . . κi2−1,ik

ε γi3,i2 κi3−1,i3 . . . κi3−1,ik
...

...
...

. . .
...

ε ε ε . . . κik−1,ik











with
{

γir+1,ir = 0 if ir+1 = ir + 1 ,
= ε if ir+1 6= ir + 1 .

We shall prove by induction that

detB(i1, i2, . . . , iK) =

(⊖0)⊗
K

⊗






⊕

φ∈Cp
n , p even

⊕

∑p

r=1
(jr−ir)=K , ir<jr6ir+1

κi1,j1 ⊗ . . .⊗ κip,jp ⊖

⊕

φ∈Cp
n , p odd

⊕

∑p

r=1
(jr−ir)=K , ir<jr6ir+1

κi1,j1 ⊗ . . .⊗ κip,jp




 . (7)

11



Note that K the number of columns of B(i1, i2, . . . , iK).

K = 1

detB(i1) = det[κi1−1,i1 ] = κi1−1,i1 with i1 − (i1 − 1) = 1 = K and i1 − 1 < i1 so equation (7)
is satisfied.

K = k

Suppose that equation (7) holds for K = 1, 2, . . . k − 1.
By developing the determinant to the first column we get

detB(i1, i2, . . . , ik) = κi1−1,i1 ⊗ detB(i2, . . . , ik) ⊖

γi2,i1 ⊗ {κi1−1,i2 ⊗ detB(i3, . . . , ik) ⊖

γi3,i2 ⊗ [κi1−1,i3 ⊗ detB(i4, . . . , ik) ⊖ . . .]}

= κi1−1,i1 ⊗ detB(i2, . . . , ik)

⊖ γi2,i1 ⊗ κi1−1,i2 ⊗ detB(i3, . . . , ik)

⊕ γi3,i2 ⊗ γi2,i1 ⊗ κi1−1,i3 ⊗ detB(i4, . . . , ik) ⊕ . . . ⊕

(⊖0)⊗
k−2

⊗ γik−1,ik−2
⊗ . . .⊗ γi2,i1 ⊗ κi1−1,ik−1

⊗ detB(ik)

(⊖0)⊗
k−1

⊗ γik,ik−1
⊗ . . .⊗ γi2,i1 ⊗ κi1−1,ik .

Consider the l-th term

(⊖0)⊗
l−1

⊗ γik−1,ik−2
⊗ . . .⊗ γi2,i1 ⊗ κi1−1,il ⊗ detB(il+1, . . . , ik) .

We have that K = k − (l + 1) + 1 = k − l for B(il+1, . . . , ik) so

detB(il+1, . . . , ik) =

(⊖0)⊗
k−l

⊗






⊕

φ∈Cp
n , p even

⊕

∑p

r=1
(jr−ir)=k−l , ir<jr6ir+1

κi1,j1 ⊗ . . .⊗ κip,jp ⊖

⊕

φ∈Cp
n , p odd

⊕

∑p

r=1
(jr−ir)=k−l , ir<jr6ir+1

κi1,j1 ⊗ . . .⊗ κip,jp




 .

Now γik−1,ik−2
⊗ . . .⊗ γi2,i1 = 0 if il = il−1 + 1

...
i3 = i2 + 1
i2 = i1 + 1







or il = i1 + l − 1 ,

= ε otherwise .

So if il = i1 + l − 1 the l-th term becomes

(⊖0)⊗
l−1

⊗ κi1−1,i1+l−1 ⊗ (⊖0)⊗
k−l

⊗





⊕

p even

⊕

∑
(jr−ir)=k−l

p
⊗

r=1

κir ,jr ⊖
⊕

p odd

⊕

∑
(jr−ir)=k−l

p
⊗

r=1

κir,jr





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or

(⊖0)⊗
k−1

⊗






⊕

p odd

⊕

∑
(jr−ir)=k

p
⊗

r=1

κir ,jr ⊖
⊕

p even

⊕

∑
(jr−ir)=k

p
⊗

r=1

κir ,jr




 .

So we finally find that

ak = (⊖0)⊗
k ⊕

i1<...<ik

detB(i1, . . . , ik)

=
⊕

p even

⊕

∑
(jr−ir)=k

p
⊗

r=1

κir,jr ⊖
⊕

p odd

⊕

∑
(jr−ir)=k

p
⊗

r=1

κir,jr .

Extracting the positive and the negative parts leads to equations (5) and (6).

In the next subsections we shall case by case determine necessary and sufficient conditions
for

λ⊗
n

⊕
n⊕

i=1

αi ⊗ λ⊗
n−i

∇
n⊕

j=1

βj ⊗ λ⊗
n−j

(8)

to be the characteristic equation of a positive matrix and indicate how such a matrix can be
found. In all cases we have α1 = ε as a necessary condition.

We also define κi,j =
αj

βi
if βi 6= ε ,

= ε if βi = ε .

3.1 The 1× 1 case

The only necessary and also sufficient condition is α1 = ε.
The matrix [β1] has λ ∇ β1 as its characteristic equation.

3.2 The 2× 2 case

The necessary and also sufficient conditions are
{

α1 = ε
α2 6 β1 ⊗ β1 .

The matrix

[

β1 β2
0 κ1,2

]

has λ⊗
2
⊕ α2 ∇ β1 ⊗ λ ⊕ β2 as its characteristic equation.

Proof :
From property 2.10 we know that α2 6 β1 ⊗ β1. This means that if β1 = ε then also α2 = ε.

First we prove that β1 ⊗ κ1,2 = α2 :

β1 ⊗ κ1,2 = β1 ⊗
α2

β1
= α2 if β1 6= ε ,

= ε⊗ ε = ε if β1 = ε and thus also α2 = ε .

We always have that κ1,2 6 β1 because

13



κ1,2 =
α2

β1
6 β1 if β1 6= ε ,

= ε 6 β1 if β1 = ε .

Using formulas (5) and (6) we find

a1 = ⊖β1 ⊖ κ1,2

= ⊖β1

a2 = β1 ⊗ κ1,2 ⊖ β2

= α2 ⊖ β2 .

3.3 The 3× 3 case

The necessary and also sufficient conditions are






α1 = ε

α2 6 β1 ⊗ β1

α3 6 β1 ⊗ β2 or α3 < β1 ⊗ α2 .

The matrix






β1 β2 β3
0 κ1,2 κ1,3
ε 0 ε




 has λ⊗

3
⊕ α2 ⊗ λ ⊕ α3 ∇ β1 ⊗ λ⊗

2
⊕ β2 ⊗ λ ⊕ β3 as its

characteristic equation.

Proof :
We already know that κ1,2 6 β1 and that β1 ⊗ κ1,2 = α2. Analogously we can prove that
β1 ⊗ κ1,3 = α3 since if β1 = ε we also have α3 = ε .

Now we prove that κ1,3 6 β2 if β2 > α2 and that κ3,1 < α3 if β2 < α2 :

If β2 > α2 the necessary condition for α3 becomes α3 6 β2 ⊗ β1. So

κ1,3 =
α3

β1
6 β2 if β1 6= ε ,

= ε 6 β2 if β1 = ε .

If β2 < α2 we have that α3 < α2 ⊗ β1 so β1 6= ε and

κ1,3 =
α3

β1
< α2 .

So we always have that α2 ⊖ β2 ⊖ κ1,3 = α2 ⊖ β2.

We find

a1 = ⊖β1 ⊖ κ1,2

= ⊖β1

a2 = β1 ⊗ κ1,2 ⊖ β2 ⊖ κ1,3

= α2 ⊖ β2

a3 = β1 ⊗ κ1,3 ⊖ β3

= α3 ⊖ β3 .

3.4 The 4× 4 case

First we distinguish three possible cases:
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Case A: α4 6 β1 ⊗ β3 or α4 < β1 ⊗ α3

Case B: α4 > β1 ⊗ β3 and α4 > β1 ⊗ α3 and α4 6 β2 ⊗ β2 and

( β1 = ε or α2 = ε or β4 = α4 )

Case C: α4 > β1 ⊗ β3 and α4 > β1 ⊗ α3 and α4 6 β2 ⊗ β2 and

α2 = β2 6= ε and β4 = ε .

If the coefficients don’t fall into (exactly) one of these three cases, they cannot correspond to
a positive matrix.

The necessary and sufficient conditions are:






α1 = ε

α2 6 β1 ⊗ β1

α3 6 β1 ⊗ β2 or α3 < β1 ⊗ α2

for Case A: no extra conditions
for Case B: β1 ⊗ α4 6 β2 ⊗ α3 or β1 ⊗ α4 < β2 ⊗ β3
for Case C: β1 ⊗ α3 = β2 ⊗ α2 and β1 ⊗ α4 = β2 ⊗ α3 .

3.4.1 Extra conditions

First we derive some extra conditions that automatically follow from the necessary and suffi-
cient conditions.

Property 3.1 In Case B and Case C we have

1) α4 6= ε
2) β2 6= ε
3) α2 6 β2
4) β1 ⊗ β1 6 β2 .

Proof : The condition α4 > β1 ⊗ β3 can only be fulfilled if α4 6= ε .

Since α4 6 β2 ⊗ β2 we then have that β2 6= ε or equivalently α2 6 β2 .

Assume that β2 < β1 ⊗ β1. This means that β1 6= ε.
If we use this in the first necessary and sufficient condition for Case B we get β1⊗α4 6 β2⊗α3 <
β1 ⊗ β1 ⊗ α3 or α4 < β1 ⊗ α3 . But this is in contradiction with the fact that α4 > β1 ⊗ α3

in Case B. The second necessary and sufficient condition would lead to α4 < β1 ⊗ β3 whereas
α4 > β1 ⊗ β3 in Case B.
The necessary and sufficient conditions for Case C would also lead to α4 < β1 ⊗ β3, which is
impossible since α4 > β1 ⊗ α3 in Case C.
So clearly our initial assumption was false and therefore we conclude that β1 ⊗ β1 6 β2 .

Property 3.2 In Case C we have

1) β1 6= ε
2) α2 = β2 = β1 ⊗ β1

3) α3 = β1 ⊗ β2 = (β1)
⊗
3

4) β3 = ε

5) α4 = β2 ⊗ β2 = β1 ⊗ α3 = (β1)
⊗
4
.
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Proof : We know that α2 6 β1 ⊗ β1. Since α2 6= ε we should have that β1 6= ε .
From property 3.1 we know that β1 ⊗ β1 6 β2. So α2 6 β1 ⊗ β1 6 β2. Since α2 = β2 this
leads to α2 = β2 = β1 ⊗ β1 .

The condition β1⊗α3 = β2⊗α2 then results in α3 = β1⊗α2 = β1⊗β2 = β1⊗β1⊗β1 = (β1)
⊗
3
.

The condition β1 ⊗ α4 = β2 ⊗ α3 leads to α4 = β1 ⊗ α3 = β1 ⊗ (β1)
⊗
3
= (β1)

⊗
4
= β2 ⊗ β2 .

Since α4 = α3 ⊗ β1 and α4 > β3 ⊗ β1 we have α3 > β3 or equivalently β3 = ε .

3.4.2 Necessary conditions

Now we prove that the conditions for Case B and Case C are necessary.

Remark : The following properties are also valid for the coefficients of an arbitrary n × n
matrix with n > 4.

We shall need some expressions that can be derived from formulas (1) – (4) :

a−1 =
⊕

ρ∈C1
n

ai1i1 (9)

a+2 =
⊕

ϕ∈C2
n

aj1j1 ⊗ aj2j2 (10)

a−2 =
⊕

ϕ∈C2
n

aj1j2 ⊗ aj2j1 (11)

a+3 =
⊕

χ∈C3
n

ak1k1 ⊗ ak2k3 ⊗ ak3k2 (12)

a−3 =
⊕

χ∈C3
n

ak1k1 ⊗ ak2k2 ⊗ ak3k3 ⊕
⊕

χ∈C3
n

ak1k2 ⊗ ak2k3 ⊗ ak3k1 (13)

a+4 =
⊕

ψ∈C4
n

al1l1 ⊗ al2l2 ⊗ al3l3 ⊗ al4l4 ⊕
⊕

ψ∈C4
n

al1l1 ⊗ al2l3 ⊗ al3l4 ⊗ al4l2 (14)

⊕
⊕

ψ∈C4
n

al1l2 ⊗ al2l1 ⊗ al3l4 ⊗ al4l3

a−4 =
⊕

ψ∈C4
n

al1l1 ⊗ al2l2 ⊗ al3l4 ⊗ al4l3 ⊕
⊕

ψ∈C4
n

al1l2 ⊗ al2l3 ⊗ al3l4 ⊗ al4l1 (15)

with ρ = {i1}
ϕ = {j1, j2}
χ = {k1, k2, k3}
ψ = {l1, l2, l3, l4} .

Property 3.3 If α4 > β1 ⊗ β3 and α4 > β1 ⊗ α3 then

1) α4 6= ε

2) α4 =
⊕

ψ∈C4
n

al1l2 ⊗ al2l1 ⊗ al3l4 ⊗ al4l3 with ψ = {l1, l2, l3, l4}
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3) β1 ⊗ β1 6 β2

4) α2 6 β2

5) α4 6 β2 ⊗ β2 .

Proof : α4 > β1 ⊗ β3 is only possible if α4 6= ε and thus α4 = a+4 . From formula (14) we
know that

α4 = t1 ⊕ t2 ⊕ t3

with t1 =
⊕

ψ∈C4
n

al1l1 ⊗ al2l2 ⊗ al3l3 ⊗ al4l4

t2 =
⊕

ψ∈C4
n

al1l1 ⊗ al2l3 ⊗ al3l4 ⊗ al4l2

t3 =
⊕

ψ∈C4
n

al1l2 ⊗ al2l1 ⊗ al3l4 ⊗ al4l3 .

We know that β1 = a−1 . If a+3 > a−3 then we have α3 > a−3 and if a+3 6 a−3 then we have
β3 = a−3 . So α4 > β1 ⊗ β3 and α4 > β1 ⊗ α3 means that α4 > a−1 ⊗ a−3 .
Using formulas (9) and (13) we find that

a−1 ⊗ a−3 = t4 ⊕ t5

with t4 =
⊕

ρ∈C1
n,χ∈C

3
n

ai1i1 ⊗ ak1k1 ⊗ ak2k2 ⊗ ak3k3

t5 =
⊕

ρ∈C1
n,χ∈C

3
n

ai1i1 ⊗ ak1k2 ⊗ ak2k3 ⊗ ak3k1 .

If we compare t1 and t4 we see that t4 contains more terms than t1 so we have that t1 6 t4.
Analogously we find t2 6 t5. Combining these inequalities leads to

t1 ⊕ t2 6 t4 ⊕ t5 . (16)

But we know that α4 > a−1 ⊗a−3 or equivalently t1 ⊕ t2 ⊕ t3 > t4 ⊕ t5. Because of equation
(16) we necessarily have that t1 < t3 and t2 < t3 and thus

α4 = t3

=
⊕

ψ∈C4
n

al1l2 ⊗ al2l1 ⊗ al3l4 ⊗ al4l3 . (17)

Suppose that the maximum of t3 is reached for ψ = {δ1, δ2, δ3, δ4} and that aδ1δ2 ⊗ aδ2δ1 >

aδ3δ4 ⊗ aδ4δ3 . We know that t4 < α4. First take k2 = δ3 and k3 = δ4. Then we know that
k1 6= δ3 and k1 6= δ4. The inequality t4 < α4 then reduces to

⊕

i1;k1 6=δ3,k1 6=δ4

ai1i1 ⊗ ak1k1 ⊗ aδ3δ4 ⊗ aδ4δ3 6 aδ1δ2 ⊗ aδ2δ1 ⊗ aδ3δ4 ⊗ aδ4δ3

or

⊕

i1;k1 6=δ3,k1 6=δ4

ai1i1 ⊗ ak1k1 6 aδ1δ2 ⊗ aδ2δ1 6 a−2
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because a−2 =
⊕

j1 6=j2

aj1j2 ⊗ aj2j1 .

Analogously we find that
⊕

i1;k1 6=δ1,k1 6=δ2

ai1i1 ⊗ ak1k1 6 a−2

if we take k2 = δ1 and k3 = δ2.

Combining the last two inequalities yields
⊕

i1,k1

ai1i1 ⊗ ak1k1 6 a−2 .

This leads to

β1 ⊗ β1 = a−1 ⊗ a−1 =
⊕

p1,q1

ap1p1 ⊗ aq1q1 6 a−2 .

From property 2.10 we know that a+2 6 a−1 ⊗ a−1 , so we have a+2 6 a−2 or a−2 = β2 and thus
β1 ⊗ β1 6 β2 .

a+2 6 a−2 also leads to α2 6 β2 .

We already know that α4 > a−1 ⊗ a−3 so according to property 2.10 we should have that
α4 = a−4 6 a−2 ⊗ a−2 = β2 ⊗ β2.

Now we prove that the conditions for Case B are necessary:

Property 3.4 If α4 > β1⊗β3 and α4 > β1⊗α3 then at least one of the following statements
is true :

1) β1 ⊗ α4 6 β2 ⊗ α3

2) β1 ⊗ α4 < β2 ⊗ β3 .

Proof : Using equation (17) and the fact that α4 = a+4 if α4 > β1 ⊗ β3, we find

a−1 ⊗ a+4 =
⊕

ρ∈C1
n ,ψ∈C

4
n

ai1i1 ⊗ al1l2 ⊗ al2l1 ⊗ al3l4 ⊗ al4l3 .

Combining formulas (11) and (12) leads to

a−2 ⊗ a+3 =
⊕

ϕ∈C2
n ,χ∈C

3
n

aj1j2 ⊗ aj2j1 ⊗ ak1k1 ⊗ ak2k3 ⊗ ak3k2 .

Take an arbitrary term ai1i1 ⊗ al1l2 ⊗ al2l1 ⊗ al3l4 ⊗ al4l3 of a−1 ⊗ a+4 .
If i1 = l1 or if i1 = l2 we know that i1 6= l3 and i1 6= l4 and then we see that the term
ai1i1 ⊗al1l2 ⊗al2l1 ⊗al3l4 ⊗al4l3 corresponds to the term of a−2 ⊗a+3 with j1 = l1 , j2 = l2 , k1 =
i1 , k2 = l3 and k3 = l4.
Otherwise we have that i1 6= l1 and that i1 6= l2 and then we can take the term of a−2 ⊗ a+3
with j1 = l3 , j2 = l4 , k1 = i1 , k2 = l1 and k3 = l2.
So we have demonstrated that each term of a−1 ⊗ a+4 also appears in a−2 ⊗ a+3 and thus that
a−1 ⊗ a+4 6 a−2 ⊗ a+3 .
We have that β1 = a−1 . From property 3.3 we know that a+4 = α4 and that a−2 = β2 .
If a+3 > a−3 we have α3 = a+3 and thus β1 ⊗ α4 6 β2 ⊗ α3 .
On the other hand if a+3 < a−3 we have β3 > a+3 and this would lead to β1 ⊗ α4 < β2 ⊗ β3 .

18



The conditions for Case C are also necessary:

Property 3.5 If α4 > β1 ⊗ β3 and α4 > β1 ⊗ α3 and α2 = β2 6= ε and β4 = ε then

1) β1 ⊗ α3 = β2 ⊗ α2

2) β1 ⊗ α4 = β2 ⊗ α3 .

Proof : First we prove that under the conditions α4 > β1 ⊗ β3 and α4 > β1 ⊗ α3 and
α2 = β2 we should have that a+4 6 a+3 ⊗ a−1 .
We know that

a+2 =
⊕

ϕ∈C2
n

aj1j1 ⊗ aj2j2 .

Suppose that the maximum of a+2 is reached for ϕ = {γ1, γ2}. Because α2 = β2 we have that

a+2 = a−2 =
⊕

ϕ∈C2
n

aj1j2 ⊗ aj2j1

and thus

aj1j2 ⊗ aj2j1 6 aγ1γ1 ⊗ aγ2γ2 , ∀j1, j2 ∈ {1, . . . , n} .

We already know that

a+4 =
⊕

ψ∈C4
n

al1l2 ⊗ al2l1 ⊗ al3l4 ⊗ al4l3 .

Formulas (9) and (12) result in

a−1 ⊗ a+3 =
⊕

ρ∈C1
n ,χ∈C

3
n

ai1i1 ⊗ ak1k1 ⊗ ak2k3 ⊗ ak3k2 .

Take an arbitrary term al1l2 ⊗ al2l1 ⊗ al3l4 ⊗ al4l3 of a+4 .
If γ2 = l1 or γ2 = l2 we know that γ2 6= l3 and γ2 6= l3 and then we see that al1l2 ⊗ al2l1 ⊗
al3l4 ⊗ al4l3 is less than or equal to the term of a−1 ⊗ a+3 with i1 = γ1 , k1 = γ2 , k2 = l3 and
k3 = l4 .
Otherwise we have that γ2 6= l1 and γ2 6= l2 and then we take the term with i1 = γ1 , k1 =
γ2 , k2 = l1 and k3 = l2 .
So we have demonstrated that each term of a+4 also appears in a−1 ⊗ a+3 and thus that

a+4 6 a−1 ⊗ a+3 . (18)

From property 3.3 we know that a+4 = α4.
If a+3 < a−3 we have β3 > a+3 . Then we get a+4 = α4 > β1⊗β3 > a−1 ⊗a+3 but this is impossible
because of equation (18). So we have to conclude that we always have that a+3 > a−3 . So

α3 = a+3

and thus α4 6 β1 ⊗ α3. If we combine this with the condition α4 > β1 ⊗ α3 we find

α4 = β1 ⊗ α3 .
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Because α2 = β2 6= ε we have α2 = a+2 = a−2 = β2 . In general we have that α2 6 β1 ⊗ β1 but
from property 3.3 we know that β1 ⊗ β1 6 β2 = α2 . This leads to

β1 ⊗ β1 = α2 = β2 .

So β1 ⊗ α4 = β1 ⊗ β1 ⊗ α3 = β2 ⊗ α3 .
If β4 = ε then a−4 < a+4 because we already know that α4 6= ε. Assume that the maximum in
equation (17) is reached for ψ = {δ1, δ2, δ3, δ4}. Since α4 6= ε we have that aδ1δ2 ⊗ aδ2δ1 6= ε
and that aδ3δ4 ⊗ aδ4δ3 6= ε.
Formula (15) then leads to

a−4 =
⊕

ψ∈C4
n

al1l1 ⊗ al2l2 ⊗ al3l4 ⊗ al4l3 < aδ1δ2 ⊗ aδ2δ1 ⊗ aδ3δ4 ⊗ aδ4δ3 .

Considering the terms with l3 = δ3 and l4 = δ4 leads to
⊕

l1 6=l2 ,l1,l2 6∈{δ1,δ2}

al1l1 ⊗ al2l2 ⊗ aδ3δ4 ⊗ aδ4δ3 < aδ1δ2 ⊗ aδ2δ1 ⊗ aδ3δ4 ⊗ aδ4δ3

and since aδ3δ4 ⊗ aδ4δ3 6= ε we then have that

⊕

l1 6=l2 ,l1,l2 6∈{δ1,δ2}

al1l1 ⊗ al2l2 < aδ1δ2 ⊗ aδ2δ1 6 a−2 = a+2 .

Using an analogous reasoning with l3 = δ1 and l4 = δ2 we find
⊕

l1 6=l2 ,l1,l2 6∈{δ3,δ4}

al1l1 ⊗ al2l2 < a+2

and combining this with the previous result and formula (10) we get

a+2 = aδ1δ1 ⊗ aδ3δ3 ⊕ aδ1δ1 ⊗ aδ4δ4 ⊕ aδ2δ2 ⊗ aδ3δ3 ⊕ aδ2δ2 ⊗ aδ4δ4

because all other terms of the form aj1j1 ⊗ aj2j2 are less than a+2 . Since we haven’t put
any restrictions or conditions on the indices, we may assume without loss of generality that
α2 = a+2 = aδ1δ1 ⊗ aδ3δ3 . We already know that α2 = β1 ⊗ β1 . So we conclude that

β1 = aδ1δ1 = aδ3δ3 .

Because aδ1δ2 ⊗ aδ2δ1 6 a+2 = aδ1δ1 ⊗ aδ3δ3 we have

α4 = aδ1δ2 ⊗ aδ2δ1 ⊗ aδ3δ4 ⊗ aδ4δ3 6 aδ3δ3 ⊗ aδ1δ1 ⊗ aδ3δ4 ⊗ aδ4δ3 6 a−1 ⊗ a+3 = β1 ⊗ α3 .

But since we know that α4 = β1 ⊗ α3 the inequalities in the previous expression should be
equalities. This leads to

aδ1δ2 ⊗ aδ2δ1 = aδ3δ3 ⊗ aδ1δ1 = β1 ⊗ β1 = β2 .

Analogously we also find that

β2 = aδ3δ4 ⊗ aδ4δ3

and thus

α4 = β2 ⊗ β2 .

Then we get

β1 ⊗ α3 = α4 = β2 ⊗ β2 = α2 ⊗ β2 .
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Finally we have to demonstrate that we have considered all possible cases:

Property 3.6 The coefficients of the characteristic equation of a positive n by n matrix with
n > 4 always fall into exactly one of the following cases:

Case A: α4 6 β1 ⊗ β3 or α4 < β1 ⊗ α3

Case B: α4 > β1 ⊗ β3 and α4 > β1 ⊗ α3 and α4 6 β2 ⊗ β2 and

( β1 = ε or α2 = ε or β4 = α4 )

Case C: α4 > β1 ⊗ β3 and α4 > β1 ⊗ α3 and α4 6 β2 ⊗ β2 and

α2 = β2 6= ε and β4 = ε .

Proof : According to property 2.12 we have that

Case 1 : α4 6 β1 ⊗ β3 or

Case 2 : α4 < β1 ⊗ α3 or

Case 3 : α4 6 β2 ⊗ β2 or

Case 4 : α4 < α2 ⊗ α2 .

From property 3.3 we know that if we are neither in Case 1 nor in Case 2 then we are in Case
3. So it is not necessary to consider Case 4.
Case 1 and Case 2 correspond to Case A.
From now on we assume that Case 1 and Case 2 are not true if we are in Case 3. Then we
know from property 3.1 that α4 6= ε so we have that either β4 = α4 or β4 = ε.
If we have β1 = ε or α2 = ε or β4 = α4, then we are in Case B.
Otherwise we know that β1 6= ε, β4 = ε and α2 6= ε. Because of property 3.1 we have that
β2 6= ε. This means that α2 = β2 and thus we have Case C.
So we have indeed considered all possible cases and since the three cases are mutually exclusive
for the coefficients of a positive matrix, we always have exactly one of the three cases.

Property 3.6 can be considered as an extra general necessary condition for an n-th degree
polynomial (n > 4) to be the characteristic polynomial of a positive matrix.

3.4.3 Sufficient conditions

Now we demonstrate that the conditions are also sufficient.

If we search a matrix such that its characteristic equation is λ⊗
3

⊕ α2 ⊗ λ ⊕ α3 ∇ β1 ⊗

λ⊗
2
⊕ β2 ⊗ λ ⊕ β3 we find

for Case A:








β1 β2 β3 β4
0 κ1,2 κ1,3 κ1,4
ε 0 ε ε
ε ε 0 ε







, for Case B:








β1 β2 β3 β4
0 κ1,2 κ1,3 ε
ε 0 ε κ2,4
ε ε 0 ε








and
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for Case C:








β1 β2 ε ε
0 ε ε ε
ε 0 κ2,3 κ2,4
ε ε 0 ε







.

Proof for Case A :

From the 2× 2 and the 3× 3 case we already know that

κ1,2 6 β1

κ1,3 6 β2 or κ1,3 < α2

β1 ⊗ κ1,2 = α2

β1 ⊗ κ1,3 = α3 .

Using the same reasoning we find for Case A:

κ1,4 6 β3 or κ1,4 < α3

β1 ⊗ κ1,4 = α4 .

This leads to

a1 = ⊖β1 ⊖ κ1,2

= ⊖β1

a2 = β1 ⊗ κ1,2 ⊖ β2 ⊖ κ1,3

= α2 ⊖ β2

a3 = β1 ⊗ κ1,3 ⊖ β3 ⊖ κ1,4

= α3 ⊖ β3

a4 = β1 ⊗ κ1,4 ⊖ β4

= α4 ⊖ β4 .

Proof for Case B :

Because α4 6 β2 ⊗ β2 we have that κ2,4 6 β2.

Now we use the necessary and sufficient conditions for Case B to prove that β1 ⊗ κ2,4 6 α3 if
α3 > β3 and that β1 ⊗ κ2,4 < β3 if α3 < β3 :

If α3 > β3 and one of the necessary conditions is fulfilled we have that β2 ⊗ α3 > β1 ⊗ α4.

From property 3.1 we know that β2 6= ε. This leads to α3 > β1 ⊗
α4

β2
= β1 ⊗ κ2,4.

If α3 < β3 the necessary conditions result in β2⊗β3 > β1⊗α4 and this leads to β3 > β1⊗κ4,2.

So we always have that α3 ⊕ β1 ⊗ κ2,4 ⊖ β3 = α3 ⊖ β3.

Now we prove that under the conditions of Case B we have that β1 ⊗ κ1,2 ⊗ κ2,4 6 β4 :

If β1 = ε or α2 = ε then β1 ⊗ κ1,2 ⊗ κ2,4 = ε 6 β4.

Otherwise we have α4 = β4 and α2 = β2. So β1⊗κ1,2⊗κ2,4 = β1⊗
α2

β1
⊗

α4

β2
= α4 = β4.
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We find

a1 = ⊖β1 ⊖ κ1,2

= ⊖β1

a2 = β1 ⊗ κ1,2 ⊖ β2 ⊖ κ1,3 ⊖ κ2,4

= α2 ⊖ β2

a3 = β1 ⊗ κ1,3 ⊕ β1 ⊗ κ2,4 ⊕ κ1,2 ⊗ κ2,4 ⊖ β3

= α3 ⊕ β1 ⊗ κ2,4 ⊖ β3 since κ1,2 6 β1

= α3 ⊖ β3

a4 = β2 ⊗ κ2,4 ⊖ β4 ⊖ β1 ⊗ κ1,2 ⊗ κ2,4

= α4 ⊖ β4 .

Proof for Case C :

We know that β2 6= ε and from property 3.2 we also know that β1 6= ε. If β1 ⊗ α3 = β2 ⊗ α2

then κ2,3 =
α3

β2
=

α2

β1
6 β1 and β1 ⊗ κ2,3 = β1 ⊗

α3

β2
= α2 . Because α4 6 β2 ⊗ β2 we

know that κ2,4 6 β2 . β3 = ε according to property 3.2. We also have that β2⊗κ2,3 = α3 and
that β2 ⊗ κ2,4 = α4.

Finally β1 ⊗ α4 = β2 ⊗ α3 leads to β1 ⊗ κ2,4 = β1 ⊗
α4

β2
= α3 .

We find

a1 = ⊖β1 ⊖ κ2,3

= ⊖β1

a2 = β1 ⊗ κ2,3 ⊖ β2 ⊖ κ2,4

= α2 ⊖ β2

a3 = β1 ⊗ κ2,4 ⊕ β2 ⊗ κ2,3

= α3

a4 = β2 ⊗ κ2,4

= α4 .

Example 3.7 Consider the monic polynomial λ⊗
4
⊖ 2⊗ λ⊗

3
⊖ 7⊗ λ⊗

2
⊕ 9⊗ λ ⊕ 15 .

We have that α4 = 15 > ε = 2⊗ ε = β1 ⊗ β3
α4 = 15 > 11 = 2⊗ 9 = β1 ⊗ α3

α4 = 15 > 14 = 7⊗ 7 = β2 ⊗ β2 .

Since the coefficients don’t belong to one of the three possible cases, the given polynomial
cannot be the characteristic polynomial of a positive matrix.

Example 3.8 Consider λ⊗
4
⊖ 3⊗ λ⊗

3
⊕ 6• ⊗ λ⊗

2
⊕ 6⊗ λ ⊕ 9• ∇ ε .

We have that α4 = 9 > ε = 3⊗ ε = β1 ⊗ β3
α4 = 9 > 9 = 3⊗ 6 = β1 ⊗ α3

α4 = 9 6 12 = 6⊗ 6 = β2 ⊗ β2
α4 = 9 = 9 = β4
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so we are in Case B. The necessary and sufficient conditions are fulfilled:
α1 = ε
α2 = 6 6 6 = 3⊗ 3 = β1 ⊗ β1
α3 = 6 6 9 = 3⊗ 6 = β1 ⊗ β2
β1 ⊗ α4 = 3⊗ 9 = 12 6 12 = 6⊗ 6 = β2 ⊗ α3 .

The matrix A =








3 6 ε 9
0 3 3 ε
ε 0 ε 3
ε ε 0 ε







has the given monic balance as its characteristic equation.

3.5 The general case

Here we have not yet found sufficient conditions, but we shall outline a heuristic algorithm
that will (in most cases) result in a positive matrix for which the characteristic polynomial
will be equal to a given polynomial.
Extrapolating the results of the previous subsections and supported by many examples we
state the following conjecture:

Conjecture 3.9 If λ⊗
n

⊕
n⊕

i=2

αi ⊗ λ⊗
n−i

∇ β1 ⊗ λ⊗
n−1

⊕
n⊕

j=2

βj ⊗ λ⊗
n−j

is the

characteristic equation of a matrix A ∈ R
n×n
max then it is also the characteristic equation of an

upper Hessenberg matrix of the form

K =











k0,1 k0,2 k0,3 . . . k0,n−1 k0,n
0 k1,2 k1,3 . . . k1,n−1 k1,n
ε 0 k2,3 . . . k2,n−1 k2,n
...

...
...

. . .
...

...
ε ε ε . . . 0 kn−1,n











.

We shall use this conjecture in our heuristic algorithm to construct a matrix for which the
characteristic polynomial will be equal to a given polynomial. However in [4] we have pre-
sented a method to construct such a matrix that works even if Conjecture 3.9 would not
be true. The major disadvantage of this method is its computational complexity. Therefore
we now present a heuristic algorithm that will on the average be much faster. If a result is
returned, it is right. But it could be possible that sometimes no result is returned although
there is a solution (in which case we have to fall back on the method of [4]).

A heuristic algorithm:

First we check whether the coefficients of the given polynomial satisfy the conditions of
Property 2.12. Then we reconstruct the a−p ’s by setting a−1 = β1 and a−p = max(αp − δ, βp)
for p = 2, 3, . . . , n with δ a small strictly positive real number.

Consider K1 =











a−1 a−2 a−3 . . . a−n
0 a−1 a−2 . . . a−n−1

ε 0 a−1 . . . a−n−2
...

...
...

. . .
...

ε ε ε . . . a−1











and K2 =











ε ε ε . . . ε
ε κ1,2 κ1,3 . . . κ1,n
ε ε κ2,3 . . . κ2,n
...

...
...

. . .
...

ε ε ε . . . κn−1,n










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where κi,j =
αj

a−i
if a−i 6= ε ,

= ε if a−i = ε .

We shall make a judicious choice out of the elements of K1 and K2 to compose a matrix for
which the characteristic equation will coincide with (8) :

We start with A =











a−1 a−2 a−3 . . . a−n
0 ε ε . . . ε
ε 0 ε . . . ε
...

...
...

. . .
...

ε ε ε . . . ε











. Now we shall column by column transfer non-

ε elements of K2 to A (one element per column) such that the coefficients of the characteristic
equation of A are less than or equal to those of (8). If this doesn’t lead to a valid result we
shift a−1 along its diagonal and repeat the procedure. We keep shifting a−1 until it reaches the
n-th column. If this still doesn’t yield a result we put a−1 back in the first column and repeat
the procedure but now with a−2 , and so on. Finally, if we have found A we remove redundant
entries: these are elements that can be removed without altering the characteristic equation.
The results of this section will now be used to determine a minimal state space realization of
a SISO discrete event system.

4 Minimal state space realization

4.1 Realization and minimal realization

Suppose that we have a single input single output (SISO) discrete event system that can be
described by an n-th order state space model

x[k + 1] = A⊗ x[k] ⊕ B ⊗ u[k] (19)

y[k] = C ⊗ x[k] (20)

with A ∈ R
n×n
max , B ∈ R

n×1
max and C ∈ R

1×n
max. u is the input, y is the output and x is the state

vector.
We define the unit impulse e as: e[k] = 0 if k = 0 ,

= ε otherwise .
If we apply a unit impulse to the system and if we assume that the initial state x[0] satisfies
x[0] = ε or A⊗ x[0] 6 B, we get the impulse response as the output of the system:

x[1] = B

x[2] = A⊗B
...

x[k] = A⊗
k−1

⊗B

⇒ y[k] = C ⊗A⊗
k−1

⊗B .

Let gk = C ⊗A⊗
k
⊗B. The gk’s are called the Markov parameters.

Let us now reverse the process: suppose that A, B and C are unknown, and that we only
know the Markov parameters (e.g. from experiments – where we assume that the system
is max-linear and time-invariant and that there is no noise present). How can we construct
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A, B and C from the gk’s? This process is called realization. If we make the dimension of A
minimal, we have a minimal realization. Although there have been some attempts to solve
this problem [2, 7, 9] , this problem has at present – to the authors’ knowledge – not been
solved entirely.

4.2 A lower bound for the minimal system order

In this section we shall use the following property:

Property 4.1 Consider A ∈ S
n×n
max , B ∈ S

n×1
max and C ∈ S

1×n
max. If A satisfies an equation of the

form
n⊕

p=0

ap ⊗A⊗
n−p

∇ ε

(e.g. its characteristic equation) then the Markov parameters satisfy

n⊕

p=0

ap ⊗ gk+n−p ∇ ε for k = 0 , 1, 2, . . . .

Proof : We know that
n⊕

p=0

ap ⊗A⊗
n−p

∇ ε . After left multiplication by C ⊗A⊗
k
and right

multiplication by B we get
n⊕

p=0

ap ⊗C ⊗A⊗
k+n−p

⊗B ∇ ε and since gk = C ⊗A⊗
k
⊗B we

finally get
n⊕

p=0

ap ⊗ gk+n−p ∇ ε .

Suppose that we have a system that can be described by equations (19) and (20), with
unknown system matrices. If we want to find a minimal realization of this system the first
question that has to be answered is that of the minimal system order.

Consider the semi-infinite Hankel matrix H =









g0 g1 g2 . . .
g1 g2 g3 . . .
g2 g3 g4 . . .
...

...
...

. . .









.

As a direct consequence of theorem 1.5 and property 4.1 we have that the columns of H
satisfy

n⊕

p=0

ap ⊗H(:, k + n− p) ∇ ε for k = 1, 2, . . . (21)

where the coefficients ap are the coefficients of the characteristic equation of the system matrix
A.
Now we shall reverse this reasoning: first we construct a p by q Hankel matrix

Hp,q =











g0 g1 g2 . . . gq−1

g1 g2 g3 . . . gq
g2 g3 g4 . . . gq+1
...

...
...

. . .
...

gp−1 gp gp+1 . . . gp+q−2










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with p and q large enough: p, q ≫ n, where n is the real (but unknown) system order. Then
we try to find n and a0, a1, . . . , an such that the columns of Hp,q satisfy an equation of the
form (21), which will lead to the characteristic equation of the unknown system matrix A.
We propose the following procedure:

First we look for the largest square submatrix of Hp.q with consecutive column indices:

Hsub,r = Hp,q([i1, i2, . . . , ir], [j + 1, j + 2, . . . , j + r])enspace,

the determinant of which is not balanced: detHsub,r ∇/ ε. If we add one row and the j+r+1-
st column we get an r + 1 by r + 1 matrix Hsub,r+1 that has a balanced determinant. So
according to theorem 1.3 the set of linear balances

Hsub,r+1 ⊗ a ∇ ε

has a signed solution a =
[

ar ar−1 . . . a0
]t
. We now search a solution a that corresponds

to the characteristic equation of a matrix with elements in Rmax (this should not necessarily
be a signed solution – a signed solution would correspond to the aOlsder

p ’s). First of all we
normalize a0 to 0 and then we check if the necessary (and sufficient) conditions of section 2
are satisfied. If they are not satisfied we augment r and repeat the procedure.
We continue until we get the following stable relation among the columns of Hp,q:

Hp,q(:, k + r) ⊕ a1 ⊗Hp,q(:, k + r − 1) ⊕ . . . ⊕ ar ⊗Hp,q(:, k) ∇ ε (22)

for k ∈ {1, . . . , q − r} . Since we assume that the system can be described by equations
(19) and (20) and that p, q ≫ n, we can always find such a stable relationship, by gradually
augmenting r. The r that results from this procedure is a lower bound for the minimal system
order.

4.3 Determination of the system matrices

In [4] we have described a method to find all solutions of a set of multivariate polynomial
(in)equalities in the max algebra. Now we can use this method to find the A,B and C matrices
of an r-th order SISO system with Markov parameters g0, g1, g2, . . . . If the algorithm doesn’t
find any solutions, this means that the output behavior can’t be described by an r-th order
SISO system. In that case we have to augment our estimate of the system order and repeat
the procedure. Since we assume that the system can be described by the state space model
(19) – (20) we shall always get a minimal realization.
However in many cases we can use the results of section 2 to find a minimal realization.
Starting from the coefficients a1, a2, . . . , ar of equation (22) we search a matrix A with elements
in Rmax such that its characteristic equation is

λ⊗
r
⊕

r⊕

p=1

ap ⊗ λ⊗
r−p

∇ ε . (23)

Once we have found the A matrix, we have to find a B and a C with elements in Rmax such
that

C ⊗A⊗
k
⊗B = gk for k = 0, 1, 2, . . . .
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In practice it seems that we only have to take the transient behavior and the first cycles of
the steady-state behavior into account. So we may limit ourselves to the first, say, N Markov
parameters.
Let’s take a closer look at equations of the form C⊗R⊗B = s with C ∈ R

1×n
max, R ∈ R

n×n
max , B ∈

R
n×1
max and s ∈ Rmax. This equation can be rewritten as

n⊕

i=1

n⊕

j=1

ci ⊗ rij ⊗ bi = s .

So if we take the first N Markov parameters into account, we get a set of N multivariate
polynomial equations in the max algebra, with the elements of B and C as unknowns and

R = A⊗
k−1

and s = gk−1 in the k-th equation. This problem can also be solved using the
algorithm described in [4].
However one has to be careful since it is not always possible to find a B and a C for every
matrix that has equation (23) as its characteristic equation as will be shown in example 5.2.
In that case we have to search another A matrix or we could fall back on the method described
in [3, 4], which finds all possible minimal realizations.
The reason that it is not always possible to find a B and C for A is that in Smax all triples
(A,B,C) that result in the same output behavior are connected by a kind of similarity
transformation. We have to pick a triple (Ã, B̃, C̃) that is completely in Rmax.

5 Examples

We now illustrate the procedure of the preceding section with a few examples.

Example 5.1

Here we reconsider the example of [2, 9]. We start from a system with system matrices

A =






1 −1 −2
−1 2 0
−3 1 2




 , B =






0
ε
ε




 and C =

[

0 ε ε
]

.

Now we are going to construct the system matrices from the impulse response of the system.
This impulse response is given by

{gk} = 0 , 1 , 2 , 3 , 4 , 5 , 6 , 8 , 10 , 12 , 14 , . . . .

First we construct the Hankel matrix

H8,8 =

















0 1 2 3 4 5 6 8
1 2 3 4 5 6 8 10
2 3 4 5 6 8 10 12
3 4 5 6 8 10 12 14
4 5 6 8 10 12 14 16
5 6 8 10 12 14 16 18
6 8 10 12 14 16 18 20
8 10 12 14 16 18 20 22

















.
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The determinant of Hsub,2 = H8,8([1, 7], [1, 2]) =

[

0 1
6 8

]

is not balanced. We add one row

and the third column and then we search a solution of the set of linear balances





0 1 2
1 2 3
6 8 10




⊗






a2
a1
a0




 ∇ ε .

The solution a0 = 0, a1 = ⊖2, a2 = 3 satisfies the necessary and sufficient conditions for the
2 by 2 case since α1 = ε and α2 = 3 6 4 = 2⊗ 2 = β1 ⊗ β1. This solution also corresponds
to a stable relation among the columns of H8,8:

H8,8(:, k + 2) ⊕ 3⊗H8,8(:, k) = 2⊗H8,8(:, k + 1) for k ∈ {1, 2, . . . , 6} ,

or to the following characteristic equation:

λ⊗
2
⊖ 2⊗ λ ⊕ 3 ∇ ε .

This leads to a second order system with A =

[

2 ε
0 1

]

. Using the technique of [4] we get a

whole set of solutions for B and C. One of the solutions is B =

[

−4
0

]

and C =
[

ε 0
]

.

Apart from a permutation of the two state variables this result is the same as that of [9].

We now give another example that doesn’t satisfy the assumptions of [9], where only impulse
responses with a uniformly up-terrace behavior are considered.

Example 5.2

We start from the system (A,B,C) with

A =






3 1 0
ε 3 2
0 5 ε




 , B =






0
1
2




 and C =

[

0 ε ε
]

.

The impulse response of this system is: 0 , 3 , 6 , 9 , 13 , 16 , 20 , 23 , 27 , . . . . Since there are two
different alternating increments in steady state (3 and 4), we can’t use the technique of [9].
First we construct the Hankel matrix

H8,8 =

















0 3 6 9 13 16 20 23
3 6 9 13 16 20 23 27
6 9 13 16 20 23 27 30
9 13 16 20 23 27 30 34
13 16 20 23 27 30 34 37
16 20 23 27 30 34 37 41
20 23 27 30 34 37 41 44
23 27 30 34 37 41 44 48

















.
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The determinant Hsub,3 = H8,8([1, 3, 4], [1, 2, 3]) =






0 3 6
6 9 13
9 13 16




 is not balanced.

The set of linear balances







0 3 6 9
3 6 9 13
6 9 13 16
9 13 16 20







⊗








a3
a2
a1
a0








∇ ε

has a solution a0 = 0, a1 = ⊖3, a2 = ⊖7, a3 = 10 that satisfies the necessary and sufficient
conditions of subsection 3.3 :







α1 = ε

α2 = ε 6 6 = 3⊗ 3 = β1 ⊗ β1
α3 = 10 6 10 = 3⊗ 7 = β1 ⊗ β2 .

This solution also corresponds to a stable relation among the columns of H8,8:

H8,8(:, k + 3) ⊕ 10⊗H8,8(:, k) = 3⊗H8,8(:, k + 2) ⊕ 7⊗H8,8(:, k + 1)

for k ∈ {1, 2, . . . , 5}, or to the following characteristic equation:

λ⊗
3
⊖ 3⊗ λ⊗

2
⊖ 7⊗ λ⊕ 10 ∇ ε .

This would lead to A1 =






3 7 ε
0 ε 7
ε 0 ε




 . But it is impossible to find positive vectors B1 and

C1 such that (A1, B1, C1) is a realization of the given impulse response.
However the 7 on the first row and in the second column of A1 is redundant, because if we

remove it, we get A2 =






3 ε ε
0 ε 7
ε 0 ε




 which has the same characteristic equation as A1, but

for A2 it is possible to find a corresponding B2 and C2: B2 =






0
−3
ε




 and C2 =

[

0 2 ε
]

.

6 Conclusions and future research

We have derived necessary and for some cases also sufficient conditions for an Smax polynomial
to be the characteristic polynomial of an Rmax matrix. Then we have indicated how such a
matrix can be constructed. The results were then applied to develop a procedure to find
a minimal state space realization of a SISO system, given its Markov parameters. This
procedure is an alternative to the method of [3], which finds all possible minimal realizations
but which has one disadvantage: its computational complexity. Since we allow an upper
Hessenberg form for the matrix A, our method incorporates both the companion form of [2]
and the bidiagonal form of [9].
In the future we shall expand our theory and fill the gaps that are still left: how many
Markov parameters are necessary to find the system matrices, how do we select a new matrix
A if the matrix that resulted from the heuristic algorithm didn’t lead to a realization of the
given impulse response, etc. . We shall also try to improve the performance of our heuristic
algorithm. Then we shall turn our attention to multiple input multiple output (MIMO)
discrete event systems.
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