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Minimal Realization in the Max Algebra is an Extended Linear

Complementarity Problem∗

Bart De Schutter
†
and Bart De Moor

†

Abstract

In this paper we demonstrate that the minimal state space realization problem in
the max algebra can be transformed into an Extended Linear Complementarity Problem
(ELCP). We use an algorithm that finds all solutions of an ELCP to find all equivalent
minimal state space realizations of a single input single output (SISO) discrete event
system. We also give a geometrical description of the set of all minimal realizations of a
SISO max-linear discrete event system.

1 Introduction

1.1 Overview

In this paper we consider discrete event systems, such as flexible manufacturing systems,
subway traffic networks, parallel processing systems, telecommunication networks, etc. . Some
of these systems can be described using the so called max algebra [1, 3]. We shall show that
the minimal state space realization problem in the max algebra can be transformed into
an Extended Linear Complementarity Problem (ELCP). The ELCP is an extension of the
well-known Linear Complementarity Problem, which is one of the fundamental problems of
mathematical programming. In [7] we have developed an algorithm to find all solutions of
an ELCP. We shall use this algorithm to find all equivalent minimal state space realizations
of a single input single output discrete event system and to give a geometrical insight in the
structure of the set of all equivalent state space realizations.

Although there have been some attempts to solve this minimal realization problem [4,
11, 13] , this is – to the authors’ knowledge – the first time it is solved entirely. And it is
certainly the first time that a complete description of the set of all minimal realizations of a
SISO max-linear discrete event system is given.

In Section 1 of this paper we introduce the notations and some of the concepts and
definitions that are used later on.

∗A short version of this paper has been published in Systems & Control Letters, vol. 25, no. 2, p. 103–111,
May 1995.
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This paper presents research results of the Belgian programme on interuniversity attraction poles (IUAP-50)
initiated by the Belgian State, Prime Minister’s Office for Science, Technology and Culture. The scientific
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In Section 2 we propose the Extended Linear Complementarity Problem (ELCP) and
describe the general solution set of this problem.

In Section 3 we show that a set of multivariate polynomial equations in the max algebra
can be transformed into an ELCP.

Then we derive a lower bound for the minimal state space order of a single input single
output (SISO) discrete event system in the max algebra. Finally we combine this with the
results of the preceding sections to find all minimal state space realizations of a SISO discrete
event system, given its Markov parameters.

We also illustrate this procedure with a few examples.

1.2 Notations and definitions

If a is a vector then ai represents the i-th element of a. If A is an m by n matrix then the
element on the i-th row and on the j-th column is denoted by aij . A

t is the transpose of A.
To select submatrices of a matrix we use the following notation:

A([i1, i2, . . . , ik], [j1, j2, . . . , jl]) is the k by l matrix resulting from A by eliminating all rows
except for rows i1, i2, . . . , ik and all columns except for columns j1, j2, . . . , jl. A(i, :) is the
i-th row of A and A(:, j) is the j-th column of A.

Definition 1.1 (Polyhedron) A polyhedron is the solution set of a finite system of linear
inequalities.

We shall represent the set of all possible combinations of k different numbers out of the
set {1, 2, . . . , n} as Ck

n. Pn is the set of all possible permutations of the set {1, 2, . . . , n}.

1.3 The max algebra

One of the mathematical tools used in this paper is the max algebra. In this introduction
we only explain the notations we use to represent the max-algebraic operations and give
some definitions and theorems that will be used in the remainder of this paper. A complete
introduction to the max algebra can be found in [1, 3].

1.3.1 The max-algebraic operations

In this paper we use the following notations: a⊕ b = max(a, b) and a⊗ b = a+ b. The neutral
element for ⊕ in Rmax = (R ∪ {−∞},⊕,⊗) is ε = −∞. Since we use both linear algebra and
max algebra in this report, we always write the ⊗ sign explicitly to avoid confusion. The

max-algebraic power is defined as follows: a⊗
k
= a⊗ a⊗ . . .⊗ a

︸ ︷︷ ︸

k times

and is equal to ka in linear

algebra.
En is the n by n identity matrix in Rmax: eij = 0 if i = j and eij = ε if i 6= j. The

operations ⊕ and ⊗ are extended to matrices in the usual way. A⊗
k
= A⊗A⊗ . . .⊗A

︸ ︷︷ ︸

k times

.

We also use the extension of the max algebra Smax that was introduced in [1, 9]. Smax is
a kind of symmetrization of Rmax. We shall restrict ourselves to the most important features
of Smax. For a more formal derivation the interested reader is referred to [9].

There are three kinds of elements in Smax: the positive elements (S⊕max, this corresponds
to Rmax), the negative elements (S⊖max) and the balanced elements (S•max). The positive and
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the negative elements are called signed (S∨max = S
⊕
max ∪ S

⊖
max). The ⊖ operation in Smax is

defined as follows:
a⊖ b = a if a > b ,
a⊖ b = ⊖b if a < b ,
a⊖ a = a• .

If a ∈ Smax then it can be written as a = a+ ⊖ a− where a+ is the positive part of a, a− is
the negative part of a and |a| = a+ ⊕ a− is the absolute value of a. There are three possible
cases: if a ∈ S

⊕
max then a+ = a and a− = ε, if a ∈ S

⊖
max then a+ = ε and a− = ⊖a and if

a ∈ S
•
max then a+ = a− = |a|.

Example 1.2 Let a = 3• ∈ S
•
max, then a+ = 3, a− = 3 and |a| = 3.

For b = ⊖2 ∈ S
⊖
max we have b+ = ε, b− = 2 and |b| = 2.

This symmetrization allows us to ’solve’ equations that have no solutions in Rmax. Unfor-
tunately we then have to introduce balances (∇) instead of equalities. Informally an ⊖ sign
in a balance means that the element should be at the other side: so 3⊖3 ∇ 2 means 3 ∇ 2⊕3.
If both sides of a balance are signed (positive or negative) we can replace the balance by an
equality.

1.3.2 Some definitions and theorems

Definition 1.3 (Determinant) Consider a matrix A ∈ S
n×n
max . The determinant of A is

defined as

detA =
⊕

σ∈Pn

sgn (σ)⊗
n⊗

i=1

aiσ(i)

where Pn is the set of all permutations of {1, . . . , n} , and sgn (σ) = 0 if the permutation σ is
even and sgn (σ) = ⊖0 if the permutation is odd.

Definition 1.4 (Determinantal rank) Let A ∈ S
m×n
max . The determinantal rank of A,

rdet(A), is defined as the dimension of the largest square submatrix of A the determinant of
which is not balanced and not equal to ε.

Theorem 1.5 Let A ∈ S
n×n
max . The homogeneous linear balance A ⊗ x ∇ ε has a non-trivial

signed solution if and only if detA ∇ ε.

Proof : See [9]. The proof given there is constructive so it can be used to find a solution.

Definition 1.6 (Characteristic equation) Let A ∈ S
n×n
max . The characteristic equation of

A is defined as det(A⊖ λ⊗ En) ∇ ε.

This leads to

λ⊗
n

⊕
n⊕

p=1

ap ⊗ λ⊗
n−p

∇ ε .

If we define αp = a+p and βp = a−p and if we move all terms with negative coefficients to the
right hand side we get

λ⊗
n

⊕
n⊕

i=1

αi ⊗ λ⊗
n−i

∇
n⊕

j=1

βj ⊗ λ⊗
n−j

,
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with αp, βp ∈ Rmax. In [12] Olsder defines a variant of this equation using the dominant instead
of the determinant. This leads to signed coefficients: aOlsder

p ∈ S
∨
max or αOlsder

p ⊗ βOlsder
p = ε

with aOlsder
p = ap if ap ∈ S

∨
max and |aOlsder

p | 6 |ap| if ap ∈ S
•
max.

Theorem 1.7 (Cayley-Hamilton) In Smax every square matrix satisfies its characteristic
equation.

Proof : See [10] and [12].

2 The Extended Linear Complementarity Problem

2.1 Problem formulation

Consider the following problem:

Given two matrices A ∈ R
p×n, B ∈ R

q×n, two column vectors c ∈ R
p, d ∈ R

q and m subsets
φj of {1, 2, . . . , p}, find a vector x ∈ R

n such that

m∑

j=1

∏

i∈φj

(Ax− c)i = 0 (1)

subject to Ax > c
Bx = d ,

or show that no such vector exists.

In [7] we have demonstrated that this problem is an extension of the Linear Complementarity
Problem [2]. Therefore we call it the Extended Linear Complementarity Problem (ELCP).
Equation (1) represents the complementarity condition. One possible interpretation of this
condition is the following: since Ax > c, condition (1) is equivalent to

∏

i∈φj

(Ax− c)i = 0 , ∀j ∈ {1, 2, . . . ,m} . (2)

So we could say that each set φj corresponds to a subgroup of inequalities of Ax > c and that
in each group at least one inequality should hold with equality:

∀j ∈ {1, 2, . . . ,m} : ∃i ∈ φj such that (Ax− c)i = 0 .

We’ll use this interpretation in Section 3 to demonstrate that a set of multivariate polynomial
equations in the max algebra can be transformed into an ELCP.

In [7] we have made a thorough study of the solution set of the ELCP and developed an
algorithm to find all its solutions. We shall now state the main results of that paper.

The ELCP algorithm results in 3 sets of rays X cen, X inf , X fin and a set Λ of pairs
{

X inf
s ,X fin

s

}

where X inf
s is a subset of X inf and X fin

s is a non-empty subset of X fin. The

solution set of the ELCP is then characterized by the following theorem:
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Theorem 2.1 When X cen, X inf , X fin and Λ are given, then x is a solution of the ELCP if

and only if there exists a pair
{

X inf
s ,X fin

s

}

∈ Λ such that

x =
∑

xk∈X
cen

λkxk +
∑

xk∈X
inf
s

κkxk +
∑

xk∈X
fin
s

µkxk ,

with λk ∈ R, κk, µk > 0 and
∑

k

µk = 1.

As a result we have that:

Corollary 2.2 The general solution set of an ELCP consists of the union of faces of a poly-
hedron.

3 Multivariate polynomial equations in the max algebra

Consider the following problem:

Given a set of integers {mk} and three sets of coefficients {aki}, {bk} and {ckij} with
i ∈ {1, . . . ,mk} , j ∈ {1, . . . , n} and k ∈ {1, . . . , p}, find a vector x ∈ R

n
max that satisfies

mk⊕

i=1

aki ⊗
n⊗

j=1

xj
⊗
ckij

= bk , for k = 1, 2, . . . , p , (3)

or show that no such vector x exists.

Now we demonstrate that this problem can be transformed into an ELCP:
First we consider one equation of the form (3) :

mk⊕

i=1

aki ⊗
n⊗

j=1

xj
⊗
ckij

= bk .

In linear algebra this is equivalent to the set of linear inequalities

aki + cki1x1 + cki2x2 + . . .+ ckinxn 6 bk , for i = 1, 2, . . . ,mk ,

where at least one inequality should hold with equality. If we transfer the aki’s to the right
hand side and if we define dki = bk − aki, we get the following set of a linear inequalities:

cki1x1 + cki2x2 + . . .+ ckinxn 6 dki , for i = 1, 2, . . . ,mk .

If we define p matrices Ck and p column vectors dk such that (Ck)ij = ckij and (dk)i = dki,
then (3) leads to p groups of linear inequalities Ck x 6 dk with in each group at least one
inequality that should hold with equality.

We put all Ck’s in one large matrix A =









−C1

−C2
...

−Cp









and all dk’s in one vector c =









−d1
−d2
...

−dp









.

We also define p sets φj such that φj = {sj+1, sj+2, . . . , sj+mj} , for j = 1, 2, . . . , p , where
s1 = 0 and sj+1 = sj +mj for j = 1, 2, . . . , p− 1. Our original problem (3) is then equivalent
to the following ELCP:
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Find a vector x ∈ R
n such that

p
∑

j=1

∏

i∈φj

(Ax− c)i = 0 (4)

subject to Ax > c ,

or show that no such vector x exists.

This means that we can use the ELCP algorithm of [7] to find all solutions of problem (3).
For other applications of the ELCP in the max algebra and in the max/min/plus algebra

the interested reader is referred to [8].

4 Minimal state space realization

4.1 Realization and minimal realization

Suppose that we have a single input single output (SISO) discrete event system that can be
described by an n-th order state space model:

x[k + 1] = A⊗ x[k] ⊕ B ⊗ u[k] (5)

y[k] = C ⊗ x[k] (6)

with A ∈ R
n×n
max , B ∈ R

n×1
max and C ∈ R

1×n
max. u is the input, y is the output and x is the state

vector.
We define the unit impulse e as: e[k] = 0 if k = 0 ,

= ε otherwise .
If we apply a unit impulse to the system and if we assume that the initial state x[0] satisfies
x[0] = ε or A⊗ x[0] 6 B, we get the impulse response as the output of the system:

x[1] = B , x[2] = A⊗B , . . . , x[k] = A⊗
k−1

⊗B ⇒ y[k] = C ⊗A⊗
k−1

⊗B . (7)

Let gk = C ⊗A⊗
k
⊗B. The gk’s are called the Markov parameters.

Let us now reverse the process: suppose that A, B and C are unknown, and that we only
know the Markov parameters (e.g. from experiments – where we assume that the system
is max-linear and time-invariant and that there is no noise present). How can we construct
A, B and C from the gk’s? This process is called realization. If we make the dimension of A
minimal, we have a minimal realization. Although there have been some attempts to solve
this problem [4, 11, 13] , this is – to the authors’ knowledge – the first time it is solved entirely.
It is certainly the first time that a complete description of the set of all minimal realizations
of a SISO max-linear discrete event system is given.

4.2 A lower bound for the minimal system order

In this section we present a method to find a lower bound for the minimal system order.
Although we already more or less presented this technique in [6], we now explicitly prove that
we indeed find a lower bound for the system order. We use the following property:
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Property 4.1 Consider A ∈ S
n×n
max , B ∈ S

n×1
max and C ∈ S

1×n
max. If A satisfies an equation of the

form

n⊕

p=0

ap ⊗A⊗
n−p

∇ ε (8)

(e.g. its characteristic equation) then the Markov parameters satisfy

n⊕

p=0

ap ⊗ gk+n−p ∇ ε for k = 0 , 1, 2, . . . .

Proof : Left multiplication of (8) by C⊗A⊗
k
and right multiplication by B leads to

n⊕

p=0

ap⊗

C ⊗A⊗
k+n−p

⊗B ∇ ε . Since gk = C ⊗A⊗
k
⊗B we find that

n⊕

p=0

ap ⊗ gk+n−p ∇ ε .

Suppose that we have a system that can be described by (5) and (6), with unknown system
matrices. If we want to find a minimal realization of this system the first question that has
to be answered is that of the minimal system order.

Consider the semi-infinite Hankel matrix H =









g0 g1 g2 . . .
g1 g2 g3 . . .
g2 g3 g4 . . .
...

...
...

. . .









.

As a direct consequence of Theorem 1.7 and Property 4.1 we have that the columns of H
satisfy

n⊕

p=0

ap ⊗H(:, k + n− p) ∇ ε for k = 1, 2, . . . (9)

where the coefficients ap are the coefficients of the characteristic equation of the system matrix
A. This leads to

Property 4.2 Let Hsub,s = H([i1, i2, . . . , is], [j + 1, j + 2, . . . , j + s]) be an s by s square
submatrix of the Hankel matrix H with arbitrary row indices and consecutive column indices.
If s > n then we have that det(Hsub,s) ∇ ε .

Proof : If A is an n by n matrix with elements in Rmax then according to Olsder’s variant
of the Cayley-Hamilton theorem [12], the coefficients in the characteristic equation of A are
signed. This also means that the coefficients ap in (9) are signed or that every balance of the
form:

H([i1, i2, . . . , is], [j + 1, j + 2, . . . , j + s])⊗ a ∇ ε

with s > n, j > 0 and {i1, i2, . . . , is} ∈ Cs
∞ has a signed solution: if s = n + 1 we get the

coefficients of the characteristic equation as a solution and for s > n + 1 we can always set
some of the components of a equal to ε. Theorem 1.5 then leads to

det (H([i1, i2, . . . , is], [j + 1, j + 2, . . . , j + s])) ∇ ε

for s > n.
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So the dimension of the largest square submatrix of H with consecutive column indices that
has a non-balanced determinant will be less than or equal to n. We represent this dimension
as rcc(H).

Definition 4.3 (Consecutive column rank) Consider P ∈ S
m×n
max . The consecutive column

rank of P , rcc(P ), is the dimension of the largest square submatrix of P with consecutive
column indices, the determinant of which is not balanced:

rcc(P ) = max {dim(Psub,s) |Psub,s = P ([i1, i2, . . . , is], [j + 1, j + 2, . . . , j + s]) with

0 6 s 6 min(m,n), 0 6 j 6 n− s, {i1, i2, . . . , is} ∈ Cs
m and det(Psub,s) ∇/ ε} .

We can define the consecutive row rank of P , rcr(P ), in an analogous way (in general rcc(P ) 6=
rcr(P )). But since we only consider symmetric matrices in this section, we only need the
consecutive column rank: if H = Ht then rcc(P ) = rcr(P ). We have that rcc(P ) 6 rdet(P ).

To find a lower bound r for the minimal system order we shall search for a relation of the
form (9) among the columns of H with a minimal number of terms. This number of terms
will be a first estimate for the lower bound r. Since we know that the elements of the system
matrix A belong to Rmax we shall search for coefficients ap that correspond to a matrix with
elements in Rmax. See [6] for necessary (and sufficient) conditions for these coefficients.
This leads to the following procedure:

First we construct a p by q Hankel matrix

Hp,q =











g0 g1 g2 . . . gq−1

g1 g2 g3 . . . gq
g2 g3 g4 . . . gq+1
...

...
...

. . .
...

gp−1 gp gp+1 . . . gp+q−2











with p and q large enough: p, q ≫ n, where n is the real (but unknown) system order. Now
we try to find n and a0, a1, . . . , an such that the columns of Hp,q satisfy an equation of the
form (9).
We start with r equal to rcc(Hp,q). Let

Hsub,r = Hp,q([i1, i2, . . . , ir], [j + 1, j + 2, . . . , j + r])

be an r by r submatrix of Hp,q the determinant of which is not balanced: detHsub,r ∇/ ε. If
we add one arbitrary row and the (j + r + 1)-st column to Hsub,r we get an r + 1 by r + 1
matrix Hsub,r+1 that has a balanced determinant. So according to Theorem 1.5 the set of
linear balances

Hsub,r+1 ⊗ a ∇ ε

has a signed solution a =
[

ar ar−1 . . . a0
]t
. We now look for a solution a that cor-

responds to the characteristic equation of a matrix with elements in Rmax (this should not
necessarily be a signed solution; a signed solution would correspond to Olsder’s variant of the
characteristic equation). First of all we normalize a0 to 0 and then we check if the necessary
(and sufficient) conditions for the coefficients of the characteristic equation of a matrix with
elements in Rmax (see [6]) are satisfied. If they are not satisfied we augment r and repeat the
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procedure.
We continue until we get the following stable relation among the columns of Hp,q:

Hp,q(:, k + r) ⊕ a1 ⊗Hp,q(:, k + r − 1) ⊕ . . . ⊕ ar ⊗Hp,q(:, k) ∇ ε (10)

for k ∈ {1, . . . , q − r} . Since we assume that the system can be described by (5) and (6)
and that p, q ≫ n, we can always find such a stable relationship by gradually augmenting r.
The r that results from this procedure is indeed a lower bound for the minimal system order,
since it corresponds to the smallest number of terms in a relationship of form (9) among the
columns of Hp,q.

4.3 Determination of the system matrices

Now we have to find A ∈ R
r×r
max, B ∈ R

r×1
max and C ∈ R

1×r
max such that

C ⊗A⊗
k
⊗B = gk , for k = 0, 1, 2, . . . . (11)

In practice it seems that we only have to take the transient behavior and the first cycles of
this steady-state behavior into account. So we may limit ourselves to the first, say, N Markov
parameters.
For k = 0 we get

r⊕

i=1

ci ⊗ bi = g0 .

For k > 0 we have that (11) is equivalent to

r⊕

i=1

r⊕

j=1

tkij = gk ,

with

tkij =
r⊕

i1=1

. . .
r⊕

ik−1=1

ci ⊗ aii1 ⊗ ai1i2 ⊗ . . .⊗ aik−1j ⊗ bj .

This can be rewritten as

r⊕

i=1

r⊕

j=1

rk−1

⊕

l=1

ci ⊗
r⊗

u=1

r⊗

v=1

auv
⊗
γkijluv

⊗ bj = gk ,

where γkijluv is the number of times that auv appears in the l-th subterm of term tkij . If

auv doesn’t appear in that subterm we take γkijluv = 0 since we have that a⊗
0
= 0.a = 0,

the identity element for ⊗. At first sight one could think that we are then left with rk+1

terms. However, some of these are the same and can thus be left out. If we use the fact that
∀x, y ∈ Rmax : x ⊗ y 6 x ⊗ x ⊕ y ⊗ y we can again remove many redundant terms. Then we
are left with, say, wk terms where wk 6 rk+1.
If we put all unknowns in one large vector x of size r(r+2) we have to solve a set of multivariate
polynomial equations of the following form:
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r⊕

i=1

r(r+2)
⊗

j=1

xj
⊗
κ0ij

= g0

wk⊕

i=1

r(r+2)
⊗

j=1

xj
⊗
κkij

= gk , for k = 1 , 2 , . . . , N − 1 ,

and this can be transformed into an ELCP using the technique explained in Section 3. This
means that in general all equivalent minimal state space realizations of a max-linear SISO
system form a union of polyhedra in the x-space.
If we find a solution x we extract the elements of x and put them in the matrices A ,B and C.
Then we have found a minimal realization. If we don’t find a solution we have to augment r
and start again. Since we assumed that the data were generated by a max-linear SISO system
we shall eventually find a realization and it will be minimal.

Remark 4.4 By transforming the problem to linear algebra we have assumed that all com-
ponents of A, B and C are finite. If we also want to include matrices with components equal
to ε we have to take certain precautions. Normally they can be obtained by allowing some of
the λk’s or κk’s to become infinite in a controlled way, since we only allow infinite components
that are equal to ε = −∞; components equal to ∞ are not allowed.
Since the max operation hides small numbers from larger numbers it suffices in practice to
replace negative elements that are large enough in absolute value by ε provided that there are
no positive elements of the same order of magnitude. This technique will be demonstrated in
Example 5.1.

4.4 Computational complexity and algorithmic aspects

The execution time and the storage space requirement of the ELCP algorithm depend on
the number of equations and variables. For the minimal realization problem the number of
equations and variables becomes very large as the system order rises or as the number of
Markov parameters that should be considered grows. Therefore the ELCP algorithm in its
present form is not suited for large systems or for systems with a long and complex transient
behavior.
Moreover, we are not always interested in finding all minimal realizations. In [6] we have
developed a heuristic algorithm that is relatively fast and that will in most cases find a
minimal realization.

Since the method to solve the ELCP is an iterative process where in each step a new
equation is taken into account, we can make use of the special structure of our problem
to speed up the algorithm. To each Markov parameter there corresponds a group of linear
inequalities. After each group we can test whether the impulse response of the solution up
to that group matches the desired impulse response. If this is the case we don’t have to take
the other groups into account, since they will automatically be satisfied. This means that we
can start with a small N and gradually take more and more groups into account. We don’t
have to start all over again for each new group since we can simply continue with the rays of
the previous groups.

There are still some open problems. It is e.g. not clear how to determine the minimal
subset of Markov parameters that is needed and how to select them. In Example 5.1 of
the next section the equations for the subset {g0, g1, g6, g7, g8} will lead to the same (right)
solutions as {g0, g1, . . . , g8} whereas the subset {g0, g1, . . . , g7} yields some solutions with an
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impulse response that doesn’t coincide entirely with the desired impulse response (only the
first 8 Markov parameters are exactly the same). Since we have one group of inequalities
for each Markov parameter that we take into consideration and since the computational
complexity grows with the number of inequalities, it is important to use as few Markov
parameters as possible. The example above shows that it is not necessary to consider the
entire set {g0, g1, . . . , gN−1} to find all solutions with the desired impulse response.

5 Examples

We now illustrate the procedure to find all minimal realizations with a few examples.

Example 5.1

Here we reconsider the example of [4, 13]. We start from a system with system matrices

A =






1 −1 −2
−1 2 0
−3 1 2




 , B =






0
ε
ε




 and C =

[

0 ε ε
]

.

Now we are going to construct the system matrices from the impulse response of the system.
This impulse response is given by

{gk} = 0 , 1 , 2 , 3 , 4 , 5 , 6 , 8 , 10 , 12 , 14 , . . . .

First we construct the Hankel matrix

H8,8 =

















0 1 2 3 4 5 6 8
1 2 3 4 5 6 8 10
2 3 4 5 6 8 10 12
3 4 5 6 8 10 12 14
4 5 6 8 10 12 14 16
5 6 8 10 12 14 16 18
6 8 10 12 14 16 18 20
8 10 12 14 16 18 20 22

















.

The consecutive column rank of H8,8 is 2. The determinant of Hsub,2 = H8,8([1, 7], [1, 2]) =[

0 1
6 8

]

is not balanced. We add one row and one column and then we look for a solution

of the set of linear balances





0 1 2
1 2 3
6 8 10




⊗






a2
a1
a0




 ∇ ε .

The solution a0 = 0, a1 = ⊖2, a2 = 3 satisfies the necessary and sufficient conditions for the
coefficients of the characteristic polynomial of a 2 by 2 matrix with elements in Rmax (see [6])
since α1 = ε and α2 = 3 6 4 = 2 ⊗ 2 = β1 ⊗ β1. This solution also corresponds to a stable
relation among the columns of H8,8:

H8,8(:, k + 2) ⊕ 3⊗H8,8(:, k) = 2⊗H8,8(:, k + 1) for k ∈ {1, 2, . . . , 6} .
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Set X cen X inf X fin

Ray xc1 xc2 xi1 xi2 xi3 xi4 xi5 xi6 xf1 xf2

a11 0 0 0 0 0 0 0 0 2 1
a12 0 1 0 0 0 0 0 0 0 0
a21 0 -1 0 0 -1 -1 0 0 -2 -2
a22 0 0 0 0 0 0 0 0 1 2

b1 1 1 -1 0 0 1 -1 0 -2 -2
b2 1 0 -1 -1 0 0 0 0 0 -6

c1 -1 -1 1 0 0 -1 0 -1 -4 2
c2 -1 0 0 0 0 0 0 0 0 0

Table 1: The rays for Example 5.1 .

s X inf
s X fin

s

1 {xi1, x
i
2} {xf2}

2 {xi1, x
i
3} {xf2}

3 {xi2, x
i
4} {xf2}

4 {xi3, x
i
4} {xf2}

5 {xi3, x
i
4} {xf1}

6 {xi3, x
i
5} {xf1}

7 {xi4, x
i
6} {xf1}

8 {xi5, x
i
6} {xf1}

Table 2: The pairs of subsets for Example 5.1 .

Let’s take N = 9. Using the ELCP algorithm of [7] we find the rays of Table 1 and the
pairs of subsets of Table 2. If we take N > 9 we get the same result, but if we take N < 9
some combinations of the rays lead to a partial realization of the given impulse response (i.e.
they only fit the first N Markov parameters).
Any arbitrary minimal realization can now be expressed as

















a11
a12
a21
a22
b1
b2
c1
c2

















= λ1x
c
1 + λ2x

c
2 + κ1x

i
i1
+ κ2x

i
i2
+ xfj1 , (12)
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with λ1, λ2 ∈ R , κ1, κ2 > 0 and xii1 , x
i
i2
∈ X inf

s , xfj1 ∈ X fin
s for some s ∈ {1, 2, . . . , 8}. Expres-

sion (12) shows that the set of all equivalent minimal state space realizations of the given
impulse response is a union of 8 unbounded polyhedra.
The result of [13]

A =

[

1 0
ε 2

]

, B =

[

0
−4

]

, C =
[

0 ε
]

(13)

corresponds to the following combination of the central solutions and the solutions of the pair
{X inf

2 ,X fin
2 } :

(η + 2)xc1 + ηxi1 + ηxi3 + xf2

for η large enough. Then we get

A =

[

1 0
−(η + 2) 2

]

, B =

[

0
−4

]

, C =
[

0 −(η + 2)
]

and as explained in Remark 4.4 we can replace −(η+ 2) by ε = −∞ for η large enough since
there are no positive components of the same order of magnitude as η. In fact for η → +∞
we would exactly get solution (13).

We now give another example that doesn’t satisfy the assumptions of [13], where only
impulse responses that exhibit a uniformly up-terrace behavior are considered, i.e. impulse
responses that consist of m sequences of length ni such that

gj+1 − gj = ci , for j = ti, ti + 1, . . . , ti + ni − 1 and for i = 1, 2, . . . , m ,

with ci+1 > ci, t1 = 0, ti+1 = ti + ni and nm = +∞.

Example 5.2

We start from the system (A,B,C) with

A =






3 1 0
ε 3 2
0 5 ε




 , B =






0
1
2




 and C =

[

0 ε ε
]

. (14)

The impulse response of this system is: 0 , 3 , 6 , 9 , 13 , 16 , 20 , 23 , 27 , . . . . Since there are two
different alternating increments in steady state (3 and 4), we can’t use the technique of [13].
First we construct the Hankel matrix

H8,8 =

















0 3 6 9 13 16 20 23
3 6 9 13 16 20 23 27
6 9 13 16 20 23 27 30
9 13 16 20 23 27 30 34
13 16 20 23 27 30 34 37
16 20 23 27 30 34 37 41
20 23 27 30 34 37 41 44
23 27 30 34 37 41 44 48
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which has consecutive column rank 3. A 3 by 3 submatrix of H8,8 the determinant of which

is not balanced is Hsub,3 = H8,8([1, 3, 4], [1, 2, 3]) =






0 3 6
6 9 13
9 13 16




.

The set of linear balances







0 3 6 9
3 6 9 13
6 9 13 16
9 13 16 20







⊗








a3
a2
a1
a0








∇ ε

has a solution

a0 = 0, a1 = ⊖3, a2 = ⊖7, a3 = 10 , (15)

that satisfies the necessary and sufficient conditions of [6] :






α1 = ε

α2 = ε 6 6 = 3⊗ 3 = β1 ⊗ β1
α3 = 10 6 10 = 3⊗ 7 = β1 ⊗ β2 .

This solution also corresponds to a stable relation among the columns of H8,8:

H8,8(:, k + 3) ⊕ 10⊗H8,8(:, k) = 3⊗H8,8(:, k + 2) ⊕ 7⊗H8,8(:, k + 1)

for k ∈ {1, 2, . . . , 5}.
If we take N = 7 the ELCP algorithm yields the rays of Table 3 and the pairs of Table 4.
So the set of all equivalent minimal realizations of system (14) consists of the union of 54
unbounded polyhedra.
If we take N > 7 we get the same results but for N < 7 some solutions only yield a partial
realization of the given impulse response (i.e. they only fit the first N Markov parameters).

The original matrices (14) can be found as combination of the central rays and the rays
of the pair {X inf

12 ,X fin
12 } :

(η + 4)xc1 + 5xc2 + ηxi1 + (η + 7)xi3 + 6xi7 + (η + 8)xi10 + (η + 2)xi14 + xf2

for η large enough.
In [5] we solved the same example by constructing a matrix A such that the coefficients of its
characteristic equation were equal to (15). There we found

A =






3 ε ε
0 ε 7
ε 0 ε




 , B =






0
−3
ε




 , C =

[

0 2 ε
]

,

which corresponds to the pair {X inf
8 ,X fin

8 } :

(η + 7)xc1 + (η + 7)xc3 + (η + 12)xi1 + ηxi2 + (η + 10)xi3 + (η + 16)xi6+

(η + 4)xi7 + (η + 10)xi8 + (η + 12)xi11 + xf2

with η large enough.
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6 Conclusions and further research

We have shown that a set of multivariate polynomial equations in the max algebra can be
transformed into an Extended Linear Complementarity Problem (ELCP). This means that we
can use the ELCP algorithm of [7] to solve such a problem. We have applied this technique to
find all minimal state space realizations of a single input single output discrete event system
given its Markov parameters and illustrated the procedure with a few examples.

One of the main characteristics of the ELCP algorithm that was used in this paper is that
it finds all solutions. For the minimal realization problem this provides a geometrical insight
in all equivalent (minimal) realizations of an impulse response. On the other hand this also
leads to large computation times and storage space requirements if the number of variables
and equations is large. Therefore it might be interesting to develop (heuristic) algorithms
that only find one solution as we have done for the minimal realization problem in [6].
Among the set of all possible realizations we could also try to find privileged realizations such
as balanced or canonical realizations.
We hope to extend the method presented here to find minimal state space realizations for
multiple input multiple output (MIMO) systems. The only problem there is the determination
of the minimal system order. Once this is found the same technique can be used to get a
minimal realization. In the future we shall therefore look for methods to get a estimate of
the minimal system order of a MIMO system.
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Set X cen X inf

Ray xc1 xc2 xc3 xi1 xi2 xi3 xi4 xi5 xi6 xi7 xi8 xi9

a11 0 0 0 0 0 0 0 0 0 0 0 -1
a12 0 1 -1 0 0 0 1 0 1 0 0 0
a13 0 0 -1 0 0 0 0 0 0 0 0 0
a21 0 -1 1 0 0 0 -1 0 -1 0 0 0
a22 0 0 0 0 0 0 0 0 0 0 -1 0
a23 0 -1 0 0 0 0 -1 -1 0 0 0 0
a31 0 0 1 0 0 0 0 0 -1 -1 0 0
a32 0 1 0 0 0 0 0 0 0 0 0 0
a33 0 0 0 0 0 -1 0 0 0 0 0 0

b1 1 0 -1 -1 0 0 0 0 1 0 0 0
b2 1 -1 0 -1 0 0 -1 0 0 0 0 0
b3 1 0 0 -1 -1 0 0 0 0 0 0 0

c1 -1 0 1 1 0 0 0 0 -1 0 0 0
c2 -1 1 0 1 0 0 1 0 0 0 0 0
c3 -1 0 0 0 0 0 0 0 0 0 0 0

Set X inf X fin

Ray xi10 xi11 xi12 xi13 xi14 xi15 xf1 xf2 xf3 xf4 xf5 xf6

a11 0 0 0 0 0 0 3 3 3 3 3 3
a12 0 -1 0 0 0 0 -4 -4 -2 -3 -2 -3
a13 0 0 0 0 0 0 0 0 0 0 0 0
a21 -1 0 0 0 0 0 9 9 9 9 9 9
a22 0 0 0 0 0 0 3 3 3 3 3 3
a23 0 0 0 0 0 0 6 7 5 5 6 7
a31 0 0 0 0 0 0 7 6 6 7 5 5
a32 0 0 0 0 0 0 0 0 0 0 0 0
a33 0 0 0 0 0 0 3 3 3 3 3 3

b1 0 0 0 -1 0 0 -5 -4 -4 -5 -3 -3
b2 0 0 -1 0 0 0 2 2 2 2 2 2
b3 0 0 0 0 0 0 -2 -2 0 -1 0 -1

c1 0 0 0 0 0 -1 4 4 2 3 2 3
c2 0 0 0 0 -1 0 -2 -3 -3 -2 -4 -4
c3 0 0 0 0 0 0 0 0 0 0 0 0

Table 3: The rays for Example 5.2 .
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s X inf
s

X fin
s

1 {xi
1, x

i
2, x

i
3, x

i
4, x

i
5, x

i
9, x

i
10} {xf

1}

2 {xi
1, x

i
2, x

i
3, x

i
4, x

i
5, x

i
9, x

i
11} {xf

1}

3 {xi
1, x

i
2, x

i
3, x

i
4, x

i
5, x

i
9, x

i
13, x

i
15} {xf

4}

4 {xi
1, x

i
2, x

i
3, x

i
4, x

i
5, x

i
10, x

i
11} {xf

1}

5 {xi
1, x

i
2, x

i
3, x

i
4, x

i
9, x

i
10, x

i
11, x

i
15} {xf

1}

6 {xi
1, x

i
2, x

i
3, x

i
5, x

i
9, x

i
10, x

i
11, x

i
13} {xf

1}

7 {xi
1, x

i
2, x

i
3, x

i
6, x

i
7, x

i
8, x

i
10} {xf

2}

8 {xi
1, x

i
2, x

i
3, x

i
6, x

i
7, x

i
8, x

i
11} {xf

2}

9 {xi
1, x

i
2, x

i
3, x

i
6, x

i
7, x

i
8, x

i
12, x

i
14} {xf

6}

10 {xi
1, x

i
2, x

i
3, x

i
6, x

i
7, x

i
10, x

i
11} {xf

2}

11 {xi
1, x

i
2, x

i
3, x

i
6, x

i
8, x

i
10, x

i
11, x

i
12} {xf

2}

12 {xi
1, x

i
2, x

i
3, x

i
7, x

i
8, x

i
10, x

i
11, x

i
14} {xf

2}

13 {xi
1, x

i
2, x

i
3, x

i
8, x

i
10, x

i
11, x

i
12, x

i
14} {xf

2}

14 {xi
1, x

i
2, x

i
3, x

i
9, x

i
10, x

i
11, x

i
13, x

i
15} {xf

1}

15 {xi
1, x

i
2, x

i
4, x

i
5, x

i
9, x

i
10, x

i
11} {xf

1}

16 {xi
1, x

i
2, x

i
6, x

i
7, x

i
8, x

i
10, x

i
11} {xf

2}

17 {xi
1, x

i
3, x

i
4, x

i
5, x

i
9, x

i
10, x

i
11} {xf

1}

18 {xi
1, x

i
3, x

i
4, x

i
5, x

i
9, x

i
11, x

i
13, x

i
15} {xf

4}

19 {xi
1, x

i
3, x

i
6, x

i
7, x

i
8, x

i
10, x

i
11} {xf

2}

20 {xi
1, x

i
3, x

i
6, x

i
7, x

i
8, x

i
10, x

i
12, x

i
14} {xf

6}

21 {xi
2, x

i
3, x

i
4, x

i
5, x

i
9, x

i
10, x

i
11} {xf

1}

22 {xi
2, x

i
3, x

i
4, x

i
5, x

i
9, x

i
10, x

i
13, x

i
15} {xf

4}

23 {xi
2, x

i
3, x

i
6, x

i
7, x

i
8, x

i
10, x

i
11} {xf

2}

24 {xi
2, x

i
3, x

i
6, x

i
7, x

i
8, x

i
11, x

i
12, x

i
14} {xf

6}

25 {xi
3, x

i
4, x

i
5, x

i
9, x

i
10, x

i
11, x

i
13} {xf

4}

26 {xi
3, x

i
4, x

i
5, x

i
9, x

i
10, x

i
11, x

i
15} {xf

4}

27 {xi
3, x

i
4, x

i
5, x

i
10, x

i
11, x

i
13, x

i
15} {xf

4}

s X inf
s

X fin
s

28 {xi
3, x

i
4, x

i
9, x

i
10, x

i
11, x

i
13, x

i
15} {xf

4}

29 {xi
3, x

i
5, x

i
9, x

i
10, x

i
11, x

i
13, x

i
15} {xf

4}

30 {xi
3, x

i
6, x

i
7, x

i
8, x

i
10, x

i
11, x

i
12} {xf

6}

31 {xi
3, x

i
6, x

i
7, x

i
8, x

i
10, x

i
11, x

i
14} {xf

6}

32 {xi
3, x

i
6, x

i
7, x

i
10, x

i
11, x

i
12, x

i
14} {xf

6}

33 {xi
3, x

i
6, x

i
8, x

i
10, x

i
11, x

i
12, x

i
14} {xf

6}

34 {xi
3, x

i
7, x

i
8, x

i
10, x

i
11, x

i
12, x

i
14} {xf

6}

35 {xi
4, x

i
5, x

i
6, x

i
7, x

i
8, x

i
9, x

i
12} {xf

5}

36 {xi
4, x

i
5, x

i
6, x

i
7, x

i
8, x

i
9, x

i
13} {xf

3}

37 {xi
4, x

i
5, x

i
6, x

i
7, x

i
8, x

i
9, x

i
14} {xf

5}

38 {xi
4, x

i
5, x

i
6, x

i
7, x

i
8, x

i
9, x

i
15} {xf

3}

39 {xi
4, x

i
5, x

i
6, x

i
7, x

i
8, x

i
12, x

i
14} {xf

5}

40 {xi
4, x

i
5, x

i
6, x

i
7, x

i
8, x

i
13, x

i
15} {xf

3}

41 {xi
4, x

i
5, x

i
6, x

i
7, x

i
9, x

i
12, x

i
14} {xf

5}

42 {xi
4, x

i
5, x

i
6, x

i
7, x

i
9, x

i
13, x

i
15} {xf

3}

43 {xi
4, x

i
5, x

i
6, x

i
8, x

i
9, x

i
12, x

i
14} {xf

5}

44 {xi
4, x

i
5, x

i
6, x

i
8, x

i
9, x

i
13, x

i
14, x

i
15} {xf

3}

45 {xi
4, x

i
5, x

i
7, x

i
8, x

i
9, x

i
12, x

i
13, x

i
15} {xf

3}

46 {xi
4, x

i
5, x

i
7, x

i
8, x

i
9, x

i
12, x

i
14} {xf

5}

47 {xi
4, x

i
5, x

i
8, x

i
9, x

i
12, x

i
13, x

i
14, x

i
15} {xf

3}

48 {xi
4, x

i
5, x

i
9, x

i
10, x

i
11, x

i
13, x

i
15} {xf

4}

49 {xi
4, x

i
6, x

i
7, x

i
8, x

i
9, x

i
12, x

i
13, x

i
14} {xf

5}

50 {xi
4, x

i
6, x

i
7, x

i
8, x

i
9, x

i
13, x

i
15} {xf

3}

51 {xi
5, x

i
6, x

i
7, x

i
8, x

i
9, x

i
12, x

i
14, x

i
15} {xf

5}

52 {xi
5, x

i
6, x

i
7, x

i
8, x

i
9, x

i
13, x

i
15} {xf

3}

53 {xi
6, x

i
7, x

i
8, x

i
9, x

i
12, x

i
13, x

i
14, x

i
15} {xf

5}

54 {xi
6, x

i
7, x

i
8, x

i
10, x

i
11, x

i
12, x

i
14} {xf

6}

Table 4: The pairs of subsets for Example 5.2 .
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