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Abstract.

The main topic of this paper is the minimal realization problem in the max algebra, which
is one of the modeling frameworks that can be used to model discrete event systems. First
we determine necessary and for some cases also sufficient conditions for a polynomial to be
the characteristic polynomial of a matrix in the max algebra. Then we show how a system of
multivariate max-algebraic polynomial equalities can be transformed into an Extended Linear
Complementarity Problem (ELCP). Finally we combine these results to find all equivalent
minimal state space realizations of a single input single output (SISO) discrete event system.
We also give a geometrical description of the set of all minimal realizations of a SISO max-
linear discrete event system.

1 Introduction

1.1 Overview

In this paper we consider discrete event systems, examples of which are flexible manufac-
turing systems, subway traffic networks, parallel processing systems, telecommunication net-
works, . . . . There exists a wide range of frameworks to model and to analyze discrete event
systems: Petri nets, generalized semi-Markov processes, formal languages, perturbation anal-
ysis, computer simulation and so on. In this paper we concentrate on a subclass of discrete
event systems that can be described with the max algebra [1, 2, 5]. Although these systems
lead to a non-linear description in linear algebra, this model becomes “linear” when we for-
mulate it in the max algebra. The main operations of the max algebra are the maximum
and the addition. There exist a lot of analogies between max algebra and linear algebra,
e.g. the Cayley-Hamilton theorem, eigenvectors and eigenvalues, . . . . However, there is one
major difference that prevents a straightforward translation of properties from linear algebra
to max algebra: in general there exists no inverse element for the maximum operator. One
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of the main advantages of an analytic max-algebraic model of a discrete event system is that
it allows us to derive some properties of the system (in particular the steady state behavior)
fairly easily, whereas in some cases brute force simulation might require a lot of computation
time. In this paper we only consider systems that can be described by a time-invariant state
space model, limiting ourselves to deterministic systems in which the sequence of the events
and the duration of the activities are fixed or can be determined in advance.

In order to analyze systems it is advantageous to have a compact description, i.e. a descrip-
tion with as few parameters as possible. For a system that can be described by a max-linear
state space model this gives rise to the minimal state space realization problem. We shall ad-
dress the minimal state space realization problem for max-algebraic single input single output
(SISO) systems. Although there have been some attempts to solve this problem [6, 14, 17] ,
our approach is – to the authors’ knowledge – the first one to solve it entirely. And it is
certainly the first time that a complete description of the set of all (minimal) realizations of
a SISO max-linear discrete event system is given. Apart from further enhancing the max-
algebraic system theory the solution of the minimal realization problem can also be seen as
the first step towards identification of discrete event systems. Furthermore the technique
presented in this paper can also be used to reduce the order of existing state space models.

The characteristic equation plays an important role in the solution of the minimal state
space realization problem. Therefore we also make a study of the characteristic equation of
a matrix in the max algebra. We show that the minimal state space realization problem in
the max algebra can be transformed into a system of multivariate max-algebraic polynomial
equations. This problem can in turn be transformed into an Extended Linear Complementar-
ity Problem (ELCP). The ELCP is an extension of the well-known Linear Complementarity
Problem, which is one of the fundamental problems of mathematical programming. In [10]
we have developed an algorithm to find all solutions of an ELCP. We shall use this algorithm
to find all equivalent minimal state space realizations of a SISO discrete event system and to
give a geometrical insight in the structure of the set of all equivalent state space realizations.

This paper is organized as follows: In Section 1 we introduce the notations and some of the
concepts and definitions that are used later on. In Section 2 we propose the Extended Linear
Complementarity Problem and describe the general solution set of this problem. In Section 3
we determine necessary conditions for the coefficients of the characteristic polynomial of a
matrix in the max algebra. We also state sufficient conditions for some cases. In Section 4
we show that a system of multivariate polynomial equations in the max algebra can be
transformed into an ELCP. Then we derive a lower bound for the minimal system order of
a SISO discrete event system in the max algebra. Finally we combine this with the results
of the preceding sections to find all minimal state space realizations of a SISO discrete event
system, given its impulse response. We also illustrate this procedure with a few examples.

1.2 Notations and definitions

If a is a vector then ai or (a)i represents the ith component of a. If A is an m by n matrix
then the entry on the ith row and on the jth column is denoted by aij or (A)ij . To select
submatrices of a matrix we use the following notation: A([i1, i2, . . . , ik], [j1, j2, . . . , jl]) is the
k by l matrix resulting from A by eliminating all rows except for rows i1, i2, . . . , ik and all
columns except for columns j1, j2, . . . , jl. A( :, j) is the jth column of A. The transpose of A

is AT . We shall represent the set of all possible combinations of k different numbers out of
the set {1, 2, . . . , n} as Ck

n. Pn is the set of all possible permutations of the set {1, 2, . . . , n}.
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1.3 The max algebra

One of the mathematical tools used in this paper is the max algebra. In this introduction
we only explain the notations we use to represent the max-algebraic operations. We also give
some definitions and theorems that will be used in the remainder of this paper. A complete
introduction to the max algebra can be found in [1, 5].

1.3.1 The max-algebraic operations

We use the following notations to represent the basic operations of the max algebra:

a⊕ b = max(a, b) ,

a⊗ b = a+ b .

The neutral element for ⊕ in Rε = (R ∪ {−∞},⊕,⊗) is ε = −∞. Since we use both linear
algebra and max algebra in this paper, we always write the⊗ sign explicitly to avoid confusion.

The max-algebraic power is defined as follows: a⊗
k
= a⊗ a⊗ . . .⊗ a

︸ ︷︷ ︸

k times

and is equal to ka in

linear algebra. So a⊗
0
= 0 · a = 0. The inverse element of a 6= ε is a⊗

−1
= −a . The division

is defined as follows:

a

b
= a⊗ b⊗

−1
if b 6= ε .

The operations ⊕ and ⊗ are extended to matrices in the usual way. So if C = A ⊕ B then

cij = aij ⊕ bij and if C = A⊗B then cij =
⊕

l

ail ⊗ blj .

ǫmn is the m by n zero matrix in the max algebra: (ǫmn)ij = ε .
En is the n by n identity matrix in Rmax: (En)ij = 0 if i = j ,

(En)ij = ε if i 6= j .

We also use the extension of the max algebra Smax that was introduced in [1, 12]. Smax is a
kind of symmetrization of Rmax. We shall restrict ourselves to the most important features
of Smax. For a more formal derivation the interested reader is referred to [12].
First we define the ⊖ operation for a, b ∈ Rε :

a⊖ b = a if a > b ,
a⊖ b = ⊖b if a < b ,
a⊖ a = a• .

So we have to introduce two new kinds of elements (⊖b and a•). This leads to Smax, an
extension of Rmax that contains three classes of elements:

• the max-positive elements: S
⊕, this corresponds to Rε ,

• the max-negative elements: S
⊖ = {⊖a | a ∈ Rε} ,

• the balanced elements: S
• = {a• | a ∈ Rε} .

The max-positive and the max-negative elements are called signed (S∨ = S
⊕ ∪ S

⊖).
If a ∈ S then it can be written as a = a+ ⊖ a− where a+ and a− are as small as possible:
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• if a = b ∈ Rε then a+ = a and a− = ε ,

• if a = ⊖b ∈ S
⊖ then a+ = ε and a− = b ,

• if a = b• ∈ S
• then a+ = a− = b .

a+ is the max-positive part of a, a− is the max-negative part of a and |a|
⊕
= a+ ⊕ a− is the

max-absolute value of a.

Example 1.1 Let a = 2• ∈ S
•, then a+ = 2, a− = 2 and |a|

⊕
= 2.

For b = ⊖(−1) ∈ S
⊖ we have b+ = ε, b− = −1 and |b|

⊕
= −1.

This symmetrization allows us to “solve” equations that have no solutions in Rmax. Unfor-
tunately we then have to introduce balances (∇) instead of equalities. The main difference
between balances and equalities is that a balance doesn’t yield an equivalence relation since it
is not transitive. Informally an ⊖ sign in a balance means that the element should be at the
other side: so 4⊖ 4 ∇ 2 means 4 ∇ 4⊕ 2. If both sides of a balance are signed (max-positive
or max-negative) we can replace the balance by an equality. So 4 ∇ 4 ⊕ 2 is equivalent to
4 = 4⊕ 2.

1.3.2 Some definitions and theorems

Definition 1.2 (Determinant) Consider a matrix A ∈ S
n×n. The determinant of A is

defined as

detA =
⊕

σ∈Pn

sgn (σ)⊗
n⊗

i=1

aiσ(i) ,

where Pn is the set of all permutations of {1, . . . , n} , and sgn (σ) = 0 if the permutation σ is
even and sgn (σ) = ⊖0 if the permutation is odd.

Definition 1.3 (Determinantal rank) Let A ∈ S
m×n. The determinantal rank of A,

rdet(A), is defined as the dimension of the largest square submatrix of A the determinant of
which is not balanced and not equal to ε.

Theorem 1.4 Let A ∈ S
n×n. The homogeneous linear balance A ⊗ x ∇ ε has a non-trivial

signed solution if and only if detA ∇ ε.

Proof : See [12]. The proof given there is constructive so it can be used to find a solution.

Definition 1.5 (Characteristic equation) Let A ∈ S
n×n. The characteristic equation of

A is defined as det(A⊖ λ⊗ En) ∇ ε.

This leads to

λ⊗
n

⊕
n⊕

p=1

ap ⊗ λ⊗
n−p

∇ ε ,

which will be called a monic balance, since the coefficient of λ⊗
n
equals 0 (i.e. the identity

element for ⊗).
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If we define αp = a+p and βp = a−p and if we move all terms with max-negative coefficients to
the right hand side we get

λ⊗
n

⊕
n⊕

i=1

αi ⊗ λ⊗
n−i

∇
n⊕

j=1

βj ⊗ λ⊗
n−j

,

with αp, βp ∈ Rε. In [15] Olsder defines a variant of this equation using the dominant instead
of the determinant. This leads to signed coefficients: aOlsder

p ∈ S
∨ or αOlsder

p ⊗βOlsder
p = ε with

aOlsder
p = ap if ap ∈ S

∨ and
∣
∣
∣aOlsder

p

∣
∣
∣
⊕

6 |ap|⊕ if ap ∈ S
•.

Theorem 1.6 (Cayley-Hamilton) In Smax every square matrix satisfies its characteristic
equation.

Proof : See [13] and [15].

2 The Extended Linear Complementarity Problem

2.1 Problem formulation

Consider the following problem:

Given two matrices A ∈ R
p×n, B ∈ R

q×n, two column vectors c ∈ R
p, d ∈ R

q and m subsets
φj of {1, 2, . . . , p}, find a vector x ∈ R

n such that

m∑

j=1

∏

i∈φj

(Ax− c)i = 0 (1)

subject to Ax > c
Bx = d ,

or show that no such vector exists.

In [10] we have demonstrated that this problem is an extension of the Linear Complemen-
tarity Problem [4] and a unifying framework for other extensions of Linear Complementarity
Problem such as the Vertical Linear Complementarity Problem of Cottle and Dantzig [3] and
the Horizontal Linear Complementarity Problem of De Moor [7, 16]. Therefore we call it the
Extended Linear Complementarity Problem (ELCP).
Equation (1) represents the complementarity condition. A possible interpretation of this
condition is the following: since Ax > c, condition (1) is equivalent to

∏

i∈φj

(Ax− c)i = 0 , ∀j ∈ {1, 2, . . . ,m} . (2)

So we could say that each set φj corresponds to a subgroup of inequalities of Ax > c and that
in each group at least one inequality should hold with equality:

∀j ∈ {1, 2, . . . ,m} : ∃i ∈ φj such that (Ax− c)i = 0 .
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We shall use this interpretation in Section 4 to demonstrate that a system of multivariate
polynomial equations in the max algebra can be transformed into an ELCP.

In [10] we have made a thorough study of the solution set of the ELCP and developed an
algorithm to find all its solutions. We shall now state the main results of that paper.

The ELCP algorithm results in 3 sets of rays X cen, X inf , X fin and a set Λ of pairs
{

X inf
s ,X fin

s

}

where X inf
s is a subset of X inf and X fin

s is a non-empty subset of X fin. The solution set of the
ELCP is then characterized by the following theorem:

Theorem 2.1 When X cen, X inf , X fin and Λ are given, then x is a solution of the ELCP if

and only if there exists a pair
{

X inf
s ,X fin

s

}

∈ Λ such that

x =
∑

xk∈X
cen

λkxk +
∑

xk∈X
inf
s

κkxk +
∑

xk∈X
fin
s

µkxk , (3)

with λk ∈ R, κk, µk > 0 and
∑

k

µk = 1.

As a result we have that:

Corollary 2.2 The general solution set of an ELCP consists of the union of faces a polyhe-
dron.

3 The characteristic equation of a max-positive matrix

The characteristic equation will play an important role in the determination of a lower bound
for the minimal system order as will be shown in Section 5.3. Normally we are only interested
in system matrices with max-positive entries. In this section we derive necessary (and for some
cases also sufficient) conditions for a polynomial in Smax to be generated by a matrix with
entries in Rε, i.e. a max-positive matrix. If we have a monic polynomial in Smax the results
of this section will allow us to check whether the given polynomial can be the characteristic
polynomial of a max-positive matrix.

3.1 The characteristic equation

Definition 3.1 (Principal submatrix) Let A ∈ S
n×n and let {i1, i2, . . . , ik} be a combi-

nation of k elements out of {1, . . . , n} . Then the matrix A([i1, i2, . . . , ik], [i1, i2, . . . , ik]) is a k
by k principal submatrix of A. It can be obtained from A by deleting n− k rows and columns.

We represent the max-algebraic sum of the determinants of all k by k submatrices of A as
Ek(A) :

Ek(A) =
⊕

ϕ∈Ck
n

detA([i1, i2, . . . , ik], [i1, i2, . . . , ik])

where Ck
n is the set of all combinations of k numbers out of {1, . . . , n} and ϕ = {i1, i2, . . . , ik}.

Property 3.2 If we represent the characteristic equation of A ∈ S
n×n as

n⊕

p=0

ap⊗λ⊗
n−p

∇ ε

then ap = (⊖0)⊗
p
⊗ Ep(A) .
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Example 3.3 Consider A =






0 5 9
5 20 10
9 10 18




.

The characteristic equation of A is λ⊗
3
⊖ 20⊗ λ⊗

2
⊕ 38⊗ λ ⊕ 38• ∇ ε.

Proposition 3.4 In Smax every monic nth order linear balance is the characteristic equation
of an n× n matrix: the linear balance

λ⊗
n

⊕ a1 ⊗ λ⊗
n−1

⊕ . . . ⊕ an−1 ⊗ λ ⊕ an ∇ ε

is the characteristic equation of the matrix

A =











ε 0 ε . . . ε
ε ε 0 . . . ε
...

...
...

. . .
...

ε ε ε . . . 0
⊖an ⊖an−1 ⊖an−2 . . . ⊖a1











.

However, not every monic polynomial corresponds to the characteristic polynomial of a max-
positive matrix as we shall see in the next subsection.

3.2 Properties of the characteristic polynomial of max-positive matrices

Property 3.5 If A ∈ R
n×n
ε then a1 ∈ S

⊖.

Proof : We know that a1 = ⊖
n⊕

i=1

aii with aii ∈ Rε so a1 ∈ S
⊖ .

To prove the following property we first need a lemma involving permutations. The parity of
a permutation can be determined in various ways. We use:

Property 3.6 The parity of a permutation is equal to the parity of the number of its elemen-
tary cycles of even length.

First consider a circular permutation σc of n elements:

σc(i1) = i2, σc(i2) = i3, . . . , σc(in−1) = in, σc(in) = i1 .

This permutation has a cycle of length n. If n is even, then σc ∈ Pn is odd because there is
1 cycle of even length. If n is odd, then σc ∈ Pn is even because there are 0 cycles of even
length.
If a permutation of n numbers is not circular we can decompose it into r elementary cycles

Ci of length li, with r > 1 and
r∑

i=1

li = n . Each cycle will be a circular permutation.

Lemma 3.7 If σ2k,even (k > 0) is an even permutation of 2k elements, then it can be decom-
posed into two even permutations of an odd number of elements or two odd permutations of
an even number of elements:

σ2k,even = σ2l+1,even ∪ σ2k−2l−1,even or σ2k,even = σ2m,odd ∪ σ2k−2m,odd .
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If σ2k+1,odd (k > 0) is an odd permutation of 2k + 1 elements, then it can be decomposed
into an even permutation of an odd number of elements and an odd permutation of an even
number of elements:

σ2k+1,odd = σ2p+1,even ∪ σ2k−2p,odd. .

Proof :

First consider σ2k,even . This is an even permutation of an even number of elements so it is not
circular and it can be decomposed into elementary cycles. Suppose that there are ceven cycles
of even length each having neven,i elements and codd cycles of odd length each having nodd,j

elements. Let ntot,even =
ceven∑

i=1

neven,i and ntot,odd =
codd∑

j=1

nodd,j . Since the parity of σ2k,even

is even, ceven should also be even. ntot,even is always even. The total number of elements
ntot = 2k is even, so we have that ntot,odd is also even and hence that codd is even. There are
two cases: ceven = 0 and ceven 6= 0.
If ceven = 0 then codd 6= 0 because 2k 6= 0. Take one cycle of odd length 2l + 1. This
corresponds to an even permutation of 2l + 1 elements: σ2l+1,even. The other cycles form
a permutation with 0 cycles of even length, so it is an even permutation of the remaining
2k − 2l − 1 elements: σ2k−2l−1,even.
If ceven 6= 0 we take one cycle of even length 2m. This corresponds to σ2m,odd. The remaining
cycles constitute a permutation with an odd number (ceven − 1) of cycles of even length:
σ2k−2m,odd.
So we have proven that σ2k,even can be decomposed as σ2l+1,even∪σ2k−2l−1,even or as σ2m,odd∪
σ2k−2m,odd .

Now consider σ2k+1,odd . This is an odd permutation of an odd number of elements so it is
not circular and it can be decomposed into elementary cycles. Since the parity of σ2k+1,odd is
odd, ceven should also be odd. ntot,even is always even, and since the total number of elements
ntot = 2k + 1 is odd we have that ntot,odd is odd and hence that codd is odd. This means
that codd 6= 0. So let us take one cycle of odd length 2p + 1. This corresponds to an even
permutation of 2p+ 1 elements: σ2p+1,even.
The other cycles will then correspond to a permutation of with an odd number (ceven) of
cycles of even length, so it is an odd permutation of 2k − 2p elements: σ2k−2p,odd .
So σ2k+1,odd = σ2p+1,even ∪ σ2k−2p,odd .

Now we give some properties of ap = (⊖0)⊗
p
⊗ Ep(A) = a+p ⊖ a−p . First we suppose that we

don’t simplify ⊖. This means that for a = 3⊖ 4 we have a+ = 3 and a− = 4. Later we shall
see how we have to adapt the properties to take simplification into account, because then we
shall have that a = 3⊖ 4 results in a = ⊖4 or a+ = ε and a− = 4.

Property 3.8 Let A ∈ R
n×n
ε and let ap = (⊖0)⊗

p
⊗ Ep(A) = a+p ⊖ a−p (without simplifying

⊖). Then

∀p ∈ {2, . . . , n} : a+p 6

⌊ p

2⌋⊕

r=1

a−r ⊗ a−p−r ,

where ⌊x⌋ stands for the largest integer number less than or equal to x.
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Proof : We know that

ap = (⊖0)⊗
p
⊗ Ep(A)

= (⊖0)⊗
p ⊕

ϕ∈C
p
n

⊕

σ∈Pp

sgn (σ)⊗ ai1iσ(1)
⊗ ai2iσ(2)

⊗ . . .⊗ aipiσ(p)
,

with ϕ = {i1, i2, . . . , ip} .
If we extract the max-positive and the max-negative part of ap (without simplifying ⊖), we
find for k > 0 :

a+2k =
⊕

ϕ∈C2k
n

⊕

σ∈P2k,even

ai1iσ(1)
⊗ ai2iσ(2)

⊗ . . .⊗ ai2kiσ(2k)
(4)

a−2k =
⊕

ϕ∈C2k
n

⊕

σ∈P2k,odd

ai1iσ(1)
⊗ ai2iσ(2)

⊗ . . .⊗ ai2kiσ(2k)
(5)

a+2k+1 =
⊕

ϕ∈C2k+1
n

⊕

σ∈P2k+1,odd

ai1iσ(1)
⊗ ai2iσ(2)

⊗ . . .⊗ ai2k+1iσ(2k+1)
(6)

a−2k+1 =
⊕

ϕ∈C2k+1
n

⊕

σ∈P2k+1,even

ai1iσ(1)
⊗ ai2iσ(2)

⊗ . . .⊗ ai2k+1iσ(2k+1)
. (7)

Let us first consider a+2k. The terms of a+2k are generated by even permutations of 2k elements.
According to Lemma 3.7 such a permutation can be decomposed into two even permutations
of odd lengths or two odd permutations of even lengths. So if we consider all possible con-
catenations of two even permutations of odd lengths (corresponding to a−2l+1 ⊗ a−2k−2l−1) or

two odd permutations of even length (a−2m ⊗ a−2k−2m), we are sure to have included all terms

of a+2k. In other words a+2k 6

2k−1⊕

r=1

a−r ⊗a−2k−r . Since (a
−
r ⊗a−2k−r) ⊕ (a−2k−r⊗a−r ) = a−r ⊗a−2k−r

we find a+2k 6

k⊕

r=1

a−r ⊗ a−2k−r .

Now consider a+2k+1, the terms of which are generated by odd permutations of 2k+1 elements.
Lemma 3.7 also tells us that such a permutation can be decomposed into an odd permutation
of an even number of elements and an even permutation of an odd number of elements. Using

the same reasoning as for a+2k, we find that a+2k+1 6

k⊕

r=1

a−r ⊗ a−2k+1−r .

Combining the two inequalities leads to a+p 6

⌊ p

2⌋⊕

r=1

a−r ⊗ a−p−r .

We don’t have a similar expression for a−p because then some of the generating permutations
are circular, and these cannot be decomposed into more than one elementary cycle.

Normally we simplify ⊖ , by setting a−p = ε if a−p < a+p and a+p = ε if a−p > a+p .
Therefore we shall from now on represent the characteristic equation of A ∈ R

n×n
ε as

λ⊗
n

⊕
n⊕

i=2

αi ⊗ λ⊗
n−i

∇ β1 ⊗ λ⊗
n−1

⊕
n⊕

j=2

βj ⊗ λ⊗
n−j

,
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with






αp = a+p , βp = ε if a+p > a−p ,

αp = ε, βp = a−p if a+p < a−p ,

αp = a+p , βp = a−p if a+p = a−p ,

where a+p and a−p are defined as in (4) – (7), i.e. without simplification of ⊖.
So there are three possible cases: αp = ε, βp = ε or αp = βp. We already have omitted α1

because Property 3.5 leads to α1 = a+1 = ε.
We have that αp 6 a+p , βp 6 a−p and |ap|⊕ = a+p ⊕ a−p = αp ⊕ βp .

Property 3.9 ∀i ∈ {2, . . . , n} : αi 6

⌊ i
2⌋⊕

r=1

(αr ⊕ βr)⊗ (αi−r ⊕ βi−r) , where ⌊x⌋ stands for

the largest integer number less than or equal to x.

Proof : Using the fact that a−i 6 |ai|⊕ Property 3.8 leads to

a+i 6

⌊ i
2⌋⊕

r=1

∣
∣a−r

∣
∣
⊕
⊗

∣
∣
∣a−i−r

∣
∣
∣
⊕

6

⌊ i
2⌋⊕

r=1

(αr ⊕ βr)⊗ (αi−r ⊕ βi−r) .

We also know that αi 6 a+i . So

αi 6

⌊ i
2⌋⊕

r=1

(αr ⊕ βr)⊗ (αi−r ⊕ βi−r) .

We even have a more stringent property which gives necessary conditions for the coefficients
of an Smax polynomial such that it is the characteristic polynomial of a max-positive matrix.
We shall make extensive use of this property in Section 5 when we search a lower bound for
the minimal system order of a discrete event system.

Property 3.10 (Necessary conditions)

∀i ∈ {2, . . . , n} at least one of the following statements is true :

1) αi 6

⌊ i
2⌋⊕

r=1

βr ⊗ βi−r

2) αi <

⌊ i
2⌋⊕

r=2

αr ⊗ αi−r

3) αi <
i−1⊕

r=2

αr ⊗ βi−r

where ⌊x⌋ stands for the largest integer number less than or equal to x.

Proof : Take an arbitrary i ∈ {2, . . . , n}. Then according to Property 3.8 there exists an

s 6

⌊
i

2

⌋

such that

αi 6 a+i 6 a−s ⊗ a−i−s .

10



We have that either a−s = βs or a−s < αs and the same goes for a−i−s.
This means that at least one of the following inequalities holds:

1) αi 6 βs ⊗ βi−s 6

⌊ i
2⌋⊕

r=1

βr ⊗ βi−r

2) αi < αs ⊗ αi−s 6

⌊ i
2⌋⊕

r=2

αr ⊗ αi−r

3) αi < βs ⊗ αi−s ⊕ αs ⊗ βi−s 6

i−1⊕

r=2

αr ⊗ βi−r .

In the last two max-algebraic sums we can start from r = 2 because α1 = ε.

3.3 Necessary and sufficient conditions for a polynomial to be the charac-

teristic polynomial of a max-positive matrix

In the next subsections we shall case by case determine necessary and sufficient conditions
for

λ⊗
n

⊕
n⊕

i=1

αi ⊗ λ⊗
n−i

∇
n⊕

j=1

βj ⊗ λ⊗
n−j

(8)

to be the characteristic equation of a max-positive matrix and indicate how such a matrix
can be found (see [8] for proofs). Unfortunately we have currently only found necessary and
sufficient conditions for 1× 1 up to 4× 4 matrices.
In all cases we have α1 = ε as a necessary condition.

We also define κi,j =
αj

βi
if βi 6= ε ,

= ε if βi = ε .

3.3.1 The 1× 1 case

The only necessary and also sufficient condition is α1 = ε.
The matrix [β1] has λ ∇ β1 as its characteristic equation.

3.3.2 The 2× 2 case

The necessary and also sufficient conditions are
{

α1 = ε
α2 6 β1 ⊗ β1 .

The matrix

[

β1 β2
0 κ1,2

]

has λ⊗
2
⊕ α2 ∇ β1 ⊗ λ ⊕ β2 as its characteristic equation.

11



3.3.3 The 3× 3 case

The necessary and also sufficient conditions are






α1 = ε

α2 6 β1 ⊗ β1

α3 6 β1 ⊗ β2 or α3 < β1 ⊗ α2 .

The matrix






β1 β2 β3
0 κ1,2 κ1,3
ε 0 ε




 has λ⊗

3
⊕ α2 ⊗ λ ⊕ α3 ∇ β1 ⊗ λ⊗

2
⊕ β2 ⊗ λ ⊕ β3 as its

characteristic equation.

3.3.4 The 4× 4 case

First we distinguish three possible cases:
Case A: α4 6 β1 ⊗ β3 or α4 < β1 ⊗ α3 ,

Case B: α4 > β1 ⊗ β3 and α4 > β1 ⊗ α3 and α4 6 β2 ⊗ β2 and

( β1 = ε or α2 = ε or β4 = α4 ) ,

Case C: α4 > β1 ⊗ β3 and α4 > β1 ⊗ α3 and α4 6 β2 ⊗ β2 and

α2 = β2 6= ε and β4 = ε .

If the coefficients don’t fall into (exactly) one of these three cases, they cannot correspond to
a max-positive matrix.

The necessary and sufficient conditions are:






α1 = ε

α2 6 β1 ⊗ β1

α3 6 β1 ⊗ β2 or α3 < β1 ⊗ α2

for Case A: no extra conditions
for Case B: β1 ⊗ α4 6 β2 ⊗ α3 or β1 ⊗ α4 < β2 ⊗ β3
for Case C: β1 ⊗ α3 = β2 ⊗ α2 and β1 ⊗ α4 = β2 ⊗ α3 .

We find for Case A:








β1 β2 β3 β4
0 κ1,2 κ1,3 κ1,4
ε 0 ε ε
ε ε 0 ε







, for Case B:








β1 β2 β3 β4
0 κ1,2 κ1,3 ε
ε 0 ε κ2,4
ε ε 0 ε








and

for Case C:








β1 β2 ε ε
0 ε ε ε
ε 0 κ2,3 κ2,4
ε ε 0 ε








.

4 Multivariate polynomial equations in the max algebra

Consider the following problem:

Given a set of integers {mk} and three sets of coefficients {aki}, {bk} and {ckij} with
i ∈ {1, . . . ,mk} , j ∈ {1, . . . , n} and k ∈ {1, . . . , p}, find a vector x ∈ R

n
ε that satisfies

mk⊕

i=1

aki ⊗
n⊗

j=1

xj
⊗
ckij

= bk , for k = 1, 2, . . . , p , (9)
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or show that no such vector x exists.

We demonstrate that this problem can be transformed into an ELCP:
First we consider one equation of the form (9) :

mk⊕

i=1

aki ⊗
n⊗

j=1

xj
⊗
ckij

= bk .

In linear algebra this is equivalent to the system of linear inequalities

aki +
n∑

j=1

ckij xj 6 bk , for i = 1, 2, . . . ,mk ,

where at least one inequality should hold with equality. If we transfer the aki’s to the right
hand side and if we define dki = bk − aki, we get

n∑

j=1

ckij xj 6 dki , for i = 1, 2, . . . ,mk .

If we define p matrices Ck and p column vectors dk such that (Ck)ij = ckij and (dk)i = dki,
then (9) leads to p groups of linear inequalities Ck x 6 dk with in each group at least one
inequality that should hold with equality.

We put all Ck’s in one large matrix A =









−C1

−C2
...

−Cp









and all dk’s in one vector c =









−d1
−d2
...

−dp









.

We also define p sets φj such that φj = {sj+1, sj+2, . . . , sj+mj} , for j = 1, 2, . . . , p , where
s1 = 0 and sj+1 = sj +mj for j = 1, 2, . . . , p− 1. Our original problem (9) is then equivalent
to the following ELCP:

Find a vector x ∈ R
n such that

p
∑

j=1

∏

i∈φj

(Ax− c)i = 0 (10)

subject to Ax > c ,

or show that no such vector x exists.

This means that we can use the ELCP algorithm of [10] to find all solutions of problem (9).
In Section 5 we shall show that the minimal realization problem in the max algebra leads to a
system of multivariate polynomial equations in the max algebra and can thus be solved using
the technique of this section.
For other applications of the ELCP in the max algebra and in the max/min/plus algebra the
interested reader is referred to [11].

Remark 4.1 To avoid problems arising from 0 · (−∞) and −∞ + ∞ we assume that all
entries of x will be finite. Solutions with components equal to ε can be obtained by allowing
some of the λk’s or κk’s in (3) to become infinite, but in a controlled way, since we only allow
infinite components that are equal to ε = −∞; components equal to +∞ are not allowed.
The max operation hides small numbers from larger numbers. Therefore it suffices in practice
to replace negative entries that are large enough in absolute value by ε provided that there
are no positive entries of the same order of magnitude. This technique will be demonstrated
in Example 6.2.
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5 Minimal state space realization

In this section we shall use the results of the preceding sections to construct all equivalent
minimal state space realizations of a max-linear discrete event system, given its impulse
response. The procedure consists of two parts. First we determine a lower bound r for
the minimal system order and we try to make it as tight as possible. In the second step
we construct an ELCP that will yield the system matrices. This procedure will result in
a compact description of the entire set of all possible state space realizations of the given
impulse response.

5.1 Realization and minimal realization

Suppose that we have a single input single output (SISO) discrete event system that can be
described by an nth order state space model:

x(k + 1) = A⊗ x(k) ⊕ B ⊗ u(k) (11)

y(k) = C ⊗ x(k) (12)

with A ∈ R
n×n
ε , B ∈ R

n×1
ε and C ∈ R

1×n
ε . u is the input, y is the output and x is the state

vector.
We define the unit impulse e as: e(k) = 0 if k = 0 ,

= ε otherwise .
If we apply a unit impulse to the system and if we assume that the initial state x(0) satisfies
x(0) = ε or A⊗ x(0) 6 B, we get the impulse response as the output of the system:

x(1) = B , x(2) = A⊗B , . . . , x(k) = A⊗
k−1

⊗B ⇒ y(k) = C ⊗A⊗
k−1

⊗B . (13)

Let gk = C ⊗A⊗
k
⊗B. The gk’s are called the Markov parameters.

Let us now reverse the process: suppose that A, B and C are unknown, and that we only
know the Markov parameters (e.g. from experiments – where we assume that the system
is max-linear and time-invariant and that there is no noise present). How can we construct
A, B and C from the gk’s? This process is called realization. If we make the dimension of A
minimal, we have a minimal realization. Although there have been some attempts to solve
this problem [6, 14, 17] , this is – to the authors’ knowledge – the first time it is solved entirely.
It is certainly the first time that a complete description of the set of all minimal realizations
of a SISO max-linear discrete event system is given.

5.2 Equivalent state space realizations

First we give some theorems on equivalent state space realizations. We shall again encounter
these theorems when we look at the set of all equivalent state space realizations in Example 6.1.

Definition 5.1 (Equivalent state space realizations) Two triples (A, B, C) and (Ã,
B̃, C̃) are called equivalent if the corresponding state space models have the same impulse
response, i.e.

C ⊗A⊗
k
⊗B = C̃ ⊗ Ã⊗

k
⊗ B̃ , ∀k > 0 .
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Theorem 5.2 Let T ∈ R
n×n
ε be an invertible matrix. If the triple (A, B, C) is a realization

of a max-linear time-invariant system then the triple (T ⊗ A ⊗ T⊗
−1

, T ⊗ B, C ⊗ T⊗
−1

) is
an equivalent realization.

Proof :

(C ⊗ T⊗
−1

)⊗
(

T ⊗A⊗ T⊗
−1)⊗

k

⊗ (T ⊗B)

= C ⊗ T⊗
−1

⊗ T ⊗A⊗
k
⊗ T⊗

−1
⊗ T ⊗B

= C ⊗A⊗
k
⊗B .

This theorem corresponds the max-algebraic equivalent of a similarity transformation. How-
ever, in contrast to linear algebra, the class of invertible matrices in Rmax is rather limited. It
only consists of permuted diagonal matrices, i.e. matrices with only one non-ε entry on each
row and on each column [5].
In contrast to linear systems, the entire set of nth equivalent state space realizations cannot
be obtained solely by the similarity transformation of Theorem 5.2 as will be shown in Ex-
ample 6.1.
Another way to construct equivalent state space realizations is the following:

Theorem 5.3 (L-transformation) Let the triple (A, B, C) be a realization of a max-
linear time-invariant system. Let L ∈ R

l×n
ε be a common factor of A and C such that

A = Â⊗ L and C = Ĉ ⊗ L. Then the triple (Ã, B̃, C̃) with

Ã = L⊗ Â , (14)

B̃ = L⊗B , (15)

C̃ = Ĉ , (16)

is an equivalent realization.

Proof : See [11] or use a reasoning similar to the proof of Theorem 5.2.

We can also use a dual of this theorem:

Theorem 5.4 (M-transformation) Let the triple (A, B, C) be a realization of a max-
linear time-invariant system. Let M ∈ R

n×l
ε be a common factor of A and B such that

A = M ⊗ Â and B = M ⊗ B̂. Then the triple (Ã, B̃, C̃) with

Ã = Â⊗M , (17)

B̃ = B̂ , (18)

C̃ = C ⊗M , (19)

is an equivalent realization.

So to get another equivalent state space model of a system with system matrices (A, B, C)
all we have to do is find a decomposition

[

A
C

]

=

[

Â

Ĉ

]

⊗ L or
[

A B
]

= M ⊗
[

Â B̂
]

,
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with L ∈ R
l×n
ε or M ∈ R

n×l
ε . This matrix decomposition can be considered as a system

of multivariate max-algebraic equalities [11] and can thus be solved using the techniques of
Section 4.
The matrices L and M are not necessarily invertible (at least not in Rmax) even if l = n, so
in general L- and M - transformations are no similarity transformations.
But if we do the same operations in Smax, then L is invertible (provided that L is square and

detL ∇/ ε). So Â ∇ A ⊗ L⊗
−1

and then we have a similarity transformation since equations
(14) – (16) can be transformed into

Ã ∇ L⊗A⊗ L⊗
−1

,

B̃ ∇ L⊗B ,

C̃ ∇ C ⊗ L⊗
−1

.

An analogous reasoning can be made for M -transformations.
In Rmax the M -transformation can be considered as the inverse of the L-transformation: if we
can construct the triple (A1, B1, C1) from the triple (A2, B2, C2) with an L-transformation
we can go back from (A2, B2, C2) to (A1, B1, C1) with an M -transformation with M = L
and with the same Â as for the L-transformation.
However, as will be shown in Example 6.1 these L- and M -transformations don’t yield the
entire set of all equivalent state space realizations in one step.

Theorem 5.5 If the triple (A, B, C) is a realization of a max-linear time-invariant system
then the triple (A, α⊗B, (−α)⊗ C) with α ∈ R is an equivalent realization.

Proof : Apply Theorem 5.2 with T = α⊗ En and thus T⊗
−1

= α⊗
−1

⊗ En = (−α)⊗ En .

Theorem 5.6 A state space realization of a max-linear time-invariant system is not isolated.

Proof : If B 6= ǫn1 and C 6= ǫ1n, then according to Theorem 5.5 we can find an equivalent
realization in the neighborhood of (A, B, C) : (A, δ ⊗B, (−δ)⊗ C) with δ small enough.
If B = ǫn1 or C = ǫ1n, the system is trivial since ∀k > 0 : gk = ε and so the A matrix is
arbitrary. If A 6= ǫnn then (δ ⊗ A, B, C) with δ small enough is an equivalent realization in
the neighborhood of (A, B, C). If A = ǫnn then ((−η) ⊗ En, B, C) with η large enough in
absolute value is an equivalent realization in the neighborhood of (A, B, C).

5.3 A lower bound for the minimal system order

In this section we present a method to find a lower bound for the minimal system order. We
shall use the following property:

Property 5.7 Consider A ∈ S
n×n, B ∈ S

n×1 and C ∈ S
1×n. If A satisfies an equation of the

form
n⊕

p=0

ap ⊗A⊗
n−p

∇ ε (20)

(e.g. its characteristic equation) then the Markov parameters satisfy

n⊕

p=0

ap ⊗ gk+n−p ∇ ε for k = 0 , 1, 2, . . . .
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Suppose that we have a system that can be described by (11) – (12), with unknown system
matrices. If we want to find a minimal realization of this system the first question that has
to be answered is that of the minimal system order.

Consider the semi-infinite Hankel matrix H =









g0 g1 g2 . . .
g1 g2 g3 . . .
g2 g3 g4 . . .
...

...
...

. . .









.

As a direct consequence of Theorem 1.6 and Property 5.7 we have that the columns of H
satisfy

n⊕

p=0

ap ⊗H(:, k + n− p) ∇ ε for k = 1, 2, . . . (21)

where the coefficients ap are the coefficients of the characteristic equation of the system matrix
A. This leads to

Property 5.8 Let Hsub,s = H([i1, i2, . . . , is], [j + 1, j + 2, . . . , j + s]) be an s by s square
submatrix of the Hankel matrix H with arbitrary row indices and consecutive column indices.
If s > n then we have that det(Hsub,s) ∇ ε .

Proof : If A is an n by n matrix with entries in Rε then according to Olsder’s variant of the
Cayley-Hamilton theorem [15], the coefficients in the characteristic equation of A are signed.
This also means that the coefficients ap in (21) are signed or that every balance of the form:

H([i1, i2, . . . , is], [j + 1, j + 2, . . . , j + s])⊗ a ∇ ε

with s > n, j > 0 and {i1, i2, . . . , is} ∈ Cs
∞ has a signed solution: if s = n + 1 we get the

coefficients of the characteristic equation as a solution and for s > n + 1 we can always set
some of the components of a equal to ε. Theorem 1.4 then leads to

det (H([i1, i2, . . . , is], [j + 1, j + 2, . . . , j + s])) ∇ ε

for s > n.

So the dimension of the largest square submatrix of H with consecutive column indices that
has a non-balanced determinant will be less than or equal to n. We represent this dimension
as rcc(H).

Definition 5.9 (Consecutive column rank) Consider P ∈ S
m×n. The consecutive column

rank of P , rcc(P ), is the dimension of the largest square submatrix of P with consecutive
column indices, the determinant of which is not balanced:

rcc(P ) = max {dim(Psub,s) |Psub,s = P ([i1, i2, . . . , is], [j + 1, j + 2, . . . , j + s]) with

0 6 s 6 min(m,n), 0 6 j 6 n− s, {i1, i2, . . . , is} ∈ Cs
m and det(Psub,s) ∇/ ε} .

We can define the consecutive row rank of P , rcr(P ), in an analogous way (in general rcc(P ) 6=
rcr(P )). But since we only consider symmetric matrices in this section, we only need the
consecutive column rank: if P = P T then rcc(P ) = rcr(P ). We have that rcc(P ) 6 rdet(P ).
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To find a lower bound r for the minimal system order we shall search for a relation of the
form (21) among the columns of H with a minimal number of terms. This number of terms
will be a first estimate for the lower bound r. Since we know that the entries of the system
matrix A belong to Rε we shall search for coefficients ap that correspond to a matrix with
entries in Rε. So the coefficients should satisfy the necessary (and/or sufficient) conditions of
Section 3.
This leads to the following procedure:

First we construct a p by q Hankel matrix

Hp,q =









g0 g1 . . . gq−1

g1 g2 . . . gq
...

...
. . .

...
gp−1 gp . . . gp+q−2









with p and q large enough: p, q ≫ n, where n is the real (but unknown) system order. Now
we try to find n and a0, a1, . . . , an such that the columns of Hp,q satisfy an equation of the
form (21).
We start with r equal to rcc(Hp,q). Let

Hsub,r = Hp,q([i1, i2, . . . , ir], [j + 1, j + 2, . . . , j + r])

be an r by r submatrix of Hp,q the determinant of which is not balanced: detHsub,r ∇/ ε. If
we add one arbitrary row and the (j + r + 1)-st column to Hsub,r we get an r + 1 by r + 1
matrix Hsub,r+1 that has a balanced determinant. So according to Theorem 1.4 the system
of linear balances

Hsub,r+1 ⊗ a ∇ ε

has a signed solution a =
[

ar ar−1 . . . a0
]T

. We now look for a solution a that corre-

sponds to the characteristic equation of a matrix with entries in Rε (this should not necessarily
be a signed solution; a signed solution would correspond to Olsder’s variant of the character-
istic equation). First of all we normalize a0 to 0 and then we check if the necessary (and/or
sufficient) conditions of Section 3 for the coefficients of the characteristic equation of a ma-
trix with entries in Rε are satisfied. If they are not satisfied we augment r and repeat the
procedure. Note that even if the necessary conditions are satisfied we don’t necessarily have
coefficients that correspond to a matrix with entries in Rε.
However, we continue until we get the following stable relation among the columns of Hp,q:

Hp,q(:, k + r) ⊕ a1 ⊗Hp,q(:, k + r − 1) ⊕ . . . ⊕ ar ⊗Hp,q(:, k) ∇ ε (22)

for k = 1, 2, . . . , q − r .
Since we assume that the system can be described by (11) – (12) and that p, q ≫ n, we can
always find such a stable relationship by gradually augmenting r. The r that results from
this procedure is indeed a lower bound for the minimal system order, since it corresponds to
the smallest number of terms in a relationship of form (21) among the columns of Hp,q.
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5.4 Determination of the system matrices

Now we have to find A ∈ R
r×r
ε , B ∈ R

r×1
ε and C ∈ R

1×r
ε such that

C ⊗A⊗
k
⊗B = gk , for k = 0, 1, 2, . . . . (23)

In practice it seems that we only have to take the transient behavior and the first cycles of
this steady-state behavior into account. So we may limit ourselves to the first, say, N Markov
parameters.
For k = 0 we get

r⊕

i=1

ci ⊗ bi = g0 .

For k > 0 we have that (23) is equivalent to

r⊕

i=1

r⊕

j=1

tkij = gk ,

with

tkij =
r⊕

i1=1

. . .
r⊕

ik−1=1

ci ⊗ aii1 ⊗ ai1i2 ⊗ . . .⊗ aik−1j ⊗ bj .

This can be rewritten as

r⊕

i=1

r⊕

j=1

rk−1
⊕

l=1

ci ⊗
r⊗

u=1

r⊗

v=1

auv
⊗
γkijluv

⊗ bj = gk ,

where γkijluv is the number of times that auv appears in the lth subterm of term tkij . If

auv doesn’t appear in that subterm we take γkijluv = 0 since we have that a⊗
0
= 0.a = 0,

the identity element for ⊗. At first sight one could think that we are then left with rk+1

terms. However, some of these are the same and can thus be left out. If we use the fact that
x ⊗ y 6 x ⊗ x ⊕ y ⊗ y we can again remove many redundant terms. Then we are left with,
say, wk terms where wk 6 rk+1.
If we put all unknowns in one large vector x of size r(r + 2) we have to solve a system of
multivariate polynomial equations of the following form:

r⊕

i=1

r(r+2)
⊗

j=1

xj
⊗
κ0ij

= g0

wk⊕

i=1

r(r+2)
⊗

j=1

xj
⊗
κkij

= gk , for k = 1 , 2 , . . . , N − 1 ,

and this can be transformed into an ELCP using the technique explained in Section 4. This
leads to the following theorem:

Theorem 5.10 In general all equivalent minimal state space realizations of a max-linear
SISO system form a union of polyhedra in the x-space, where x is the vector obtained by
putting the elements of the system matrices (A, B, C) in one large vector.
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If we find a solution x we extract the elements of x and put them in the matrices A ,B and
C. Then we have found a minimal realization. If we don’t find a solution we augment r,
construct a new ELCP and try to solve it. Since we assumed that the data were generated
by a max-linear SISO system we shall eventually find a realization and it will be minimal.
The results of this Section 5.2 allow us to state that if the system can be described by (11) –
(12) then the solution set of the ELCP will contain either no solutions (if r is smaller than the
minimal system order) or infinitely many (if r is larger than or equal to the minimal system
order).

By transforming the problem to linear algebra we have assumed that all components of A,
B and C are finite. If we also want include matrices with components equal to ε we have to
apply the procedure that was explained in Remark 4.1. This technique will be demonstrated
in Example 6.2.

5.5 Computational complexity and algorithmic aspects

The execution time and the storage space requirement of the ELCP algorithm depend on
the number of equations and variables. For the minimal realization problem the number of
equations and variables becomes very large as the system order rises or as the number of
Markov parameters that should be considered grows. Therefore the ELCP algorithm in its
present form is not suited for large systems or for systems with a long and complex transient
behavior. Moreover, we are not always interested in finding all minimal realizations. In [9]
we have presented a heuristic algorithm that is relatively fast and that in most cases will find
a minimal realization.

Since the method to solve the ELCP is an iterative process where in each step a new
equation is taken into account, we can make use of the special structure of our problem
to speed up the algorithm. To each Markov parameter there corresponds a group of linear
inequalities. After each group we can test whether the impulse response of the solution up
to that group matches the desired impulse response. If this is the case we don’t have to take
the other groups into account, since they will automatically be satisfied. This means that we
can start with a small N and gradually take more and more groups into account. We don’t
have to start all over again for each new group since we can simply continue with the rays of
the previous groups.

There are still some open problems. It is e.g. not clear how to determine the minimal
subset of Markov parameters that is needed and how to select them. Since we have one
group of inequalities for each Markov parameter that we take into consideration and since
the computational complexity grows with the number of inequalities, it is important to use
as few Markov parameters as possible. But if we take N too small we can get solutions with
an impulse response that doesn’t coincide entirely with the desired impulse response (only
the first N Markov parameters are exactly the same). On the other hand we shall show in
Example 6.2 that it is not always necessary to consider the entire set {g0, g1, . . . , gN−1} to
find all solutions with the desired impulse response: sometimes a subset of {g0, g1, . . . , gN−1}
suffices.

6 Examples

In this section we illustrate the procedure of the previous section with a few examples.
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Example 6.1

Consider the system of Figure 1. This production system consists of 3 processing units P1,

P1

P2

✲

✲

P
P

P
P
P
P

P
PPq

✏
✏

✏
✏
✏
✏

✏
✏✏✶ P3

✲

u(k)

y(k)

2

0

1

0

0

d1 = 5

d2 = 6

d3 = 3

Figure 1: The production system of Example 6.1.

P2 and P3. Raw material is fed to P1 and P2, processed and sent to P3 where assembly takes
place. The processing times for P1, P2 and P3 are d1 = 5, d2 = 6 and d3 = 3 time units
respectively. We assume that the raw material needs 2 time units to get from the input source
to P1 and that it takes 1 time unit for the finished product of processing unit P1 to reach P3.
The other transportation times are assumed to be negligible. Between the processing units
there are buffers with a capacity that is large enough to ensure that no buffer overflow will
occur.
Define:

• u(k) : time instant at which raw material is fed to the system for the k + 1st time,

• xi(k) : time instant at which the ith processing unit starts working for the kth time,

• y(k) : time instant at which the kth finished product leaves the system.

A processing unit can only start working on a new product if it has finished processing the
previous one. If we assume that each processing unit starts working as soon as all parts are
available we get the following evolution equations for the system:

x1(k + 1) = max(x1(k) + 5, u(k) + 2 )

x2(k + 1) = max(x2(k) + 6, u(k) )

x3(k + 1) = max(x1(k + 1) + 5 + 1, x2(k + 1) + 6, x3(k) + 3 )

= max(x1(k) + 11, x2(k) + 12, x3(k) + 3, u(k) + 8 )

y(k) = x3(k) + 3 ,

or in max-algebraic matrix notation:

x(k + 1) =






5 ε ε
ε 6 ε

11 12 3




⊗ x(k) ⊕






2
0
8




⊗ u(k)

y(k) =
[

ε ε 3
]

⊗ x(k) ,
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where x(k) = [ x1(k) x2(k) x3(k) ]T . Now we are going to construct all equivalent minimal
state space realizations of this system starting from its impulse response, which is given by

{gk} = 11, 16, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75 . . . .

First we construct the Hankel matrix

H6,6 =












11 16 21 27 33 39
16 21 27 33 39 45
21 27 33 39 45 51
27 33 39 45 51 57
33 39 45 51 57 63
39 45 51 57 63 69












.

The consecutive column rank of H6,6 is 2. The determinant of Hsub,2 = H6,6([1, 3], [1, 2]) =[

11 16
21 27

]

is not balanced. We add one row and one column and then we look for a solution

of the system of linear balances





11 16 21
16 21 27
21 27 33




⊗






a2
a1
a0




 ∇ ε .

The solution a0 = 0, a1 = ⊖6, a2 = 11 satisfies the necessary and sufficient conditions for
the coefficients of the characteristic polynomial of a 2 by 2 matrix with elements in Rε since
α1 = ε and α2 = 11 6 12 = 6 ⊗ 6 = β1 ⊗ β1. This solution also corresponds to a stable
relation among the columns of H6,6:

H6,6(:, k + 2) ⊕ 11⊗H6,6(:, k) = 6⊗H6,6(:, k + 1) for k = 1, 2, 3, 4 .

Let’s take N = 5. Using the ELCP algorithm of [10] we find the rays of Table 1 and the pairs
of subsets of Table 2. If we take N > 5 we get the same result, but if we take N < 5 some
combinations of the rays lead to a partial realization of the given impulse response (i.e. they
only fit the first N Markov parameters).

Set X cen X inf X fin

Ray xc1 xc2 xi1 xi2 xi3 xi4 xi5 xi6 xf1 xf2

a11 0 0 0 0 0 0 0 0 6 5
a12 1 0 0 0 -1 0 0 -1 10 10
a21 -1 0 0 0 0 0 0 0 0 0
a22 0 0 0 0 0 0 0 0 5 6

b1 1 -1 1 0 0 0 -1 -1 4 6
b2 0 -1 0 0 0 0 0 0 0 0

c1 -1 1 -1 0 0 -1 0 1 5 5
c2 0 1 -1 -1 0 0 0 0 11 9

Table 1: The rays for Example 6.1 .
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s X inf
s X fin

s

1 {xi1, x
i
2} {xf2}

2 {xi1, x
i
3} {xf2}

3 {xi2, x
i
6} {xf2}

4 {xi3, x
i
4} {xf1}

s X inf
s X fin

s

5 {xi3, x
i
6} {xf1}

6 {xi3, x
i
6} {xf2}

7 {xi4, x
i
5} {xf1}

8 {xi5, x
i
6} {xf1}

Table 2: The pairs of subsets for Example 6.1 .

Any arbitrary minimal realization can now be expressed as
















a11
a12
a21
a22
b1
b2
c1
c2

















= λ1x
c
1 + λ2x

c
2 + κ1x

i
i1
+ κ2x

i
i2
+ xfj1 , (24)

with λ1, λ2 ∈ R , κ1, κ2 > 0 and xii1 , x
i
i2

∈ X inf
s , xfj1 ∈ X fin

s with s ∈ {1, 2, . . . , 8}. Expression
(24) shows that the set of all equivalent minimal state space realizations of the given impulse
response is a union of 8 unbounded polyhedra.

We shall now give an interpretation of this solution set in terms of the theorems on state
space transformations of Section 5.2:

Ray xc1 corresponds to a similarity transformation with T1 =

[

1 ε
ε 0

]

. Ray xc2 corresponds

to the invariance of Theorem 5.5 or to a similarity transformation with T2 =

[

−1 ε
ε −1

]

.

Ray xf2 can be obtained from xf1 by a similarity transformation with T3 =

[

ε −4
6 ε

]

. So we

could say that the set of combinations of the central rays and one of the finite rays:

S =
{

x
∣
∣
∣x = λ1x

c
1 + λ2x

c
2 + xf1 or x = λ1x

c
1 + λ2x

c
2 + xf2 with λ1, λ2 ∈ R

}

,

corresponds to an entire class of 2nd order state space realizations that are linked by a
similarity transformation. But in this way we can’t construct the entire set of all possible
2nd order realizations since e.g. x = xf1 + xi3 doesn’t belong to S. However, xf1 + xi3 can be

obtained from ray xf1 by an L-transformation with e.g. L =

[

0 4
−6 0

]

, Â =

[

6 9
0 5

]

and

Ĉ =
[

5 11
]

. The realization xf1+xi3 can be obtained from xf1+xi6 with an L-transformation

and xf1 + xi6 can be obtained from xf1 + xi4 with an M -transformation, but it is impossible
to transform xf1 + xi4 into xf1 + xi3 by an L- or an M -transformation. So starting from an
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arbitrary realization, we can’t get the set of all equivalent 2nd order state space realizations
in one step by applying L- or M -transformations.
It is also impossible to find an L- or M -transformation that transforms the original 3rd order
state space description into a 2nd order model.

Example 6.2

We start from the system (A,B,C) with

A =






3 1 0
ε 3 2
0 5 ε




 , B =






0
1
2




 and C =

[

0 ε ε
]

. (25)

The impulse response of this system is

{gk} = 0, 3, 6, 9, 13, 16, 20, 23, 27, 30, 34, 37, . . . .

Since there are two different alternating increments in steady state (3 and 4), we can’t use the
technique of [17], where only impulse responses that exhibit a uniformly up-terrace behavior
are considered, i.e. impulse responses that consist of m sequences of length ni such that

gj+1 − gj = ci , for j = ti, ti + 1, . . . , ti + ni − 1 and for i = 1, 2, . . . , m ,

with ci+1 > ci, t1 = 0, ti+1 = ti + ni and nm = +∞.
First we construct the Hankel matrix

H8,8 =

















0 3 6 9 13 16 20 23
3 6 9 13 16 20 23 27
6 9 13 16 20 23 27 30
9 13 16 20 23 27 30 34
13 16 20 23 27 30 34 37
16 20 23 27 30 34 37 41
20 23 27 30 34 37 41 44
23 27 30 34 37 41 44 48

















which has consecutive column rank 3. A 3 by 3 submatrix of H8,8 the determinant of which

is not balanced is Hsub,3 = H8,8([1, 3, 4], [1, 2, 3]) =






0 3 6
6 9 13
9 13 16




.

The system of linear balances







0 3 6 9
3 6 9 13
6 9 13 16
9 13 16 20







⊗








a3
a2
a1
a0








∇ ε

has a solution

a0 = 0, a1 = ⊖3, a2 = ⊖7, a3 = 10 , (26)

that satisfies the necessary and sufficient conditions of Section 3 :
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





α1 = ε

α2 = ε 6 6 = 3⊗ 3 = β1 ⊗ β1
α3 = 10 6 10 = 3⊗ 7 = β1 ⊗ β2 .

This solution also corresponds to a stable relation among the columns of H8,8:

H8,8(:, k + 3) ⊕ 10⊗H8,8(:, k) = 3⊗H8,8(:, k + 2) ⊕ 7⊗H8,8(:, k + 1)

for k = 1, 2, . . . , 5 . If we take N = 7 the ELCP algorithm yields the rays of Table 3 and the
pairs of Table 4. So the set of all equivalent minimal realizations of system (25) consists of
the union of 54 unbounded polyhedra.
If we take N > 7 we get the same results but for N < 7 some solutions only yield a partial
realization of the given impulse response (i.e. they only fit the first N Markov parameters).
The subset {g0, g1, g3, g4, g5, g6} of {g0, . . . , g7} also leads to the same solutions as {g0, . . . , g7}.
So it is not always necessary to consider the entire set {g0, . . . , gN−1} to find all realizations
of the given impulse response.
The original matrices (25) correspond to the following combination of the central rays and

the rays of the pair
{

X inf
35 ,X fin

35

}

:

xc2 + 2xc3 + (η + 2)xi2 + (η + 8)xi6 + 6xi9 + (η + 7)xi13 + ηxi15 + xf5

for η large enough. Then we get

A =






3 1 0
−(η + 4) 3 2

0 5 −(η + 4)




 , B =






0
1
2




 , C =

[

0 −(η + 4) −(η + 4)
]

,

and as explained in Remark 4.1 we can replace −(η+ 4) by ε = −∞ for η large enough since
there are no positive components of the same order of magnitude as η. In fact for η → +∞
we would exactly get the matrices of (25).
In [8] we have solved the same example by constructing a matrix A such that the coefficients
of its characteristic equation were equal to (26). There we found

A =






3 ε ε
0 ε 7
ε 0 ε




 , B =






0
−3
ε




 , C =

[

0 2 ε
]

,

which corresponds to the pair
{

X inf
52 ,X fin

52

}

:

−(η + 7)xc2 + 7xc3 + (η + 12)xi5 + (η + 10)xi8 + (η + 4)xi9 + (η + 16)xi10+

(η + 10)xi13 + ηxi14 + (η + 12)xi15 + xf5

with η large enough.

7 Conclusions and future research

First we have examined necessary (and/or sufficient) conditions for the coefficients of the
characteristic polynomial of a matrix in the max algebra. We have shown that a system of
multivariate polynomial equations in the max algebra can be transformed into an Extended
Linear Complementarity Problem (ELCP). This means that we can use the ELCP algorithm
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of [10] to solve such a problem. Finally we have combined the previous results to find all
minimal state space realizations of a single input single output discrete event system given
its Markov parameters and illustrated the procedure with a few examples.

One of the main characteristics of the ELCP algorithm that was used in this paper is that
it finds all solutions. For the minimal realization problem this provides a geometrical insight
in all equivalent (minimal) realizations of an impulse response. On the other hand this also
leads to large computation times and storage space requirements if the number of variables
and equations is large. Therefore it might be interesting to develop (heuristic) algorithms
that only find one solution as we have done for the minimal realization problem in [9].
Among the set of all possible realizations we could also try to find certain “privileged” real-
izations such as balanced realizations.
We hope to extend the method presented here to find minimal state space realizations for
multiple input multiple output (MIMO) systems. The only problem there is the determina-
tion of the minimal system order. Once this is found the same technique can be used to get
a minimal realization. In the future we shall therefore look for methods to get a estimate of
the minimal system order of a MIMO system.
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Set X cen X inf

Ray xc1 xc2 xc3 xi1 xi2 xi3 xi4 xi5 xi6 xi7 xi8 xi9

a11 0 0 0 0 0 0 0 0 0 -1 0 0
a12 0 1 0 0 0 0 0 0 0 0 0 0
a13 0 1 1 0 0 0 0 1 0 0 0 0
a21 0 -1 0 0 0 0 0 -1 -1 0 0 0
a22 0 0 0 0 0 0 0 0 0 0 -1 0
a23 0 0 1 0 0 0 0 0 0 0 0 0
a31 0 -1 -1 0 0 0 0 -1 0 0 0 -1
a32 0 0 -1 0 0 0 0 0 0 0 0 0
a33 0 0 0 0 0 0 0 0 0 0 0 0

b1 -1 0 0 -1 0 -1 0 0 0 0 0 0
b2 -1 -1 0 -1 0 0 -1 -1 0 0 0 0
b3 -1 -1 -1 -1 0 0 0 -1 0 0 0 0

c1 1 0 0 0 0 0 0 0 0 0 0 0
c2 1 1 0 1 -1 0 0 1 0 0 0 0
c3 1 1 1 1 0 0 0 1 0 0 0 0

Set X inf X fin

Ray xi10 xi11 xi12 xi13 xi14 xi15 xf1 xf2 xf3 xf4 xf5 xf6

a11 0 0 0 0 0 0 3 3 3 3 3 3
a12 0 0 0 0 0 0 0 0 0 0 0 0
a13 -1 1 0 0 0 0 -4 -4 -2 -3 -3 -2
a21 0 0 0 0 0 0 6 7 6 7 5 5
a22 0 0 0 0 0 0 3 3 3 3 3 3
a23 0 0 0 0 0 0 0 0 0 0 0 0
a31 0 -1 0 0 0 0 9 9 9 9 9 9
a32 0 -1 -1 0 0 0 7 6 5 5 7 6
a33 0 0 0 -1 0 0 3 3 3 3 3 3

b1 0 0 0 0 0 0 0 -1 -2 -2 0 -1
b2 0 0 0 0 0 0 2 2 2 2 2 2
b3 0 -1 0 0 -1 0 6 6 4 5 5 4

c1 0 0 0 0 0 0 0 0 0 0 0 0
c2 0 0 0 0 0 0 -4 -4 -2 -3 -3 -2
c3 0 1 0 0 0 -1 -7 -6 -5 -5 -7 -6

Table 3: The rays for Example 6.2 .
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1, x

i
3, x

i
7, x

i
11, x

i
12, x

i
13, x

i
14, x

i
15} {xf

3}

17 {xi
1, x

i
3, x

i
8, x

i
9, x

i
10, x

i
11, x

i
12} {xf

4}

18 {xi
1, x

i
5, x

i
6, x

i
7, x

i
11, x

i
12, x

i
13} {xf

3}

19 {xi
1, x

i
5, x

i
6, x

i
7, x

i
12, x

i
13, x

i
14, x

i
15} {xf

6}

20 {xi
1, x

i
7, x

i
8, x

i
9, x

i
10, x

i
11, x

i
12} {xf

4}

21 {xi
2, x

i
3, x

i
4, x

i
7, x

i
8, x

i
9, x

i
10, x

i
12} {xf

2}

22 {xi
2, x

i
4, x

i
5, x

i
6, x

i
8, x

i
9, x

i
10} {xf

1}

23 {xi
2, x

i
4, x

i
5, x

i
6, x

i
8, x

i
9, x

i
13} {xf

1}

24 {xi
2, x

i
4, x

i
5, x

i
6, x

i
8, x

i
10, x

i
13} {xf

1}

25 {xi
2, x

i
4, x

i
5, x

i
6, x

i
8, x

i
13, x

i
14, x

i
15} {xf

5}

26 {xi
2, x

i
4, x

i
5, x

i
6, x

i
9, x

i
10, x

i
13} {xf

1}

27 {xi
2, x

i
4, x

i
5, x

i
8, x

i
9, x

i
10, x

i
13, x

i
14} {xf

1}

s X inf
s

X fin
s

28 {xi
2, x

i
4, x

i
6, x

i
8, x

i
9, x

i
10, x

i
13, x

i
15} {xf

1}

29 {xi
2, x

i
4, x

i
7, x

i
8, x

i
9, x

i
11, x

i
12} {xf

2}

30 {xi
2, x

i
4, x

i
7, x

i
8, x

i
10, x

i
11, x

i
12} {xf

2}

31 {xi
2, x

i
4, x

i
7, x

i
9, x

i
10, x

i
11, x

i
12} {xf

2}

32 {xi
2, x

i
4, x

i
8, x

i
9, x

i
10, x

i
11, x

i
12} {xf

2}

33 {xi
2, x

i
4, x

i
8, x

i
9, x

i
10, x

i
13, x

i
14, x

i
15} {xf

1}

34 {xi
2, x

i
5, x

i
6, x

i
8, x

i
9, x

i
10, x

i
13} {xf

1}

35 {xi
2, x

i
5, x

i
6, x

i
8, x

i
9, x

i
13, x

i
14, x

i
15} {xf

5}

36 {xi
2, x

i
7, x

i
8, x

i
9, x

i
10, x

i
11, x

i
12} {xf

2}

37 {xi
3, x

i
5, x

i
6, x

i
7, x

i
11, x

i
12, x

i
13} {xf

3}

38 {xi
3, x

i
5, x

i
6, x

i
7, x

i
11, x

i
13, x

i
14, x

i
15} {xf

6}

39 {xi
3, x

i
7, x

i
8, x

i
9, x

i
10, x

i
11, x

i
12} {xf

4}

40 {xi
4, x

i
5, x

i
6, x

i
8, x

i
9, x

i
10, x

i
13} {xf

1}

41 {xi
4, x

i
5, x

i
6, x

i
8, x

i
10, x

i
13, x

i
14, x

i
15} {xf

5}

42 {xi
4, x

i
7, x

i
8, x

i
9, x

i
10, x

i
11, x

i
12} {xf

2}

43 {xi
5, x

i
6, x

i
7, x

i
11, x

i
12, x

i
13, x

i
14} {xf

6}

44 {xi
5, x

i
6, x

i
7, x

i
11, x

i
12, x

i
13, x

i
15} {xf

6}

45 {xi
5, x

i
6, x

i
7, x

i
11, x

i
12, x

i
14, x

i
15} {xf

6}

46 {xi
5, x

i
6, x

i
8, x

i
9, x

i
10, x

i
13, x

i
14} {xf

5}

47 {xi
5, x

i
6, x

i
8, x

i
9, x

i
10, x

i
13, x

i
15} {xf

5}

48 {xi
5, x

i
6, x

i
8, x

i
9, x

i
10, x

i
14, x

i
15} {xf

5}

49 {xi
5, x

i
6, x

i
9, x

i
10, x

i
13, x

i
14, x

i
15} {xf

5}

50 {xi
5, x

i
6, x

i
11, x

i
12, x

i
13, x

i
14, x

i
15} {xf

6}

51 {xi
5, x

i
7, x

i
11, x

i
12, x

i
13, x

i
14, x

i
15} {xf

6}

52 {xi
5, x

i
8, x

i
9, x

i
10, x

i
13, x

i
14, x

i
15} {xf

5}

53 {xi
6, x

i
7, x

i
11, x

i
12, x

i
13, x

i
14, x

i
15} {xf

6}

54 {xi
6, x

i
8, x

i
9, x

i
10, x

i
13, x

i
14, x

i
15} {xf

5}

Table 4: The pairs of subsets for Example 6.2 .
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