
K.U.Leuven

Department of Electrical Engineering (ESAT) SISTA

Technical report 93-57a

The characteristic equation and minimal

state space realization of SISO systems in

the max algebra∗

B. De Schutter and B. De Moor

If you want to cite this report, please use the following reference instead:

B. De Schutter and B. De Moor, “The characteristic equation and minimal state space

realization of SISO systems in the max algebra,” in 11th International Conference

on Analysis and Optimization of Systems (Sophia-Antipolis, France, June 1994) (G.

Cohen and J.P. Quadrat, eds.), vol. 199 of Lecture Notes in Control and Information

Sciences, Springer, ISBN 3-540-19896-2, pp. 273–282, 1994.

ESAT-SISTA

K.U.Leuven

Leuven, Belgium

URL: https://www.esat.kuleuven.ac.be/stadius

∗This report can also be downloaded via https://pub.deschutter.info/abs/93_57a.html

https://www.esat.kuleuven.ac.be/stadius
https://pub.deschutter.info/abs/93_57a.html


The Characteristic Equation and Minimal State

Space Realization of SISO Systems in the Max

Algebra

Bart De Schutter and Bart De Moor

ESAT - Katholieke Universiteit Leuven, Kardinaal Mercierlaan 94, 3001 Leuven, Bel-
gium, email: bart.deschutter@esat.kuleuven.ac.be, bart.demoor@esat.kuleuven.ac.be .
Bart De Schutter is a research assistant and Bart De Moor is a research associate with
the N.F.W.O. (Belgian National Fund for Scientific Research).

1 Introduction

1.1 Overview

There exist many modeling and analysis frameworks for discrete event systems:
Petri nets, formal languages, generalized semi-Markov processes, perturbation
analysis and so on. In this paper we consider systems that can be modeled using
max algebra.

In the first part we study the characteristic equation of a matrix in the
max algebra (Rmax). We determine necessary and for some cases also sufficient
conditions for a polynomial to be the characteristic polynomial of a matrix with
elements in Rmax. Then we indicate how to construct a matrix such that its
characteristic polynomial is equal to a given monic polynomial in Smax, the
extension of Rmax.

In the second part of this paper we address the minimal state space real-
ization problem. Based on the results of the first part we propose a procedure
to find a minimal state space realization of a single input single output (SISO)
discrete event system in the max algebra, given its Markov parameters. Finally
we illustrate this procedure with an example.

1.2 Notations

One of the mathematical tools used in this paper is the max algebra. In this
introduction we only explain the notations we use to represent the max-algebraic
operations. A complete introduction to the max algebra can be found in [1].

In this paper we use the following notations: a⊕b = max(a, b) and a⊗b = a+b.
ǫ = −∞ is the neutral element for ⊕ in Rmax = R∪{ǫ},⊕,⊗. The inverse element

of a 6= ǫ for ⊗ in Rmax is denoted by a⊗
−1

. The division is defined as follows:
a

b
= a⊗ b⊗

−1
if b 6= ǫ . En is the n by n identity matrix in Rmax.

We also use the extension of the max algebra Smax that was introduced
in [1, 6]. Smax is a kind of symmetrization of Rmax. We shall restrict ourselves to



the most important features of Smax. For a more formal derivation the interested
reader is referred to [6].

There are three kinds of elements in Smax: the positive elements (S⊕max =
Rmax), the negative elements (S⊖max) and the balanced elements (S•max). The
positive and the negative elements are called signed (S∨max = S

⊕
max ∪ S

⊖
max). The

⊖ operation in Smax is defined as follows: a⊖ b = a if a > b ,
a⊖ b = ⊖b if a < b ,
a⊖ a = a• .

If a ∈ Smax then it can be written as a = a+ ⊖ a− where a+ is the positive
part of a and a− is the negative part of a. If a ∈ S

⊕
max then a+ = a and a− = ǫ,

if a ∈ S
⊖
max then a+ = ǫ and a− = ⊖a and if a ∈ S

•
max then a+ = a−.

In Smax we have to use balances ( ∇ ) instead of equalities. Loosely speaking
an ⊖ sign in a balance indicates that the element should be at the other side. If
both sides of a balance are signed we can replace the balance by an equality. So
x⊖ 4 ∇ 2 means x ∇ 2⊕ 4 and if x is signed we get x = 2⊕ 4 = 4 as a solution.

To select submatrices of a matrix we use the following notation: A([i1, . . . , ik],
[j1, . . . , jl]) is the matrix resulting from A by eliminating all rows except for rows
i1, . . . , ik and all columns except for columns j1, . . . , jl.

1.3 Some Definitions and Properties

Definition 1. (Determinant) Consider a matrix A ∈ S
n×n
max . The determinant

of A is defined as

detA =
⊕

σ∈Pn

sgn (σ)⊗

n
⊗

i=1

aiσ(i)

where Pn is the set of all permutations of {1, . . . , n} , and sgn (σ) = 0 if the
permutation σ is even and sgn (σ) = ⊖0 if the permutation is odd.

Theorem2. Let A ∈ S
n×n
max . The homogeneous linear balance A ⊗ x ∇ ǫ has a

non-trivial signed solution if and only if detA ∇ ǫ.

Proof. See [6]. The proof given there is constructive so it can be used to find a
solution. ⊓⊔

Definition 3. (Characteristic equation) The characteristic equation of a
matrix A ∈ S

n×n
max is defined as det(A⊖ λ⊗ En) ∇ ǫ .

This leads to

λ⊗
n

⊕
n

⊕

p=1

ap ⊗ λ⊗
n−p

∇ ǫ (1)

with

ap = (⊖0)
⊗
p

⊗
⊕

ϕ∈Cn
p

detA([i1, i2, . . . , ip], [i1, i2, . . . , ip]) (2)



where Cn
p is the set of all combinations of p numbers out of {1, . . . , n} and ϕ =

{i1, i2, . . . , ip}. Equation (1) will be called a monic balance, since the coefficient

of λ⊗
n
equals 0 (i.e. the identity element for ⊗).

In Smax every monic n-th order linear balance is the characteristic equation
of an n × n matrix. However, this is not the case in Rmax as will be shown in
the next section.

2 Necessary Conditions for a Polynomial to Be the

Characteristic Polynomial of a Positive Matrix

A positive matrix is a matrix the elements of which lie in Rmax. In this section we
state necessary conditions for the coefficients of the characteristic polynomial of
a positive matrix. These conditions will play an important role when one wants
to determine the minimal order of a SISO system in the max algebra.

From now on we assume that A ∈ R
n×n
max . If we define αp = a+p and βp = a−p

(αp, βp ∈ Rmax) and if we move all terms with negative coefficients to the right
hand side (1) becomes

λ⊗
n

⊕
n

⊕

i=2

αi ⊗ λ⊗
n−i

∇ β1 ⊗ λ⊗
n−1

⊕
n

⊕

j=2

βj ⊗ λ⊗
n−j

. (3)

There are three possible cases: αp = ǫ, βp = ǫ or αp = βp. We already have
omitted α1, since we always have that a1 ∈ S

⊖
max and thus α1 = a+1 = ǫ.

The most stringent property for αp and βp that was proven in [3] is:

Property 4. ∀i ∈ {2, . . . , n} at least one of the following statements is true :

αi ≤

⌊ i
2⌋

⊕

r=1

βr ⊗ βi−r or αi <

⌊ i
2⌋

⊕

r=2

αr ⊗ αi−r or αi <
i−1
⊕

r=2

αr ⊗ βi−r ,

where ⌊x⌋ stands for the largest integer number less than or equal to x.

This property gives necessary conditions for the coefficients of an Smax poly-
nomial to be the characteristic polynomial of a positive matrix. For more prop-
erties and extensive proofs the reader is referred to [3].

3 Necessary and Sufficient Conditions for a Polynomial to

Be the Characteristic Polynomial of a Positive Matrix

In the next subsections we determine case by case necessary and sufficient con-
ditions for (3) to be the characteristic equation of a positive matrix and indicate
how such a matrix can be found (see [3] for proofs). For the lower dimensional
cases we can give an analytic description of the matrix we are looking for. For
higher dimensional cases we shall first state a conjecture and then sketch a
heuristic algorithm that will (in most cases) find a solution.



In all cases we have α1 = ǫ as a necessary condition. We also define κi,j =
αj

βi

if βi 6= ǫ and κi,j = ǫ if βi = ǫ .

3.1 The 1 × 1 Case

There is no extra condition. The matrix [β1] has λ ∇ β1 as its characteristic
equation.

3.2 The 2 × 2 Case

The necessary and sufficient condition is: α2 ≤ β1 ⊗ β1 . The characteristic

equation of the matrix

[

β1 β2

0 κ1,2

]

is λ⊗
2
⊕ α2 ∇ β1 ⊗ λ ⊕ β2 .

3.3 The 3 × 3 Case

The necessary and sufficient conditions are
{

α2 ≤ β1 ⊗ β1

α3 ≤ β1 ⊗ β2 or α3 < β1 ⊗ α2 .

The corresponding matrix is





β1 β2 β3

0 κ1,2 κ1,3

ǫ 0 ǫ



 .

3.4 The 4 × 4 Case

First we distinguish three possible cases:

Case A: α4 ≤ β1 ⊗ β3 or α4 < β1 ⊗ α3

Case B: α4 > β1 ⊗ β3 and α4 ≥ β1 ⊗ α3 and α4 ≤ β2 ⊗ β2 and

( β1 = ǫ or α2 = ǫ or β4 = α4 )

Case C: α4 > β1 ⊗ β3 and α4 ≥ β1 ⊗ α3 and α4 ≤ β2 ⊗ β2 and

α2 = β2 6= ǫ and β4 = ǫ .

If the coefficients don’t fall into exactly one of these three cases, they cannot
correspond to a positive matrix.

The necessary and sufficient conditions are:






















α2 ≤ β1 ⊗ β1

α3 ≤ β1 ⊗ β2 or α3 < β1 ⊗ α2

for Case A: no extra conditions

for Case B: β1 ⊗ α4 ≤ β2 ⊗ α3 or β1 ⊗ α4 < β2 ⊗ β3

for Case C: β1 ⊗ α3 = β2 ⊗ α2 and β1 ⊗ α4 = β2 ⊗ α3 .



We find for Case A:









β1 β2 β3 β4

0 κ1,2 κ1,3 κ1,4

ǫ 0 ǫ ǫ
ǫ ǫ 0 ǫ









, for Case B:









β1 β2 β3 β4

0 κ1,2 κ1,3 ǫ
ǫ 0 ǫ κ2,4

ǫ ǫ 0 ǫ









and

for Case C:









β1 β2 ǫ ǫ
0 ǫ ǫ ǫ
ǫ 0 κ2,3 κ2,4

ǫ ǫ 0 ǫ









.

3.5 The General Case

Here we have not yet found sufficient conditions, but we shall outline a heuris-
tic algorithm that will in most cases result in a positive matrix for which the
characteristic polynomial will be equal to the given polynomial.

Extrapolating the results of the previous subsections and supported by many
examples we state the following conjecture:

Conjecture 5. If λ⊗
n
⊕

n
⊕

i=2

αi⊗λ⊗
n−i

∇ β1⊗λ⊗
n−1

⊕

n
⊕

j=2

βj⊗λ⊗
n−j

is the

characteristic equation of a matrix A ∈ R
n×n
max then it is also the characteristic

equation of an upper Hessenberg matrix of the form

K =















k0,1 k0,2 k0,3 . . . k0,n−1 k0,n
0 k1,2 k1,3 . . . k1,n−1 k1,n
ǫ 0 k2,3 . . . k2,n−1 k2,n
...

...
...

. . .
...

...

ǫ ǫ ǫ . . . 0 kn−1,n















.

We shall use this conjecture in our heuristic algorithm to construct a matrix
for which the characteristic polynomial will be equal to a given polynomial.
However, in [5] we have presented a method to construct such a matrix that
works even if Conjecture 5 would not be true. The major disadvantage of this
method is its computational complexity. Therefore we now present a heuristic
algorithm that will be much faster on the average. If a result is returned, it is
right. But it could be possible that sometimes no result is returned although
there is a solution (in which case we have to fall back on the method of [5]).

A heuristic algorithm:

First we check whether the coefficients of the given polynomial satisfy the con-
ditions of Property 4. Then we reconstruct the a−p ’s by setting a−1 = β1 and
a−p = max(αp − δ, βp) for p = 2, 3, . . . , n where δ is a small strictly positive real
number.

Consider K1 =















a−1 a−2 a−3 . . . a−n
0 a−1 a−2 . . . a−n−1

ǫ 0 a−1 . . . a−n−2
...

...
...

. . .
...

ǫ ǫ ǫ . . . a−1















and K2 =















ǫ ǫ ǫ . . . ǫ
ǫ κ1,2 κ1,3 . . . κ1,n

ǫ ǫ κ2,3 . . . κ2,n

...
...

...
. . .

...
ǫ ǫ ǫ . . . κn−1,n

















where κi,j =
αj

a−i
if a−i 6= ǫ and κi,j = ǫ if a−i = ǫ .

We shall make a judicious choice out of the elements of K1 and K2 to compose
a matrix for which the characteristic equation will coincide with (3).

We start with A =











a−1 a−2 . . . a−n
0 ǫ . . . ǫ
...

...
. . .

...
ǫ ǫ . . . ǫ











. Now we shall column by column transfer

non-ǫ elements of K2 to A (one element per column) such that the coefficients
of the characteristic equation of A are less than or equal to those of (3). If this
doesn’t lead to a valid result we shift a−1 along its diagonal and repeat the pro-
cedure. We keep shifting a−1 until it reaches the n-th column. If this still doesn’t
yield a result we put a−1 back in the first column and repeat the procedure but
now with a−2 , and so on. Finally, if we have found A we remove redundant en-
tries: these are elements that can be removed without altering the characteristic
equation.

4 Minimal State Space Realization

4.1 Realization and Minimal Realization

Suppose that we have a single input single output (SISO) discrete event system
that can be described by an n-th order state space model

x[k + 1] = A⊗ x[k] ⊕ b⊗ u[k] (4)

y[k] = c⊗ x[k] (5)

with A ∈ R
n×n
max , b ∈ R

n×1
max and c ∈ R

1×n
max . u is the input, y is the output and x

is the state vector.
We define the unit impulse e as: e[k] = 0 if k = 0 and e[k] = ǫ otherwise .

If we apply a unit impulse to the system and if we assume that the initial state
x[0] satisfies x[0] = ǫ or A⊗ x[0] ≤ b, we get the impulse response as the output
of the system:

x[1] = b , x[2] = A⊗ b , . . . , x[k] = A⊗
k−1

⊗ b ⇒ y[k] = c⊗A⊗
k−1

⊗ b . (6)

Let gk = c⊗A⊗
k
⊗ b. The gk’s are called the Markov parameters.

Let us now reverse the process: suppose that A, b and c are unknown, and
that we only know the Markov parameters (e.g. from experiments – where we
assume that the system is max-linear and time-invariant and that there is no
noise present). How can we construct A, b and c from the gk’s? This process is
called realization. If we make the dimension of A minimal, we have a minimal
realization. Although there have been some attempts to solve this problem [2,
7, 8] , this problem has at present – to the authors’ knowledge – not been solved
entirely.



4.2 A Lower Bound for the Minimal System Order

Property 6. The Markov parameters of the system with system matrix A ∈
S
n×n
max satisfy the characteristic equation of A:

n
⊕

p=0

ap ⊗ gk+n−p ∇ ǫ for k = 0 , 1, 2, . . . ,

where a0 = 0.

Suppose that we have a system that can be described by (4) – (5), with un-
known system matrices. If we want to find a minimal realization of this system
the first question that has to be answered is that of the minimal system order.

Consider the semi-infinite Hankel matrix H =











g0 g1 g2 . . .
g1 g2 g3 . . .
g2 g3 g4 . . .
...

...
...
. . .











. Let H(:, i) be the

i-th column of H. As a direct consequence of Property 6 we have that

n
⊕

p=0

ap ⊗H(:, k + n− p) ∇ ǫ for k = 1, 2, . . . . (7)

Now we reverse this reasoning: first we construct a p by q Hankel matrix

Hp,q =











g0 g1 . . . gq−1

g1 g2 . . . gq
...

...
. . .

...
gp−1 gp . . . gp+q−2











with p and q large enough: p, q ≫ n, where n is the real (but unknown) system
order. Then we try to find n and a0, a1, . . . , an such that the columns of Hp,q

satisfy an equation of the form (7), which will lead to the characteristic equation
of the unknown system matrix A.

We propose the following procedure:

First we look for the largest square submatrix of Hp,q with consecutive column
indices,

Hsub,r = Hp,q([i1, i2, . . . , ir], [j + 1, j + 2, . . . , j + r]) ,

the determinant of which is not balanced: detHsub,r ∇/ ǫ. If we add one arbitrary
row and the j+r+1-st column to Hsub,r we get an r+1 by r+1 matrix Hsub,r+1

that has a balanced determinant. So according to Theorem 2 the set of linear

balances Hsub,r+1⊗ a ∇ ǫ has a signed solution a =
[

ar ar−1 . . . a0
]t
. We now

search a solution a that corresponds to the characteristic equation of a matrix
with elements in Rmax (this should not necessarily be a signed solution). First
of all we normalize a0 to 0 and then we check if the necessary (and sufficient)



conditions of section 3 for αp and βp are satisfied, where αp = a+p and βp = a−p .
If they are not satisfied we augment r and repeat the procedure.
We continue until we get the following stable relation among the columns of
Hp,q:

Hp,q(:, k + r) ⊕ a1 ⊗Hp,q(:, k + r − 1) ⊕ . . . ⊕ ar ⊗Hp,q(:, k) ∇ ǫ (8)

for k ∈ {1, . . . , q − r} . Since we assumed that the system can be described by
(4) – (5) and that p, q ≫ n, we can always find such a stable relationship by
gradually augmenting r. The r that results from this procedure is a lower bound
for the minimal system order.

4.3 Determination of the System Matrices

In [5] we have described a method to find all solutions of a set of multivariate
polynomial equalities in the max algebra. Now we can use this method to find
the A, b and c matrices of an r-th order SISO system with Markov parameters
g0, g1, g2, . . . . If the algorithm doesn’t find any solutions, this means that the
output behavior can’t be described by an r-th order SISO system. In that case
we have to augment our estimate of the system order and repeat the procedure.
Since we assume that the system can be described by the state space model
(4) – (5) we shall always get a minimal realization.

However, in many cases we can use the results of the previous section to
find a minimal realization. Starting from the coefficients a1, a2, . . . , ar of (8) we
search a matrix A with elements in Rmax such that its characteristic equation is

λ⊗
n

⊕

r
⊕

p=1

ap ⊗ λ⊗
r−p

∇ ǫ . (9)

Once we have found the A matrix, we have to find b and c with elements in
Rmax such that

c⊗A⊗
k
⊗ b = gk for k = 0, 1, 2, . . . . (10)

In practice it seems that we only have to take the transient behavior and the
first cycles of the steady-state behavior into account. So we may limit ourselves
to the first, say, N Markov parameters.

Let’s take a closer look at equations of the form c ⊗ R ⊗ b = s with c ∈
R

1×n
max , R ∈ R

n×n
max , b ∈ R

n×1
max and s ∈ Rmax. This equation can be rewritten as

n
⊕

i=1

n
⊕

j=1

ci ⊗ rij ⊗ bi = s . (11)

So if we take the first N Markov parameters into account, we get a set of N
multivariate polynomial equations in the max algebra, with the elements of b

and c as unknowns and R = A⊗
k−1

and s = gk−1 in the k-th equation. This
problem can also be solved using the algorithm described in [5].

However, one has to be careful since it is not always possible to find a b and
a c for every matrix that has (9) as its characteristic equation (see [3] for an
example). In that case we have to search another A matrix or we could fall back
on the method described in [4, 5], which finds all possible minimal realizations.



5 Example

We now illustrate the procedure of the preceding section with an example.

Example 1. Here we reconsider the example of [2, 8]. We start from a system
with system matrices

A =





1 −1 2
−1 2 0
−3 1 2



 , b =





0
ǫ
ǫ



 and c =
[

0 ǫ ǫ
]

.

Now we are going to construct the system matrices from the impulse response of
the system. This impulse response is given by {gk} = 0 , 1 , 2 , 3 , 4 , 5 , 6 , 8 , 10 , 12 ,
14 , . . . . First we construct the Hankel matrix

H8,8 =

























0 1 2 3 4 5 6 8
1 2 3 4 5 6 8 10
2 3 4 5 6 8 10 12
3 4 5 6 8 10 12 14
4 5 6 8 10 12 14 16
5 6 8 10 12 14 16 18
6 8 10 12 14 16 18 20
8 10 12 14 16 18 20 22

























.

The determinant of Hsub,2 = H8,8([1, 7], [1, 2]) =

[

0 1
6 8

]

is not balanced. We add

the second row and the third column and then we search a solution of the set of
linear balances 



0 1 2
1 2 3
6 8 10



⊗





a2
a1
a0



 ∇ ǫ .

The solution a0 = 0, a1 = ⊖2, a2 = 3 satisfies the necessary and sufficient
conditions for the 2 by 2 case since α1 = ǫ and α2 = 3 ≤ 4 = 2⊗ 2 = β1 ⊗ β1.
This solution also corresponds to a stable relation among the columns of H8,8:

H8,8(:, k + 2) ⊕ 3⊗H8,8(:, k) = 2⊗H8,8(:, k + 1) ,

for k ∈ {1, 2, . . . , 6} , or to the following characteristic equation:

λ⊗
2
⊖ 2⊗ λ ⊕ 3 ∇ ǫ .

This leads to a second order system with A =

[

2 ǫ
0 1

]

. Using the technique of [5]

we get a whole set of solutions for b and c. One of the solutions is b =

[

−4
0

]

and c =
[

ǫ 0
]

.
Apart from a permutation of the two state variables this result is the same as
that of [8].

Another example, that doesn’t satisfy the assumptions of [8] – where only im-
pulse responses that exhibit a uniformly up-terrace behavior are considered –,
can be found in [3].



6 Conclusions and Future Research

We have derived necessary and for some cases also sufficient conditions for an
Smax polynomial to be the characteristic polynomial of an Rmax matrix. So if we
have a monic polynomial in Smax these results allow us

1. to check whether the given polynomial can be the characteristic polynomial
of a positive matrix and

2. to construct a matrix such that its characteristic polynomial is equal to the
given polynomial.

Based on these results we have proposed a procedure to find a minimal state
space realization of a SISO system, given its Markov parameters. This procedure
is an alternative to the method of [4], which finds all possible minimal realizations
but which has one disadvantage: its computational complexity. Since we allow
a Hessenberg form for the system matrix A, our method incorporates both the
companion form of [2] and the bidiagonal form of [8].
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