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1 Introduction

1.1 Overview

One of the possible frameworks to describe and analyze discrete event systems (such as flex-
ible manufacturing processes, railroad traffic networks, telecommunication networks, . . . ) is
the max algebra [1, 5, 6]. A class of discrete event systems, the timed event graphs, can be
described by a model that is linear in the max algebra. There exists a remarkable analogy
between max-algebraic system theory and system theory for linear systems. However, in
contrast to linear system theory the mathematical foundations of the max-algebraic system
theory are not as fully developed as those of the classic linear system theory, although some
of the properties and concepts of linear algebra, such as Cramer’s rule, the Cayley-Hamilton
theorem, eigenvalues, eigenvectors, . . . also have a max-algebraic equivalent. In [14] Olsder
and Roos have used a kind of link between the field of the real numbers and the max algebra
based on asymptotic equivalences to show that every matrix has at least one max-algebraic
eigenvalue and to prove a max-algebraic version of Cramer’s rule and of the Cayley-Hamilton
theorem. In [8] we have extended this link and used it to define the singular value decom-
position (SVD) in the extended max algebra, which is a kind of symmetrization of the max
algebra [9, 13].

In this paper we present an alternative proof for the existence theorem of the max-algebraic
SVD based on Kogbetliantz’s SVD algorithm [4, 11]. Furthermore, we prove the existence of
a kind of QR decomposition (QRD) in the extended max algebra. We also propose possible
extensions of the max-algebraic SVD.

This paper is organized as follows: In Section 1 we recapitulate the most important
concepts, definitions and properties of [8] and give some additional definitions and properties.
In Section 2 we present an alternative proof for the existence theorem of the max-algebraic
SVD and we prove the existence of the max-algebraic QRD. In Section 3 we propose possible
extensions of the max-algebraic SVD and the max-algebraic QRD. We conclude with some
examples.

1.2 Notations and definitions

We use f or f(·) to represent a function. The value of f at x is denoted by f(x). If a ∈ R
n,

then ai is the ith component of a. If A is a matrix, then aij or (A)ij is the entry on the ith
row and the jth column. The ith row of A is represented by Ai.. The n by n identity matrix
is denoted by In and the m by n zero matrix is denoted by Om×n. We use R0 to represent
the set of all the real numbers except for 0 (R0 = R \ {0}). The set of the nonnegative real
numbers is denoted by R

+.

Definition 1.1 (Analytic function) A real function f is analytic in a point α ∈ R if the
Taylor series of f with center α exists and if there is a neighborhood of α where the Taylor
series converges to f .
A real function f is analytic in an interval [α, β] if it is analytic in every point of that interval.
A real matrix-valued function is analytic in [α, β] if all its entries are analytic in [α, β].

Definition 1.2 (Asymptotic equivalence) Let α ∈ R∪{∞} and let f and g be real func-
tions. The function f is asymptotically equivalent to g in the neighborhood of α, denoted by

f(x) ∼ g(x), x → α, if lim
x→α

f(x)

g(x)
= 1.
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If β ∈ R and if ∃δ > 0, ∀x ∈ (β − δ, β + δ) \ {β} : f(x) = 0 then f(x) ∼ 0, x → β.

We say that f(x) ∼ 0, x → ∞ if ∃K ∈ R, ∀x > K : f(x) = 0 .

If F (·) and G(·) are real m by n matrix-valued functions then F (x) ∼ G(x), x → α if
fij(x) ∼ gij(x), x → α for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

Note that the main difference with the classic definition of asymptotic equivalence is that
Definition 1.2 also allows us to say that a function is asymptotically equivalent to 0.

1.3 The max algebra and the extended max algebra

In this section we give a short introduction to the max algebra and the extended max algebra.
A complete overview of the max algebra can be found in [1, 6]. The basic max-algebraic
operations are defined as follows:

x⊕ y = max (x, y) (1)

x⊗ y = x+ y (2)

where x, y ∈ R∪ {−∞}. The resulting structure Rmax = (R ∪ {−∞},⊕,⊗) is called the max

algebra. The zero element for ⊕ in Rε is represented by ε
def
= −∞ . Define Rε = R ∪ {−∞}.

Let r ∈ R. The rth max-algebraic power of x ∈ R is denoted by x⊗
r
and corresponds to rx

in linear algebra. If x ∈ R then x⊗
0
= 0 and the inverse element of x w.r.t. ⊗ is x⊗

−1
= −x.

If r > 0 then ε⊗
r
= ε. If r 6 0 then ε⊗

r
is not defined.

The max-algebraic operations are extended to matrices in the usual way. If α ∈ Rε and if
X, Y ∈ R

m×n
ε then (α⊗X)ij = α⊗ xij and (X ⊕ Y )ij = xij ⊕ yij for all i, j. If X ∈ R

m×p
ε

and Y ∈ R
p×n
ε then (X ⊗ Y )ij =

p
⊕

k=1

xik ⊗ ykj for all i, j.

The matrix En is the n by n max-algebraic identity matrix: (En)ii = 0 for i = 1, 2, . . . , n
and (En)ij = ε for all i, j with i 6= j. The m by n max-algebraic zero matrix is represented
by εm×n: (εm×n)ij = ε for all i, j. The off-diagonal entries of a max-algebraic diagonal
matrix D ∈ R

m×n
ε are equal to ε: dij = ε for all i, j with i 6= j. A matrix R ∈ R

m×n
ε is a

max-algebraic upper triangular matrix if rij = ε for all i, j with i > j.
In contrast to linear algebra, there exist no inverse elements w.r.t. ⊕ in Rε. To over-

come this problem we need the extended max algebra Smax [1, 9, 13], which is a kind of
symmetrization of the max algebra. We shall restrict ourselves to a short introduction to
the most important features of Smax. For a more formal derivation the interested reader is
referred to [1, 8, 9, 13].
First we define two new elements for every x ∈ Rε: ⊖x and x•. This gives rise to an extension
S of Rε that contains three classes of elements:

• S
⊕ ≡ Rε, the set of the max-positive or zero elements,

• S
⊖ = {⊖x |x ∈ Rε }, the set of max-negative or zero elements,

• S
• = {x• |x ∈ Rε }, the set of the balanced elements.

We have S = S
⊕ ∪ S

⊖ ∪ S
• and S

⊕ ∩ S
⊖ ∩ S

• = {ε} since ε = ⊖ε = ε•. The max-positive and
max-negative elements and the zero element ε are called signed (S∨ = S

⊕ ∪ S
⊖).

The ⊕ and the ⊗ operation can be extended to S. The resulting structure Smax = (S,⊕,⊗)
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is called the extended max algebra. The ⊕ law is associative, commutative and idempotent
in S and its zero element is ε; the ⊗ law is associative and commutative in S and its unit
element is 0. Furthermore, ⊗ is distributive w.r.t. ⊕ in S. If x, y ∈ Rε then

x⊕ (⊖y) = x if x > y ,

x⊕ (⊖y) = ⊖y if x < y ,

x⊕ (⊖x) = x• .

We have ∀a, b ∈ S:

a• = (⊖a)• = (a•)•

a⊗ b• = (a⊗ b)•

⊖(⊖a) = a

⊖(a⊕ b) = (⊖a)⊕ (⊖b)

⊖(a⊗ b) = (⊖a)⊗ b .

The last three properties allow us to write a ⊖ b instead of a ⊕ (⊖b). So the ⊖ operator in
Smax could be considered as the equivalent of the - operator in linear algebra.
Let a ∈ S. The max-positive part a⊕ and the max-negative part a⊖ of a are defined as follows:

• if a ∈ S
⊕ then a⊕ = a and a⊖ = ε ,

• if a ∈ S
⊖ then a⊕ = ε and a⊖ = ⊖a ,

• if a ∈ S
• then ∃b ∈ Rε such that a = b• and then a⊕ = a⊖ = b.

So a = a⊕⊖a⊖ and a⊕, a⊖ ∈ Rε. We define the max-absolute value of a ∈ S as |a|
⊕
= a⊕⊕a⊖.

In linear algebra we have ∀x ∈ R : x − x = 0, but in Smax we have ∀a ∈ S : a ⊖ a = a• 6= ε
unless a = ε, the zero element for ⊕. Therefore, we introduce a new relation, the balance
relation, represented by ∇.

Definition 1.3 (Balance relation) Consider a, b ∈ S. We say that a balances b, denoted
by a ∇ b, if a⊕ ⊕ b⊖ = a⊖ ⊕ b⊕ .

Since ∀a ∈ S : a ⊖ a = a• = |a|
⊕
⊖ |a|

⊕
∇ ε, we could say that the balance relation in S

is the counterpart of the equality relation in linear algebra. The balance relation is reflexive
and symmetric but it is not transitive. The balance relation is extended to matrices in the
usual way: if A,B ∈ S

m×n then A ∇ B if aij ∇ bij for all i, j.
An element with a ⊖ sign can be transferred to the other side of a balance as follows:

Proposition 1.4 ∀a, b, c ∈ S : a⊖ c ∇ b if and only if a ∇ b⊕ c .

If both sides of a balance are signed, we can replace the balance by an equality:

Proposition 1.5 ∀a, b ∈ S
∨ : a ∇ b ⇒ a = b .

The above properties can be extended to the matrix case as follows:

Proposition 1.6 ∀A,B,C ∈ S
m×n : A⊖ C ∇ B if and only if A ∇ B ⊕ C .

Proposition 1.7 ∀A,B ∈ (S∨)m×n : A ∇ B ⇒ A = B .
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Definition 1.8 (Max-algebraic norm) The max-algebraic norm of a vector a ∈ S
n is de-

fined as

‖a‖
⊕

=
n
⊕

i=1

|ai|⊕ =
n
⊕

i=1

(a⊕

i ⊕ a⊖

i ) .

The max-algebraic norm of a matrix A ∈ S
m×n is defined as

‖A‖
⊕

=
m
⊕

i=1

n
⊕

j=1

|aij |⊕ .

Definition 1.9 (Max-algebraic determinant) Consider a matrix A ∈ S
n×n. The max-

algebraic determinant of A is defined as

det⊕ A =
⊕

σ∈Pn

sgn
⊕
(σ)⊗

n
⊗

i=1

aiσ(i)

where Pn is the set of all the permutations of {1, . . . , n} , and sgn
⊕
(σ) = 0 if the permutation

σ is even and sgn
⊕
(σ) = ⊖0 if the permutation is odd.

Theorem 1.10 Let A ∈ S
n×n. The homogeneous linear balance A ⊗ x ∇ εn×1 has a non-

trivial signed solution if and only if det⊕ A ∇ ε.

Proof : See [9]. ✷

Definition 1.11 (Max-linear independence)
A set of vectors {xi ∈ S

n | i = 1, 2, . . . ,m } is max-linearly independent if the only solution of

m
⊕

i=1

αi ⊗ xi ∇ εn×1

with αi ∈ S
∨ is α1 = α2 = . . . = αm = ε . Otherwise we say that the vectors xi are max-

linearly dependent.

1.4 A link between the field of the real numbers and the extended max

algebra

In [8] we have introduced the following mapping for x ∈ Rε:

F(x, s) = µexs

F(⊖x, s) = −µexs

F(x•, s) = νexs

where µ is an arbitrary positive real number or parameter and ν is an arbitrary real number
or parameter different from 0 and s is a real parameter. Note that F(ε, s) = 0.

To reverse the mapping F we have to take lim
s→∞

log( | F(x, s) | )
s

and adapt the max-sign

depending on the sign of the coefficient of the exponential. So if f is a real function, if x ∈ Rε
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and if µ is a positive real number or if µ is a parameter that can only take on positive real
values then

f(s) ∼ µexs , s → ∞ ⇒ R(f) = x

f(s) ∼ −µexs , s → ∞ ⇒ R(f) = ⊖x

where R is the reverse mapping of F . If ν is a parameter that can take on both positive and
negative real values then

f(s) ∼ νexs , s → ∞ ⇒ R(f) = x• .

Note that if the coefficient of exs is a number then the reverse mapping always yields a signed
result.
Now we have for a, b, c ∈ S:

a⊕ b = c → F(a, s) + F(b, s) ∼ F(c, s) , s → ∞ (3)

F(a, s) + F(b, s) ∼ F(c, s) , s → ∞ → a⊕ b ∇ c (4)

a⊗ b = c ↔ F(a, s) · F(b, s) = F(c, s) for all s ∈ R (5)

for an appropriate choice of the µ’s and ν’s in F(c, s) in (3) and in (5) from the left to the
right. The balance in (4) results from the fact that we can have cancellation of equal terms
with opposite sign in (R,+,×) whereas this is in general not possible in Smax since for all
a ∈ S \ {ε} : a⊖ a 6= ε. So we have the following correspondences:

(R+,+,×) ↔ (Rε,⊕,⊗) = Rmax

(R,+,×) ↔ (S,⊕,⊗) = Smax .

We can extend this mapping to matrices such that if A ∈ S
m×n then Ã(·) = F(A, ·) is a real

m by n matrix-valued function with ãij(s) = F(aij , s) for some choice of the µ’s and ν’s.
Note that the mapping is performed entrywise. If A, B and C are matrices with entries in S,
we have

A⊕B = C → F(A, s) + F(B, s) ∼ F(C, s) , s → ∞ (6)

F(A, s) + F(B, s) ∼ F(C, s) , s → ∞ → A⊕B ∇ C (7)

A⊗B = C → F(A, s) · F(B, s) ∼ F(C, s) , s → ∞ (8)

F(A, s) · F(B, s) ∼ F(C, s) , s → ∞ → A⊗B ∇ C (9)

for an appropriate choice of the µ’s and ν’s in F(C, s) in (6) and (8).
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2 The singular value decomposition and the QR decomposi-

tion in the extended max algebra

In [8] we have used the mapping from (R,+,×) to Smax and the reverse mapping to prove
the existence of a kind of singular value decomposition in Smax. Now we give an alternative
proof of the existence theorem based on Kogbetliantz’s SVD algorithm. The entries of the
matrices that are used in this proof are sums or series of exponentials. Therefore, we first
study some properties of this kind of functions.

Definition 2.1 (Sum or series of exponentials) Let Se be the set of real analytic func-
tions f that can be written as a (possibly infinite, but absolutely convergent) sum of exponen-
tials for x large enough:

Se =
{

f
∣

∣

∣ ∃K ∈ R such that f is analytic in [K,∞) and either

∀x > K : f(x) =
n
∑

i=0

αie
aix (10)

with n ∈ N, αi ∈ R0, ai ∈ Rε and a0 > a1 > . . . > an ; or

∀x > K : f(x) =
∞
∑

i=0

αie
aix (11)

with αi ∈ R0, ai ∈ R, ai > ai+1, lim
i→∞

ai = ε and

where the series converges absolutely for x > K
}

.

Since we allow exponents that are equal to ε = −∞, the zero function can also be considered
as an exponential: 0 = 1 · eεx. Because the sequence of exponents is decreasing and the coef-
ficients cannot be equal to 0, the sum of exponentials that corresponds to the zero function
consists of exactly one term.
If f ∈ Se is a series of the form (11) then the set {ai | i = 0, 1, . . . ,∞} has no finite accumu-
lation point since the sequence {ai}∞i=0 is decreasing and unbounded from below. Note that
series of the form (11) are related to (generalized) Dirichlet series [12].

Proposition 2.2 (Uniform convergence) If f ∈ Se is a series:

∃K ∈ R such that ∀x > K : f(x) =
∞
∑

i=0

αie
aix

with αi ∈ R0, ai ∈ Rε, ai > ai+1 and where the series converges absolutely for x > K, then

the series
∞
∑

i=0

αie
aix converges uniformly in [K,∞).

Proof : Since f(x) can be written as a series, we know that a0 6= ε. Hence,

∞
∑

i=0

αie
aix = α0e

a0x

(

1 +
∞
∑

i=1

αi

α0
e(ai−a0)x

)

= α0e
a0x

(

1 +
∞
∑

i=1

γie
cix

)

with γi =
αi

α0
∈ R0 and ci = ai − a0 < 0. Since

∞
∑

i=0

αie
aiK converges absolutely

∞
∑

i=1

γie
ciK

also converges absolutely.
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If x > K then ecix 6 eciK since ci < 0. So ∀x > K : |γiecix| < |γieciK |. We already

know that
∞
∑

i=1

|γieciK | converges. Now we can apply the Weierstrass M -test. Therefore, the

series
∞
∑

i=1

γie
cix converges uniformly in [K,∞) and as a consequence,

∞
∑

i=0

αie
aix also converges

uniformly in [K,∞). ✷

The behavior of the functions in Se in the neighborhood of ∞ is given by the following
property:

Proposition 2.3 Every function f ∈ Se is asymptotically equivalent to an exponential in the
neighborhood of ∞:

f ∈ Se ⇒ f(x) ∼ α0e
a0x , x → ∞

with α0 ∈ R0 and a0 ∈ Rε.

Proof : If f ∈ Se then there exists a real number K such that

∀x > K : f(x) =
n
∑

i=0

αie
aix

with n ∈ N∪{∞}, αi ∈ R0 and ai ∈ Rε. If n = ∞ then f is a series that converges absolutely
in [K,∞).
If a0 = ε then there exists a real number K such that ∀x > K : f(x) = 0 and thus

f(x) ∼ 0 = 1 · eεx , x → ∞

by Definition 1.2.
If n = 1 then f(x) = α0e

a0x and thus f(x) ∼ α0e
a0x, x → ∞ with α0 ∈ R0 and a0 ∈ Rε.

From now on we assume that n > 1 and a0 6= ε . Then we can rewrite f(x) as

f(x) = α0e
a0x

(

1 +
n
∑

i=1

αi

α0
e(ai−a0)x

)

= α0e
a0x( 1 + p(x) )

with

p(x) =
n
∑

i=1

γie
cix

where γi =
αi

α0
∈ R0 and ci = ai − a0. Note that p ∈ Se. Since ai < a0, we have ci < 0 and

consequently

lim
x→∞

p(x) = lim
x→∞

n
∑

i=1

γie
cix =

n
∑

i=1

(

lim
x→∞

γie
cix
)

= 0 . (12)

We can interchange the summation and the limit in (12) even if n = ∞ since in that case the

series
∞
∑

i=1

γie
cix converges uniformly in [K,∞) by Proposition 2.2.

Now we have

lim
x→∞

f(x)

α0ea0x
= lim

x→∞

α0e
a0x(1 + p(x))

α0ea0x
= lim

x→∞
(1 + p(x)) = 1

7



and thus

f(x) ∼ α0e
a0x , x → ∞

where α0 ∈ R0 and a0 ∈ R. ✷

Definition 2.4 (Sign function) The sign function sgn (·) is a real function that is defined
as follows:

sgn (x) = 1 if x > 0 ,

= −1 if x < 0 ,

= 0 if x = 0 .

Now we prove that the set Se is closed under some basic operations:

Theorem 2.5 If f and g belong to Se then ρf , f + g, f − g, f · g, fn, |f | and sgn (f) also
belong to Se for every ρ ∈ R and n ∈ N.

If
1

f
,
f

g
and

√

f are defined, they also belong to Se.

Proof : If f and g belong to Se then there exists a real number K such that

∀x > K : f(x) =
n
∑

i=0

αie
aix and g(x) =

m
∑

j=0

βje
bjx

with m,n ∈ N ∪ {∞}, αi, βj ∈ R0 and ai, bj ∈ Rε. If m or n is equal to ∞ then the
corresponding series converges absolutely in [K,∞).

If a0 = ε then f(x) = 0 for x > K, which means that |f(x)| = 0 and sgn (f(x)) = 0 for x > K
and therefore, |f | and sgn (f) belong to Se.
If a0 6= ε then there exists a real number L > K such that either f(x) > 0 or f(x) < 0
for x > L, since f(x) ∼ α0e

a0x for x → ∞ with α0 6= 0 by Proposition 2.3. Hence, either
|f(x)| = f(x) and sgn (f(x)) = 1, or |f(x)| = −f(x) and sgn (f(x)) = −1 for x > L. So in
this case |f | and sgn (f) also belong to Se.

Since f and g are analytic in [K,∞), the functions ρf , f + g, f − g, f · g and fn are also
analytic in [K,∞).

If a0 = ε then f(x) = 0 for x > K and then
1

f(x)
is not defined for x > K. If a0 6= ε then we

already know that there exists a real number L > K such that either f(x) > 0 or f(x) < 0

for x > L. So
1

f
is defined and analytic in [L,∞). An analogous reasoning can be made for

f

g
.

If a0 = ε then
√

f(x) = 0 for x > K. So
√

f is analytic in [K,∞). If a0 6= ε and if
√

f(x)
is defined for x large enough then α0 > 0 and there exists a real number L > K such that
∀x > L : f(x) > 0 . Therefore,

√

f is analytic in [L,∞).

Now we prove that these functions can be written as a sum of exponentials or as an absolutely
convergent series of exponentials.
We may assume without loss of generality that both m and n are equal to ∞. If m or n are
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finite then we can always add dummy terms of the form 0 · eεx to f(x) or g(x). Afterwards
we can then remove terms of the form reεx with r ∈ R to obtain an expression with nonzero
coefficients and decreasing exponents. So now we have two absolute convergent series of
exponentials f and g.
If ρ = 0 then ρf(x) = 0 and thus ρf ∈ Se.

If ρ 6= 0 then ρf(x) =
∞
∑

i=0

(ραi)e
aix. The series

∞
∑

i=0

(ραi)e
aix also converges absolutely and

has the same exponents as f(x). Consequently, ρf ∈ Se.

The sum f(x) + g(x) =
∞
∑

i=0

αie
aix +

∞
∑

j=0

βje
bjx is also an absolutely convergent series of

exponentials for x > K. This means that sum of this series does not change if we rearrange
the terms. Therefore, f(x)+g(x) can be written in the format of Definition 2.1 by reordering
the terms and adding up terms with equal exponents and removing terms of the form reεx

with r ∈ R, if there are any. If the result is a series then the sequence of exponents is
decreasing and unbounded from below. So f + g ∈ Se.

Since f − g = f + (−1) · g, the function f − g also belongs to Se.

The series corresponding to f and g converge absolutely for x > K. Therefore, their Cauchy
product will also converge absolutely for x > K and it will be equal to f · g :

f(x) · g(x) =
∞
∑

i=0

i
∑

j=0

αjβi−je
(aj+bi−j)x for x > K .

Using the same procedure as for f + g, we can also write this product in the format (10) or
(11). Hence, f · g ∈ Se.

We can make repeated use of the fact that f · g ∈ Se if f, g ∈ Se to prove that fn with n ∈ N

also belongs to Se.

If
1

f
is defined then there exists a real number L > K such that ∀x > L : f(x) 6= 0. Hence,

a0 6= ε. We rewrite f(x) as follows:

f(x) =
∞
∑

i=0

αie
aix = α0e

a0x

(

1 +
∞
∑

i=1

αi

α0
e(ai−a0)x

)

= α0e
a0x( 1 + p(x) )

with

p(x) =
∞
∑

i=1

γie
cix

where γi =
αi

α0
∈ R0 and ci = ai − a0 < 0. So p also belongs to Se.

If c1 = ε then p(x) = 0 and
1

f(x)
=

1

α0
e−a0x. Hence,

1

f
∈ Se.

Now assume that c1 6= ε. Since {ci}∞i=1 is a decreasing sequence of negative numbers with
lim
i→∞

ci = ε = −∞ and since p converges uniformly in [L,∞) ⊂ [K,∞) by Proposition 2.2,

| p(x) | will be smaller than 1 if x is large enough, say, if x > M . If we use the Taylor series

expansion of
1

1 + x
, we obtain

1

1 + p(x)
=

∞
∑

k=0

(−1)kpk(x) if |p(x)| < 1 . (13)
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We already know that p ∈ Se. Hence, pn ∈ Se. Since |p(x)| < 1 for x > M and since the
highest exponent in pn(x) is equal to nc1, which means that the dominant exponent of pn(x)
tends to −∞ as n → ∞, the coefficients and the exponents of more and more successive terms

of the partial sum sn(x) =
n
∑

k=0

(−1)kpk(x) will not change any more as n becomes larger and

larger. Therefore, the series in (13) also is a sum of exponentials:

1

1 + p(x)
=

∞
∑

k=0

(−1)k
(

∞
∑

i=1

γie
cix

)k

=
∞
∑

k=0

die
δix for x > M . (14)

First we prove that this series also converges absolutely. Define

p∗(x) =
∞
∑

i=1

|γi|ecix .

The series p∗ converges absolutely and uniformly in [K,∞) since p converges absolutely in
[K,∞). Furthermore, {ci}∞i=1 is a decreasing and unbounded sequence of negative real num-
bers. So | p∗(x) | will be smaller than 1 if x is large enough, say, if x > N . So

1

1 + p∗(x)
=

∞
∑

k=0

(−1)k (p∗(x))k for x > N .

This series converges absolutely in [N,∞) and since

∞
∑

k=0

|di|eδix 6

∞
∑

k=0

(

∞
∑

i=1

|γi|ecix
)k

6

∞
∑

k=0

∣

∣

∣(p∗(x))k
∣

∣

∣ ,

the series (14) also converges absolutely in [N,∞).
Note that the set of exponents of the series (13) and (14) will have no finite accumulation point
since the highest exponent in pn is equal to nc1. Since the series (14) converges absolutely,
we can reorder the terms. After reordering the terms and adding up terms with the same
exponents and removing terms of the form reεx with r ∈ R if necessary, the sequence of
exponents will be decreasing and unbounded from below.

This means that
1

1 + p
∈ Se and thus also

1

f
∈ Se.

As a consequence,
f

g
= f · 1

g
also belongs to Se.

If a0 = ε then
√

f(x) = 0 for x > K and thus
√

f ∈ Se.

If a0 6= ε and if
√

f is defined in some interval [P,∞) then α0 > 0 and
√

f(x) =
√
α0 e

a0
2
x
√

1 + p(x) .

Now we can use the Taylor series expansion of
√
1 + x . This leads to

√

1 + p(x) =
∞
∑

k=0

Γ
(

3
2

)

Γ
(

3
2 − k

)

k!
pk(x) if |p(x)| < 1 ,
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where Γ is the gamma function. If we apply the same reasoning as for
1

1 + p
, we obtain

√

1 + p ∈ Se and thus also
√

f ∈ Se. ✷

Now we give an alternative proof for the existence theorem of the max-algebraic SVD:

Theorem 2.6 (Existence of the singular value decomposition in Smax)
Let A ∈ S

m×n and let r = min(m,n). Then there exist a max-algebraic diagonal matrix
Σ ∈ R

m×n
ε and matrices U ∈ (S∨)m×m and V ∈ (S∨)n×n such that

A ∇ U ⊗ Σ⊗ V T (15)

with

UT ⊗ U ∇ Em

V T ⊗ V ∇ En

and ‖A‖
⊕
> σ1 > σ2 > . . . > σr > ε where σi = (Σ)ii.

Every decomposition of the form (15) that satisfies the above conditions is called a max-
algebraic singular value decomposition of A.

Proof : If A ∈ S
m×n has entries that are not signed we can always define a signed m by n

matrix Â such that

âij = aij if aij is signed,

= |aij |⊕ if aij is not signed.

Since |âij |⊕ = |aij |⊕ for all i, j, we have ‖Â‖
⊕
= ‖A‖

⊕
. Furthermore, ∀a, b ∈ S : a ∇ b ⇒

a• ∇ b, which means that Â ∇ U ⊗ Σ ⊗ V T would imply A ∇ U ⊗ Σ ⊗ V T . Therefore, it is
sufficient to prove this theorem for signed matrices A.

So from now on we assume that A is signed. First we define c = ‖A‖
⊕
.

If c = ε then A = εm×n. If we take U = Em, Σ = εm×n and V = En , we have A =
U ⊗ Σ ⊗ V T , UT ⊗ U = Em , V T ⊗ V = En and σ1 = σ2 = . . . = σr = ε = ‖A‖

⊕
. So

U ⊗ Σ⊗ V T is a max-algebraic SVD of A.

From now on we assume that c 6= ε. We may also assume without loss of generality that
m 6 n. If m > n then we can apply the subsequent reasoning on AT since A ∇ U ⊗ Σ⊗ V T

if and only if AT ∇ V ⊗ ΣT ⊗ UT . So U ⊗ Σ⊗ V T is a max-algebraic SVD of A if and only

if V ⊗ ΣT ⊗ UT is a max-algebraic SVD of AT .

Now we have to distinguish between two different situations depending on whether or not all
the aij ’s have a finite max-absolute value.

Case 1: all the aij ’s have a finite max-absolute value.

We construct a matrix-valued function Ã(·) = F(A, ·). Hence, we have ãij(s) = γije
cijs

for all s ∈ R with γij ∈ R0 and cij = |aij |⊕ ∈ Rε.

We select the coefficients γij such that the generic rank of Ã(·) ism. This can be effectuated
by choosing the γij ’s such that

rank Ã(0) = rank Γ = m (16)
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where (Γ)ij = γij , since the rank of Ã(·) is constant except in some non-generic points
where the rank drops. Therefore, condition (16) ensures that the generic rank of Ã(·) is
m and that Ã(·) has no singular values that are identically zero.
Furthermore, ifm > 1 then we select the γij ’s such that Ã(s) has no multiple singular values
except maybe in some non-generic points. This condition will guarantee the asymptotic
quadratic convergence of Kogbetliantz’s SVD algorithm. Since we are only interested in
the asymptotic behavior of the entries of Ã(s), we can always add an extra exponential of
the form δije

dijs with dij < cij to ãij(s) such that rank Ã(0) = rank (Γ +∆) = m if this
should be necessary to obtain distinct singular values for almost all values of s.
Now we define a matrix-valued function B̃(·) such that B̃(s) = e−(c+1)sÃ(s). So

b̃ij(s) = γije
−bijs + δije

−fijs for all s ∈ R

with bij = c+ 1− cij > 0 and fij = c+ 1− dij > bij . The entries of B̃(·) are in Se.

If I ⊂ R then Ũ(s) Ψ̃(s) Ṽ T (s) is a (constant) SVD of B̃(s) for each s ∈ I if and only if
Ũ(s) Σ̃(s) Ṽ T (s) with Σ̃(s) = e(c+1)sΨ̃(s) is a (constant) SVD of Ã(s) for each s ∈ I.

We shall apply Kogbetliantz’s SVD algorithm [4, 11] on B̃(·). This algorithm can be
considered as an extension of Jacobi’s method for the calculation of the eigenvalue decom-
position of a symmetric matrix. For a matrix B ∈ R

m×n (with m 6 n) a sequence of
matrices is generated as follows:

X0 = Im , Y0 = In , S0 = B

Xk = GkXk−1 , Yk = HkYk−1 , Sk = GkSk−1H
T
k for k = 1, 2, 3, . . .

such that

‖Sk‖off
def
=

√

√

√

√

∑

i 6=j

(Sk)
2
ij

decreases monotonously. So Sk tends more and more to a diagonal matrix as the iteration
process progresses. If m = n then the orthogonal updating transformations Gk and Hk

are elementary rotations that are chosen such that (Sk)ikjk = (Sk)jkik = 0 for some pair of
indices (ik, jk). As a result we have

‖Sk‖2off = ‖Sk−1‖2off − (Sk−1)
2
ikjk

− (Sk−1)
2
jkik

.

If m < n and if m < jk 6 n then only Sikjk is zeroed and only one transformation is applied
(the identity matrix is taken for Gk). We shall use the cyclic version of Kogbetliantz’s SVD
algorithm: the indices ik and jk are chosen such that the entries in the upper triangular
part of the Sk’s are selected row by row. If m = n, this yields the following sequence for
the pairs of indices (ik, jk):

(1, 2) → (1, 3) → (1, 4) → . . . → (1, n) → (2, 3) → (2, 4) → . . . → (n− 1, n) .

If m < n then the last pair of indices of is (m,n). A complete cycle is called a sweep and

corresponds to N =
(2n−m− 1)m

2
iterations.

Note that

∀k ∈ N : B = XT
k Sk Yk .
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Since Gk and Hk are orthogonal matrices, we have

∀k ∈ N : ‖Sk‖F = ‖B‖F (17)

and

∀k ∈ N : XT
k Xk = Im and Y T

k Yk = In .

If we define S = lim
k→∞

Sk, X = lim
k→∞

Xk and Y = lim
k→∞

Yk then S is a diagonal matrix and

X and Y are orthogonal matrices. After applying a permutation such that the diagonal
entries of S are ordered we obtain an SVD of B:

B =
(

XTP T
)

·
(

PSP T
)

· (PY ) = UΨV T

with U = XTP T , Ψ = PSP T and V = Y TP T and where P is a permutation matrix.
The convergence of the cyclic Kogbetliantz algorithm is quadratic for k large enough [15]:

∃K ∈ N such that ∀k > K : ‖Sk+N‖off 6 c ‖Sk‖2off . (18)

The operations used in Kogbetliantz’s SVD algorithm are additions, multiplications, sub-
tractions, divisions, square roots, absolute values and sign functions. So if we apply this
algorithm to a matrix with entries in Se then the entries of all the matrices generated
during the iteration process also belong to Se by Theorem 2.5.
If f , g and h belong to Se, they are asymptotically equivalent to an exponential in the
neighborhood of ∞ by Proposition 2.3. So if L is large enough, then f(L) > 0 and
g(L) > h(L) imply that ∀s > L : f(s) > 0 and g(s) > h(s). This is one of the reasons that
Kogbetliantz’s SVD algorithm also works for matrices with entries in Se instead of in R.
Now we apply Kogbetliantz’s SVD algorithm on B̃(·). Let S̃k(·), X̃k(·) and Ỹk(·) be the
matrix-valued functions obtained in the kth step of the algorithm. Let Ψ̃k(·), Ũk(·) and
Ṽk(·) be the permuted versions of S̃k(·), X̃k(·) and Ỹk(·) respectively.
The exponents of the entries of B̃(·) are negative and the same holds for the exponents of
the entries of S̃k(·) since ‖S̃k(·)‖F = ‖B̃(·)‖F by (17). Hence, (18) means that the largest
off-diagonal exponent approximately doubles each N steps. Since the Frobenius norm of
S̃k(·) stays constant during the iteration, the exponents of the updates of the diagonal
entries also approximately double each N steps. Therefore, more and more successive
terms of the series of the diagonal entries of S̃k(·) stay constant as the iteration process
progresses. This also holds for the series of the entries of X̃k(·) and Ỹk(·).
In theory we should run the iteration process forever. However, since we are only interested
in the asymptotic behavior of the singular values and the entries of the singular vectors we
can stop the iteration as soon as the dominant exponents do not change anymore, i.e. after
a finite number of iteration steps.

If Ũ(·) Ψ̃(·) Ṽ T (·) is a path of (approximate) SVDs of B̃(·) on some interval [L,∞) that
was obtained by the above procedure, then the entries of Ũ(·), Ψ̃(·) and Ṽ (·) are in Se and
Ũ(s) and Ṽ (s) are orthogonal for each s ∈ [L,∞).
Furthermore, it should be pointed out that we are not really interested in a path of exact
SVDs of B̃(·). Let ∆̃k(·) be the diagonal matrix-valued function obtained by removing the
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off-diagonal entries from Ψ̃k(·) after the kth iteration step. If we define the matrix-valued
function C̃k(·) = Ũk(·) ∆̃k(·) Ṽ T

k (·), then we have a path of exact SVDs of C̃(·) on some
interval [L,∞). This means that we could also stop the iteration process as soon as

b̃ij(s) ∼ c̃ij(s) , s → ∞ for all i, j .

Define a matrix-valued function Σ̃(·) such that Σ̃(s) = e(c+1)sΨ̃(s). Then Ũ(·) Σ̃(·) Ṽ T (·)
is a path of (approximate) SVDs of Ã(·) on [L,∞):

Ã(s) ∼ Ũ(s) Σ̃(s) Ṽ T (s) , s → ∞ (19)

ŨT (s) Ũ(s) = Im if s > L (20)

Ṽ T (s) Ṽ (s) = In if s > L . (21)

So now we have proved that there exists a path of (approximate) SVDs of Ã(·) for which the
singular values and the entries of the singular vectors belong to Se and are asymptotically
equivalent to an exponential in the neighborhood of ∞ by Proposition 2.3.
If we apply the reverse mapping R, we obtain a max-algebraic SVD of A. Since we have
used numbers instead of parameters for the coefficients of the exponentials in F(A, ·), the
coefficients of the exponentials in the singular values and the entries of the singular vectors
are also numbers. Therefore, the reverse mapping only yields signed results. If we define

Σ = R
(

Σ̃(·)
)

, U = R
(

Ũ(·)
)

, V = R
(

Ṽ (·)
)

and σi = (Σ)ii = R(σ̃i(·)) ,

then Σ is a max-algebraic diagonal matrix and U and V have signed entries. If we apply
the reverse mapping R to (19) – (21), we get

A ∇ U ⊗ Σ⊗ V T

UT ⊗ U ∇ Em

V T ⊗ V ∇ En .

The σ̃i(·)’s are positive in [L,∞) and therefore, σi ∈ Rε. Since the σ̃i(·)’s are ordered in
[L,∞), their dominant exponentials are also ordered. Hence, σ1 > σ2 > . . . > σr > ε.
We have ‖Ã(s)‖F ∼ γecs, s → ∞ with γ > 0 since c = ‖A‖

⊕
is the largest exponent that

appears in the entries of Ã(·). So R
(

‖Ã(·)‖F
)

= c = ‖A‖
⊕
. If M ∈ R

m×n then

1√
n

‖M‖F 6 ‖M‖2 6 ‖M‖F .

Hence,

1√
n
‖Ã(s)‖F 6 ‖Ã(s)‖2 6 ‖Ã(s)‖F if s > L .

Since σ̃1(s) ∼ ‖Ã(s)‖2, s → ∞ and since the mapping R preserves the order, this leads
to ‖A‖

⊕
6 σ1 6 ‖A‖

⊕
and consequently, σ1 = ‖A‖

⊕
.
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Case 2: not all the aij ’s have a finite max-absolute value.

Now some of the entries of A are equal to ε and it is possible that there are singular values
that are identically zero. Therefore, we cannot use the technique that was used in Case 1
to ensure that there are no multiple singular values. Hence, we cannot guarantee the
quadratic convergence of Kogbetliantz’s SVD algorithm anymore without making some
extra assumptions (see [2, 3]).
Therefore, we construct a sequence {Ak}∞k=0 of m by n matrices such that

(Ak)ij = aij if |aij |⊕ is finite ,

= P − k if |aij |⊕ = ε ,

where P = ‖A‖
⊕
− 1. So the entries of the matrices Ak are finite and ‖A‖

⊕
= ‖Ak‖⊕

for
all k ∈ N.
Now we construct the corresponding sequence of F(Ak, ·)’s where we always take the same
coefficients γij , δij and dij . We calculate a path of (approximate) SVDs Ũk(·) Σ̃k(·) Ṽ T

k (·)
for each F(Ak, ·) using the method discussed above. In general, it is possible that some
sequences of the dominant exponents and the corresponding coefficients of the entries of
Ũk(·) and Ṽk(·) have more than one accumulation point. However, since we use a fixed
calculation scheme (the cyclic Kogbetliantz algorithm), all the sequences will have exactly
one accumulation point. So some of the dominant exponents will reach a finite limit as k
goes to ∞, while the other dominant exponents will tend to −∞. If we take the reverse
mapping R, we get a sequence of max-algebraic SVDs {Uk ⊗Σk ⊗ V T

k }∞k=0 where some of
the entries, viz. those that correspond to dominant exponents that tend to −∞, tend to ε
as k → ∞. Note that (Σk)ii 6 (Σk)11 6 ‖A‖

⊕
for all i.

If we define

U = lim
k→∞

Uk , Σ = lim
k→∞

Σk and V = lim
k→∞

Vk

then

A ∇ U ⊗ Σ⊗ V T

UT ⊗ U ∇ Em

V T ⊗ V ∇ En .

Since the diagonal entries of the Σk’s are max-positive or zero, ordered and less than or
equal to ‖A‖

⊕
, the diagonal entries of Σ are also max-positive or zero, ordered and less

than or equal to ‖A‖
⊕
. So U ⊗ Σ⊗ V T is a max-algebraic SVD of A. ✷

Although this alternative proof technique leads to a proof that is longer than that of [8],
it has the advantage that it can also be used to prove the existence of other max-algebraic
matrix decompositions fairly easily. We shall demonstrate this by proving the existence of
the max-algebraic equivalent of the QR decomposition (QRD).

Definition 2.7 (QR decomposition) The QR decomposition of a real m by n matrix A is
given by

A = QR ,

where Q ∈ R
m×m is orthogonal and R ∈ R

m×n is upper triangular.
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Note that ‖A‖F = ‖R‖F since Q is an orthogonal matrix.

Theorem 2.8 If Ã(·) ∈ (Se)
m×n then there exists a path of QR factorizations Q̃(·) R̃(·) of

Ã(·) for which the entries of Q̃(·) and R̃(·) also belong to Se.

Proof : We can use Householder or Givens transformations to calculate the QR decomposi-
tion of a matrix [10]. If we apply the algorithms in their most elementary form (i.e. without
the refinements necessary to avoid overflow and to guarantee numerical stability), we only
have to use additions, multiplications, subtractions, divisions and square roots. Hence, the
entries of resulting matrices Q̃(·) and R̃(·) belong to Se by Theorem 2.5. ✷

As a direct consequence we have

Theorem 2.9 (Max-algebraic QR decomposition) If A ∈ S
m×n then there exist a ma-

trix Q ∈ (S∨)m×m and a max-algebraic upper triangular matrix R ∈ (S∨)m×n such that

A ∇ Q⊗R (22)

with

QT ⊗Q ∇ Em

and ‖R‖
⊕
6 ‖A‖

⊕
.

Every decomposition of the form (22) that satisfies the above conditions is called a max-
algebraic QR decomposition of A.

The condition σ1 6 ‖A‖
⊕
in the definition of the max-algebraic SVD is necessary in order to

obtain singular values that are bounded from above as is shown by the following example:

Example 2.10 Consider

A =











0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0











and define

U =











0 0 ⊖0 0
0 ⊖0 ⊖0 ⊖0
0 0 0 0
0 0 ⊖0 ⊖0











, Σ =











σ ε ε ε
ε σ ε ε
ε ε σ ε
ε ε ε σ











and V =











0 ⊖0 0 ⊖0
0 0 0 ⊖0

⊖0 0 0 ⊖0
0 ⊖0 0 0











.

Then we have

UT ⊗ U = V T ⊗ V =











0 0• 0• 0•

0• 0 0• 0•

0• 0• 0 0•

0• 0• 0• 0











∇ E4

and

U ⊗ Σ⊗ V T =











σ• σ• σ• σ•

σ• σ• σ• σ•

σ• σ• σ• σ•

σ• σ• σ• σ•











, (23)
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which means that U ⊗ Σ⊗ V T ∇ A for every σ > 0.
So if the condition σ1 6 ‖A‖

⊕
would not be included in the definition of the max-algebraic

SVD, (23) would be a max-algebraic SVD of A for every σ > 0. ✷

Likewise, the condition ‖R‖
⊕
6 ‖A‖

⊕
in Theorem 2.9 is necessary to bound the components

of R from above:

Example 2.11 Consider

A =







0 ⊖0 0
0 0 0

⊖0 0 0






.

Without the condition ‖R‖
⊕
6 ‖A‖

⊕
every max-algebraic product of the form

Q⊗R =







0 ⊖0 0
0 0 ⊖0

⊖0 0 0






⊗







0 ε ρ
ε 0 ρ
ε ε ρ






=







0 ⊖0 ρ•

0 0 ρ•

⊖0 0 ρ•







with ρ > 0 would have been a max-algebraic QRD of A. ✷

In [8] we have defined a rank based on the minimal max-algebraic SVD of a matrix. The
same can be done with the max-algebraic QRD: we could define the max-algebraic QR rank
of a matrix A as the minimal possible number of non-ε rows of R over the set of all possible
max-algebraic QRDs of A:

Definition 2.12 (Max-algebraic QR rank) Let A ∈ S
m×n. The max-algebraic QR rank

of A is defined as

rank⊕,QR(A) = min

{

ρ

∣

∣

∣

∣

∣

A ∇
ρ
⊕

i=1

qi ⊗Ri. , Q⊗R is a max-algebraic

QR decomposition of A

}

where qi is the ith column of Q, Ri. is the ith row of R and
0
⊕

i=1

qi ⊗Ri. is equal to εm×n by

definition.

3 Extensions of the max-algebraic SVD

In this section we propose possible extensions of the definition of the max-algebraic SVD.
If U is a (real) m by m matrix then UTU = Im if and only if UUT = Im. However, in the
extended max algebra UT ⊗ U ∇ Em does not always imply U ⊗ UT ∇ Em as is shown by
the following example:

Example 3.1 Consider

U =











0 ⊖(−1) 0 −1
−1 0 −1 ⊖0
⊖0 ε 0 −1
ε 0 ε 0











.
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We have

UT ⊗ U =











0 (−1)• 0• (−1)•

(−1)• 0 (−1)• 0•

0• (−1)• 0 (−1)•

(−1)• 0• (−1)• 0











∇ E4

but

U ⊗ UT =











0 (−1)• 0• (−1)•

(−1)• 0 (−1)• 0•

0• (−1)• 0 −1
(−1)• 0• −1 0











∇/ E4

since (U ⊗ UT )34 = (U ⊗ UT )43 = −1 ∇/ ε. ✷

In the proof of the existence theorem of the max-algebraic SVD we have seen that for every
matrix A ∈ S

m×n (with finite entries) there is at least one max-algebraic SVD that corresponds

to a path of (approximate) SVDs Ũ(·) Σ̃(·) Ṽ T (·) of Ã(·) = F(A, ·) on some interval [L,∞).

So if s > L then Ũ(s) satisfies both ŨT (s) Ũ(s) = Im and Ũ(s) ŨT (s) = Im, and Ṽ (s) satisfies

both Ṽ T (s) Ṽ (s) = In and Ṽ (s) Ṽ T (s) = In. Therefore, we could add two extra conditions to
the definition of the max-algebraic SVD: U ⊗ UT ∇ Em and V ⊗ V T ∇ En. This yields:

Theorem 3.2 Let A ∈ S
m×n and let r = min(m,n). Then there exist a max-algebraic

diagonal matrix Σ ∈ R
m×n
ε and matrices U ∈ (S∨)m×m and V ∈ (S∨)n×n such that

A ∇ U ⊗ Σ⊗ V T

with

UT ⊗ U ∇ Em

U ⊗ UT ∇ Em

V T ⊗ V ∇ En

V ⊗ V T ∇ En

and ‖A‖
⊕
> σ1 > σ2 > . . . > σr > ε where σi = (Σ)ii.

Furthermore, the left singular vectors of the path of (approximate) SVDs of Ã(·) will be
linearly independent on [L,∞) since ŨT (s) Ũ(s) = Im for each value of s > L. The right
singular vectors will also be linearly independent. However, in the extended max algebra the
condition UT ⊗ U ∇ Em is not sufficient for max-linear independence of the columns of U
even if the entries U are signed as is shown by the following example:

Example 3.3 Consider

U =







0 ⊖0 0
0 0 0
0 0 ⊖0






.

We have

UT ⊗ U = U ⊗ UT =







0 0• 0•

0• 0 0•

0• 0• 0






∇ E3 .
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Furthermore, det⊕ U = 0•. So by Theorem 1.10 there exists a signed solution of α1 ⊗ u1 ⊕
α2 ⊗ u2 ⊕ α3 ⊗ u3 ∇ ε3×1, viz. α1 = 0, α2 = ⊖0 and α3 = ⊖0. Therefore, the vectors u1, u2
and u3 are max-linearly dependent by Definition 1.11. ✷

If we want the left singular vectors to be max-linearly independent and if we also want
the right singular vectors to be max-linearly independent, we should have det⊕ U ∇/ ε and
det⊕ V ∇/ ε by Theorem 1.10. So we could also add these conditions to the definition of the
max-algebraic SVD. Note that these conditions also imply that the rows of U and V are
max-linearly independent since det⊕ U = det⊕ UT also holds in Smax. This leads to:

Theorem 3.4 Let A ∈ S
m×n and let r = min(m,n). Then there exist a max-algebraic

diagonal matrix Σ ∈ R
m×n
ε and matrices U ∈ (S∨)m×m and V ∈ (S∨)n×n such that

A ∇ U ⊗ Σ⊗ V T

with

UT ⊗ U ∇ Em

U ⊗ UT ∇ Em

V T ⊗ V ∇ En

V ⊗ V T ∇ En ,

where the rows and the columns of U and V are max-linearly independent or equivalently

det⊕ U ∇/ ε

det⊕ V ∇/ ε

and with ‖A‖
⊕
> σ1 > σ2 > . . . > σr > ε, where σi = (Σ)ii.

It is obvious that we can also add the above conditions to the definition of the max-algebraic
QR decomposition. This leads to:

Theorem 3.5 If A ∈ S
m×n then there exist a matrix Q ∈ (S∨)m×m and a max-algebraic

upper triangular matrix R ∈ (S∨)m×n such that

A ∇ Q⊗R

with

QT ⊗Q ∇ Em

Q⊗QT ∇ Em

det⊕ Q ∇/ ε

and ‖R‖
⊕
6 ‖A‖

⊕
.

4 Examples

In this section we give an example of the calculation of a max-algebraic QRD and a max-
algebraic SVD of a matrix using the mapping F . Other examples can be found in [8, 7].
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Example 4.1 We calculate a max-algebraic QRD of

A =







2• 0 ⊖(−1)
ε ⊖3 (−2)•

⊖2 −1 ⊖4






.

We define Ã(·) = F(A, ·) where we take all the coefficients µ and ν equal to 1:

Ã(s) =







e2s 1 −e−s

0 −e3s e−2s

−e2s e−s −e4s






.

If we use the Givens QR algorithm [10], we get the following path of QR factorizations of
Ã(·):

Q̃(s) =

























1√
2

e−3s + e−4s

√
4 + 2e−6s + 4e−7s + 2e−8s

− 1√
2 + e−6s + 2e−7s + e−8s

0 −
√
2√

2 + e−6s + 2e−7s + e−8s
− e−3s + e−4s

√
2 + e−6s + 2e−7s + e−8s

− 1√
2

e−3s + e−4s

√
4 + 2e−6s + 4e−7s + 2e−8s

− 1√
2 + e−6s + 2e−7s + e−8s

























R̃(s) =

























√
2e2s

1− e−s

√
2

e4s − e−s

√
2

0

√
2 + e−6s + 2e−7s + e−8s

√
2 e−3s

− es + 1 + 2e−2s + e−4s + e−5s

√
4 + 2e−6s + 4e−7s + 2e−8s

0 0
e4s + e−s − e−5s − e−6s

√
2 + e−6s + 2e−7s + e−8s

























for each s ∈ R. Hence,

Q̃(s) ∼



















1√
2

e−3s

2
− 1√

2

0 −1 − e−3s

√
2

− 1√
2

e−3s

2
− 1√

2



















, s → ∞ .

R̃(s) ∼

















√
2e2s

1√
2

e4s√
2

0 e3s − es

2

0 0
e4s√
2

















, s → ∞
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If we define Q = R
(

Q̃(·)
)

and R = R
(

R̃(·)
)

, we obtain

Q =







0 −3 ⊖0
ε ⊖0 ⊖(−3)

⊖0 −3 ⊖0






and R =







2 0 4
ε 3 ⊖1
ε ε 4






.

We have

Q⊗R =







2 0 4•

ε ⊖3 1•

⊖2 0• ⊖4






∇ A

QT ⊗Q =







0 (−3)• 0•

(−3)• 0 (−3)•

0• (−3)• 0






∇ E3

and ‖R‖
⊕
= 4 = ‖A‖

⊕
. Furthermore, Q⊗QT = QT ⊗Q∇E3 and det⊕ Q = 0 ∇/ ε. ✷

Example 4.2 Now we calculate a max-algebraic SVD of

B =











−4 ⊖2 3
⊖(−3) ⊖(−5) 1•

⊖0 4• ⊖5
4 ⊖5 5











.

We define B̃(·) = F(B, ·) where we take all the coefficients µ and ν equal to 1:

B̃(s) =











e−4s −e2s e3s

−e−3s −e−5s es

−1 e4s −e5s

e4s −e5s e5s











.

We have calculated the constant SVD of B̃(s) in a set of discrete points and used interpolation
to obtain a path of SVDs Ũ(·) Σ̃(·) Ṽ T (·) of B̃(·). In Figures 1 and 2 we have plotted the
singular values σ̃i(·) and the components of the first left singular vector ũ1(·) of B̃(·). In

Figures 3 and 4 we have plotted the functions σ̂i(·) and ûi1(·) defined by
log σ̃i(s)

s
and

log |ũi1(s)|
s

respectively. From these plots we can determine the dominant exponents of the

σ̃i(·)’s and the components of ũ1(·). If we take the limit of the σ̂i(·)’s and the ûij(·)’s for s
going to ∞ and if we take the signs into account – in other words, if we apply the reverse
mapping R – we get the following max-algebraic SVD of B:

B ∇











−2 −2 ⊖(−1) ⊖0

−4 −4 0 ⊖(−1)

⊖0 ⊖0 ⊖(−3) ⊖(−2)

0 ⊖0 −5 ⊖(−6)











⊗











5 ε ε
ε 5 ε
ε ε −1
ε ε ε











⊗







−1 ⊖(−1) 0
⊖0 0 −1
0 0 −2







T

=











2• 3• 3
0• 1• 1
4• 5• ⊖5
4 ⊖5 5•











. ✷
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5 Conclusions and future research

First we have proved the existence of a kind of singular value decomposition (SVD) in the
extended max algebra. Next we have used the same proof technique to prove the existence
of a QR factorization of a matrix in the extended max algebra. It is obvious that this proof
technique can also be used to prove the existence of max-algebraic equivalents of many other
matrix decompositions from linear algebra: it can easily be adapted to prove the existence of
an LU decomposition of a matrix in the extended max algebra and to prove the existence of an
eigenvalue decomposition for symmetric matrices in the extended max algebra (by using the
Jacobi algorithm for the calculation of the eigenvalue decomposition of a symmetric matrix).
We have also discussed some possible extensions of the definition of the max-algebraic SVD.

Topics for future research are: further investigation of the properties of the max-algebraic
SVD and the max-algebraic QR decomposition, extension of the proof technique of this paper
to prove the existence of other max-algebraic matrix decompositions and investigation of
possible applications of these matrix decompositions.
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Figure 1: The singular values σ̃i(·) of B̃(·).
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Figure 2: The components ũi1(·) of the first left singular vector of B̃(·).
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log |ũi1(s)|
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