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Abstract

The topic of this paper is the (partial) minimal realiza-
tion problem in the max algebra, which is one of the
modeling frameworks that can be used to model discrete
event systems. We use the fact that a system of multi-
variate max-algebraic polynomial equalities can be trans-
formed into an Extended Linear Complementarity Prob-
lem to find all equivalent minimal state space realizations
of a multiple input multiple output (MIMO) max-linear
discrete event system starting from its impulse response
matrices. We also give a geometrical description of the
set of all minimal state space realizations.

1 Introduction

1.1 Overview

In this paper we consider discrete event systems, exam-
ples of which are flexible manufacturing systems, subway
traffic networks, parallel processing systems, telecom-
munication networks, . . . . There exists a wide range
of frameworks to model and analyze discrete event sys-
tems: Petri nets, generalized semi-Markov processes, for-
mal languages, perturbation analysis, computer simula-
tion and so on. We concentrate on a subclass of discrete
event systems that can be described with the max alge-
bra [1, 2, 3]. Although the description of these systems
is non-linear in linear algebra, the model becomes ‘lin-
ear’ when we formulate it in the max algebra. In this
paper we only consider systems that can be described by
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a time-invariant state space model. Therefore, we limit
ourselves to deterministic systems, i.e. systems in which
the sequence and the durations of the activities are fixed
or can be determined in advance.
In order to analyze systems it is advantageous to have

a compact description, i.e. a description with as few pa-
rameters as possible. For a system that can be described
by a max-linear state space model this gives rise to the
minimal state space realization problem. In this paper
we address the (partial) minimal state space realization
problem for max-algebraic multiple input multiple out-
put (MIMO) systems. First we discuss the problem of
solving a system of multivariate max-algebraic polyno-
mial equalities and inequalities and then we use the re-
sults to solve the minimal state space realization problem
for MIMO max-linear discrete event systems. We also
give a geometric characterization of the set of all mini-
mal state space realizations and illustrate the procedure
with an example.

1.2 The max algebra

In this section we give a short introduction to the max al-
gebra and state the definitions, theorems and properties
that we need in the remainder of this paper. A more com-
plete overview of the max algebra can be found in [1, 3].
The basic max-algebraic operations are defined as fol-
lows:

a⊕ b = max(a, b)

a⊗ b = a+ b

where a, b ∈ R∪ {−∞}. The resulting structure Rmax =
(R ∪ {−∞},⊕,⊗) is called the max algebra. The zero el-

ement for ⊕ is ε
def
= −∞ : ∀a ∈ R∪{ε} : a⊕ε = a = ε⊕a .

Define Rε = R ∪ {ε}.
Let r ∈ R. The rth max-algebraic power of a ∈ R is rep-
resented by a⊗

r
and corresponds to ra in linear algebra.

Hence, a⊗
0
= 0 and a⊗

−1
= −a is the inverse element of

a w.r.t. ⊗ in Rε. If r > 0 then ε⊗
r
= ε; if r 6 0 then ε⊗

r

is not defined.
The max-algebraic operations are extended to matrices



in the usual way. If A,B ∈ R
m×n
ε then (A ⊕ B)ij =

aij ⊕ bij . If A ∈ R
m×p
ε and B ∈ R

p×n
ε then (A⊗B)ij =

p
⊕

k=1

aik ⊗ bkj . The matrix En is the n by n identity

matrix in the max algebra: (En)ij = 0 if i = j and
(En)ij = ε if i 6= j. The m by n max-algebraic zero
matrix is represented by εm×n: (εm×n)ij = ε for all i, j.
In contrast to linear algebra, there exist no inverse ele-

ments w.r.t. ⊕ in Rε. To overcome this problem we shall
use the extended max algebra Smax [8, 10], which is a
kind of symmetrization of the max algebra. We shall re-
strict ourselves to an intuitive introduction to the most
important features of Smax. For a formal derivation and
for the proofs of the properties and theorems of this sec-
tion the interested reader is referred to [1, 8, 10].
We introduce two new elements for each element x ∈ Rε:
⊖x and x•. This gives rise to an extension S of Rε that
contains three classes of elements:

• the max-positive or zero elements: S⊕ ≡ Rε

• the max-negative or zero elements:
S

⊖ = {⊖a | a ∈ Rε }

• the balanced elements: S• = { a• | a ∈ Rε }

where S = S
⊕ ∪S

⊖ ∪S
•. By definition we have ε = ⊖ε =

ε•. The elements of S⊕ and S
⊖ are called signed.

The ⊕ operation between an element of S⊕ and an ele-
ment of S⊖ is defined as follows:

a⊕ (⊖b) = a if a > b ,

a⊕ (⊖b) = ⊖b if a < b ,

a⊕ (⊖a) = a•

where a, b ∈ Rε. The ⊖ sign corresponds to the − sign
in linear algebra. By analogy we write a ⊖ b instead of
a⊕ (⊖b) . We have

⊖(⊖a) = a

(⊖a)⊕ (⊖b) = ⊖(a⊕ b)

(⊖a)⊗ b = a⊗ (⊖b) = ⊖(a⊗ b)

for a, b ∈ S. If one of the operands is balanced, we
evaluate the expression as follows:

a⊕ b• = a⊕ (b⊕ (⊖b))

a⊗ b• = a⊗ (b⊕ (⊖b))

and we use the fact that both ⊕ and ⊗ are associative
and commutative in S and that ⊗ is distributive w.r.t. ⊕
in S. The resulting structure Smax = (S,⊕,⊗) is called
the extended max algebra.
Let a ∈ S. The max-positive part a+ and the max-

negative part a− of a are defined as follows:

• if a ∈ Rε then a+ = a and a− = ε

• if a ∈ S
⊖ then a+ = ε and a− = ⊖a

• if a ∈ S
• then there exists an element b ∈ Rε such

that a = b• and then a+ = a− = b .

So a+, a− ∈ Rε and a = a+ ⊖ a−.
In linear algebra we have a − a = 0 for all a ∈ R but
in Smax we have a ⊖ a = a• 6= ε (unless a = ε). There-
fore, we introduce a new relation, the balance relation,
represented by ∇.

Definition 1.1 (Balance) Consider a, b ∈ S. We say
that a balances b, denoted by a ∇ b, if and only if a+ ⊕
b− = b+ ⊕ a− .

Property 1.2 ∀a• ∈ S
• : a• = a⊖ a ∇ ε .

We could say that the balance relation is the Smax coun-
terpart of the equality relation. However, the balance
relation is not an equivalence relation, since it is not tran-
sitive.
A ⊖ sign in a balance means that the element should be
at the other side:

Property 1.3 ∀a, b, c ∈ S : a ⊖ b ∇ c if and only if
a ∇ b⊕ c .

If both sides of a balance are signed, we can replace the
balance by an equality:

Property 1.4 ∀a, b ∈ S
⊕ ∪ S

⊖ : a ∇ b ⇒ a = b .

Definition 1.5 (Determinant) Let A ∈ S
n×n. The

max-algebraic determinant of A is defined as

detA =
⊕

σ∈Pn

sgn (σ)⊗
n

⊗

i=1

aiσ(i)

where Pn is the set of all permutations of {1, . . . , n} , and
sgn (σ) = 0 if the permutation σ is even and sgn (σ) = ⊖0
if the permutation is odd.

Definition 1.6 (Minor rank) Consider A ∈ S
m×n.

The max-algebraic minor rank of A is the dimension
of the largest square submatrix Asub of A such that
detAsub ∇/ ε .

Definition 1.7 (Characteristic equation) Let A ∈
S
n×n. The max-algebraic characteristic equation of A

is defined as det(A⊖ λ⊗ En) ∇ ε.

If we work this out, we get

λ⊗
n

⊕
n

⊕

p=1

ap ⊗ λ⊗
n−p

∇ ε .

Theorem 1.8 (Cayley-Hamilton)
In Smax every square matrix satisfies its characteristic
equation.



2 Systems of multivariate max-algebraic

polynomial equalities and inequalities

In this section we consider systems of multivariate max-
algebraic polynomial equalities and inequalities, which
can be seen as a generalized framework for many impor-
tant max-algebraic problems such as matrix decomposi-
tions, transformation of state space models, state space
realization of impulse responses, construction of matrices
with a given characteristic polynomial and so on [6, 7].
Consider the following problem:

Given a set of integers {mk} and three sets of real
numbers {aki}, {bk} and {ckij} with i = 1, . . . ,mk,
j = 1, . . . , n and k = 1, . . . , p1 + p2, find x ∈ R

n such
that

mk
⊕

i=1

aki ⊗
n

⊗

j=1

xj
⊗
ckij

= bk for k = 1, . . . , p1 , (1)

mk
⊕

i=1

aki ⊗
n

⊗

j=1

xj
⊗
ckij

6 bk for k = p1 + 1, . . . ,
p1 + p2 ,

(2)

or show that no such x exists.

We call (1) – (2) a system of multivariate max-algebraic
polynomial equalities and inequalities. Note that the ex-
ponents can be negative or real.
In [7] we have shown that this problem is equivalent to an
Extended Linear Complementarity Problem (ELCP) [5].
This leads to an algorithm that yields the entire solu-
tion set of problem (1) – (2). In general this solution set
consists of the union of faces of a polyhedron P and is
defined by three sets of vectors X cen, X inf , X fin and a
set Λ. These sets can be characterized as follows:

• X cen is a set of central rays of P. It is a basis for
the largest linear subspace of P. Let us call Pred

the polyhedron obtained by subtracting this largest
linear subspace from P.

• X inf is a set of extreme rays or vertices at infinity of
the polyhedron Pred.

• X fin is the set of the finite vertices of the polyhedron
Pred.

• Λ is a set of pairs
{

X inf
s ,X fin

s

}

with X inf
s ⊂ X inf ,

X fin
s ⊂ X fin and X fin

s 6= ∅. Each pair determines
a face Fs of the polyhedron P that belongs to the
solution set: X inf

s contains the extreme rays of Fs

and X fin
s contains the finite vertices of Fs.

The solution set of problem (1) – (2) is characterized by
the following theorems:

Theorem 2.1 When X cen, X inf , X fin and Λ are given,
then x is a finite solution of the system of multivari-
ate max-algebraic polynomial equalities and inequalities

if and only if there exists a pair
{

X inf
s ,X fin

s

}

∈ Λ such
that

x =
∑

xk∈X cen

λkxk +
∑

xk∈X inf
s

κkxk +
∑

xk∈X fin
s

µkxk

with λk ∈ R, κk, µk > 0 and
∑

k

µk = 1.

Theorem 2.2 In general the set of the (finite) solu-
tions of a system of multivariate max-algebraic polyno-
mial equalities and inequalities consists of the union of
faces of a polyhedron.

Remark: Solutions for which some of the components
are equal to ε can be obtained by a limit or a threshold
procedure. These solutions would correspond to points at
infinity of the polyhedron P. See [7] for more information
on this subject.

3 Minimal state space realization

Consider a discrete event system that can be described by
the following nth order state space model with m inputs
and l outputs:

x(k + 1) = A⊗ x(k) ⊕ B ⊗ u(k) (3)

y(k) = C ⊗ x(k) (4)

where A ∈ R
n×n
ε , B ∈ R

n×m
ε and C ∈ R

l×n
ε . The vector

x represents the state, u is the input vector and y is the
output vector of the system.
If we apply a unit impulse: e(k) = 0 if k = 0 and e(k) = ε
if k 6= 0, to the ith input of the system and if we assume
that the initial state x(0) satisfies x(0) = εn×1, we get

y(k) = C ⊗A⊗
k−1

⊗B.i for k = 1, 2, . . .

as the output of the system, where B.i is the ith col-
umn of B. We repeat this experiment for all inputs
i = 1, 2, . . . ,m and store the outputs in l by m matrices

Gk = C ⊗A⊗
k
⊗B for k = 0, 1, . . . . The Gk’s are called

the impulse response matrices or Markov parameters.
Suppose that A, B and C are unknown, and that we

only know the Markov parameters (e.g. from experiments
– where we assume that the system is max-linear and
time-invariant and that there is no noise present). How
can we construct A, B and C from the Gk’s? This prob-
lem is called state space realization. If we make the di-
mension of A minimal, we have a minimal state space
realization problem.
In order to solve this problem we first need a lower

bound r for the minimal system order. As a direct con-
sequence of the Cayley-Hamilton theorem the Markov
parameters satisfy the max-algebraic characteristic equa-
tion of A. So we could try to find a stable relationship



of the form

r
⊕

p=0

ap ⊗Gk+r−p ∇ εl×m for k = 0, 1, . . . (5)

with as few terms as possible, where the ap’s should cor-
respond to the coefficients of the characteristic equation
of a matrix with entries in Rε. Expression (5) is a system
of linear balances with the ap’s as unknowns. In [6, 4] we
have applied this procedure to obtain a lower bound r for
the minimal system order of a single input single output
system. If we decompose the ap’s as ap = a+p ⊖ a−p and
if we use Properties 1.3 and 1.4, we can transform (5)
into a system of multivariate max-algebraic polynomial
equalities with the max-positive and the max-negative
parts of the ap’s as variables.
We could also use the following theorem [8, 9] to obtain
a lower bound for the minimal system order:

Theorem 3.1 Let Gk = C ⊗ A⊗
k
⊗ B for k = 0, 1, . . .

be the Markov parameters of a time-invariant max-linear
system with system matrices A, B and C. Then the max-
algebraic minor rank of the block Hankel matrix

H =











G0 G1 G2 . . .
G1 G2 G3 . . .
G2 G3 G4 . . .
...

...
...

. . .











is a lower bound for the minimal system order.

In practice we only consider a truncated version of the
semi-infinite block Hankel matrix H:

Hp,q =











G0 G1 . . . Gp

G1 G2 . . . Gp+1

...
...

. . .
...

Gq Gq+1 . . . Gp+q











.

The max-algebraic minor rank of Hp,q is a lower bound
for the minimal system order.
We assume that the entries of all theGk’s are finite and

that the system exhibits a periodic steady state behavior
of the following kind:

∃n0, d ∈ N and ∃c ∈ R such that

∀n > n0 : Gn+d = c⊗
d
⊗Gn . (6)

It can be shown [1, 8] that a sufficient condition for
(6) to hold is that the system matrix A is irreducible,

i.e. (A⊕A⊗
2
⊕ . . .⊕A⊗

n
)ij 6= ε for all i, j. This will for

example be the case for a discrete event system without
separate independent subsystems and with a cyclic be-
havior or with feedback from the output to the input like
flexible production systems in which the parts are carried
around on a limited number of pallets that circulate in
the system.

We start with r equal to the lower bound. Now we
try to find an rth order partial state space realization of
the given impulse response: we have to find A ∈ R

r×r
ε ,

B ∈ R
r×m
ε and C ∈ R

l×r
ε such that

C ⊗A⊗
k
⊗B = Gk for k = 0, 1, . . . , N − 1 (7)

for N large enough. If we work out the equations of the
form (7), we get for k = 0:

r
⊕

p=1

cip ⊗ bpj = (G0)ij (8)

for i = 1, 2, . . . , l and j = 1, 2, . . . ,m. For k > 0 we
obtain

r
⊕

p=1

r
⊕

q=1

cip ⊗ (A⊗
k
)pq ⊗ bqj = (Gk)ij (9)

for i = 1, 2, . . . , l and j = 1, 2, . . . ,m. Since

(A⊗
k
)pq =

r
⊕

i1=1

. . .
r

⊕

ik−1=1

api1 ⊗ ai1i2 ⊗ . . .⊗ aik−1q ,

equation (9) can be rewritten as

r
⊕

p=1

r
⊕

q=1

rk−1

⊕

s=1

cip ⊗
r

⊗

u=1

r
⊗

v=1

auv
⊗
γkpqsuv

⊗ bqj

= (Gk)ij (10)

where γkpqsuv is the number of times that auv appears

in the sth term of (A⊗
k
)pq. If auv does not appear in

that term, we take γkpqsuv = 0 since a⊗
0
= 0 · a = 0,

the identity element for ⊗. If we use the fact that
∀x ∈ Rε : x⊕x = x and ∀x, y ∈ Rε : x⊗y 6 x⊗x⊕y⊗y ,
we can remove many redundant terms. There are then
wkij terms in (10) where wkij 6 rk+1.
If we put all unknowns in one large vector x of length
r(r + m + l), we have to solve a system of multivari-
ate max-algebraic polynomial equations of the following
form:

r
⊕

p=1

r(r+m+l)
⊗

q=1

xq
⊗
δ0ijpq

= (G0)ij (11)

wkij
⊕

p=1

r(r+m+l)
⊗

q=1

xq
⊗
δkijpq

= (Gk)ij (12)

for i = 1, 2, . . . , l; j = 1, 2, . . . ,m and k = 1, 2, . . . , N−1 .
If we find a solution x of (11) – (12), we extract the entries
of the system matrices A, B and C from x.
If we do not get any solutions, this means that r is less
than the minimal system order, i.e. the lower bound is
not tight. Then we have to augment our estimate of the
minimal system order and repeat the above procedure



but with r + 1 instead of r. We continue until we find a
solution of (11) – (12).
This yields a minimal state space realization of the first

N impulse response matrices. If N is large enough, we
can obtain the set of all realizations of the given impulse
response by putting all components that are smaller than
some threshold equal to ε if necessary.
If the system does not exhibit the steady state be-

havior of (6) then the procedure presented in this paper
will in general only yield partial state space realizations.
However, in some cases the ELCP technique can still be
applied if an analogous but more complicated threshold
procedure is used.
Now we can characterize the set of all (partial) minimal

state space realizations of a given impulse response:

Theorem 3.2 In general the set of all (partial) minimal
state space realizations of the impulse response of a max-
linear time-invariant discrete event system consists of the
union of faces of a polyhedron in the x-space, where x
is the vector obtained by putting the components of the
system matrices in one large vector.

4 Example

We shall now illustrate the preceding procedure with an
example.

Example 4.1

We start from a system with system matrices:

A =





ε 14 ε
5 6 ε
1 4 8



 , B =





10 11
ε 9
0 ε



 and

C =

[

2 ε 9
0 4 ε

]

.

Now we are going to construct all equivalent minimal
state space realizations of this system starting from its
impulse response matrices, which are given by

{Gk}
∞
k=0 =

[

12 13
10 13

]

,

[

20 25
19 23

]

,

[

31 33
29 32

]

,

[

39 44
38 42

]

,

[

50 52
48 51

]

,

[

58 63
57 61

]

,

[

69 71
67 70

]

, . . . .

Note that the Gk’s exhibit the behavior of (6) with n0 =
1, d = 2 and c = 9.5.
The relation of the form (5) with as few terms as possible
is given by

Gk+2 ⊖ 8⊗Gk+1 ⊖ 19⊗Gk ∇ ε2×2 for k = 0, 1, . . .

or equivalently

Gk+2 = 8⊗Gk+1 ⊕ 19⊗Gk for k = 0, 1, . . .

by Properties 1.3 and 1.4. So the minimal system order
is greater than or equal to r = 2.
The max-algebraic minor rank of the truncated Hankel
matrix H6,6 is also equal to 2.
Now we try to find a second order state space realization
of the impulse response matrices. Let us take N = 3.
The ELCP algorithm of [5] yields the rays and vertices
of Tables 1 and 2 and the pairs of subsets of Table 3. If we
take N > 3 we get the same result, but if we take N < 3,
some combinations of the rays and the vertices only lead
to a partial realization of the given impulse response:
they only fit the first N impulse response matrices.
Any arbitrary finite minimal realization can now be ex-
pressed as

x = λ1x
c
1 + λ2x

c
2 +

∑

k

κkx
i
k + xf

l (13)

with λ1, λ2 ∈ R, κk > 0 and xi
k ∈ X inf

s , xf
l ∈ X fin

s with
s ∈ {1, 2, . . . , 8} and where x is the column vector ob-
tained by putting the entries of the system matrices in
one large column vector. Expression (13) shows that the
set of all equivalent minimal state space realizations of
the given impulse response is the union of 8 faces of a
polyhedron in the x-space. ✷

5 Conclusions and future research

We have shown that the problem of finding a minimal
state space realization of the impulse response of a mul-
tiple input multiple output max-linear time-invariant dis-
crete event system (that exhibits a particular kind of pe-
riodic steady state behavior) can be reformulated as a
system of multivariate polynomial equations in the max
algebra. This means that we can use the ELCP algo-
rithm of [5] to solve such a problem.
One of the main characteristics of the ELCP algorithm

of [5] is that it finds all solutions. This provides a geo-
metrical insight in the set of all equivalent minimal state
space realizations of an impulse response. On the other
hand this also leads to large computation times and stor-
age space requirements if the number of variables and
equations is large. Therefore, it might be interesting to
develop algorithms that only find one solution as we have
done for the minimal realization problem for single input
single output systems in [4]. Among the set of all possible
realizations we could also try to find certain ‘privileged’
realizations such as balanced realizations.
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Set X cen X fin

Ray xc
1 xc

2 xf
1 xf

2

a11 0 0 8 8

a12 0 -1 19 19

a21 0 1 0 0

a22 0 0 8 8

b11 1 0 0 0

b12 1 0 5 1

b21 1 1 -8 -11

b22 1 1 -7 -6

c11 -1 0 8 12

c12 -1 -1 20 19

c21 -1 0 8 10

c22 -1 -1 18 19

Table 1: The central rays and the finite vertices for Ex-
ample 4.1 .

Set X inf

Ray xi
1 xi

2 xi
3 xi

4 xi
5 xi

6 xi
7 xi

8

a11 0 -1 0 0 0 0 0 0

a12 0 0 0 0 0 0 0 0

a21 0 0 0 0 0 0 0 0

a22 0 0 0 0 0 0 0 -1

b11 0 0 0 0 0 0 0 0

b12 1 0 -1 0 0 0 0 0

b21 1 0 0 0 0 -1 0 0

b22 1 0 0 -1 0 0 0 0

c11 -1 0 0 0 -1 0 0 0

c12 -1 0 0 0 0 0 -1 0

c21 -1 0 0 0 0 0 0 0

c22 -1 0 0 0 0 0 0 0

Table 2: The vertices at infinity for Example 4.1 .

s X inf
s X fin

s

1 {xi
1, x

i
2, x

i
4} {xf

1}

2 {xi
1, x

i
2, x

i
5} {xf

1}

3 {xi
2, x

i
3} {xf

2}

4 {xi
2, x

i
7} {xf

2}

s X inf
s X fin

s

5 {xi
3, x

i
6, x

i
8} {xf

2}

6 {xi
4, x

i
8} {xf

1}

7 {xi
5, x

i
8} {xf

1}

8 {xi
6, x

i
7, x

i
8} {xf

2}

Table 3: The pairs of subsets for Example 4.1 .


