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Abstract. We show that the problem of finding a singular value decomposition of a matrix
in the extended max algebra can be reformulated as an Extended Linear Complementarity
Problem. This allows us to compute all the max-algebraic singular value decompositions of
a matrix. This technique can also be used to calculate many other max-algebraic matrix
decompositions.

1 Introduction

1.1 Overview

One of the possible frameworks to describe and analyze discrete event systems (such as flexible
manufacturing processes, railroad traffic networks, telecommunication networks, . . . ) is the
max algebra [1, 2, 3]. The elements of the max algebra are the real numbers and −∞, and the
admissible operations are the maximum and the addition. A class of discrete event systems,
the timed event graphs, can be described by a model that is linear in the max algebra. There
exists a remarkable analogy between linear algebra and the max algebra: many properties and
concepts of linear algebra such as Cramer’s rule, the Cayley-Hamilton theorem, eigenvalues,
eigenvectors, . . . also have a max-algebraic equivalent. However, there are also some major
differences that make that the mathematical foundations of the max algebra are not as fully
developed as those of linear algebra.

In [8, 6] we have introduced a link between the field of the real numbers and the extended
max algebra, which is a kind of symmetrization of the max algebra. We have used this link to
prove the existence of a singular value decomposition (SVD) and a QR decomposition (QRD)
of a matrix in the extended max algebra and to calculate these decompositions.

In this paper we present an alternative method to calculate the max-algebraic SVD and
other max-algebraic matrix decompositions. This method is based on the fact that a system
of multivariate max-algebraic polynomial equalities and inequalities can be transformed into

1This paper presents research results of the Belgian programme on interuniversity attraction poles (IUAP-
50) initiated by the Belgian State, Prime Minister’s Office for Science, Technology and Culture. The scientific
responsibility is assumed by its authors.

2Research assistant with the N.F.W.O. (Belgian National Fund for Scientific Research).
3Senior research associate with the N.F.W.O.
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an Extended Linear Complementarity Problem (ELCP) [4]. The ELCP is an extension of the
well-known Linear Complementarity Problem, which is one of the fundamental problems of
mathematical programming. In [4] we have developed an algorithm to find all the solutions
of an ELCP. We shall use this algorithm to calculate the max-algebraic SVD and the max-
algebraic QRD of a matrix. This method also gives us a geometrical insight in the set of all
max-algebraic SVDs or QRDs of a given matrix.

In Section 1 we explain the notations we use in this paper and we give some definitions
and properties. We also include a short introduction to the max algebra and the extended
max algebra and we discuss the link between the field of the real numbers and the extended
max algebra. In Section 2 we briefly treat the problem of solving a system of multivariate
max-algebraic polynomial equalities and inequalities. In Section 3 we recapitulate the main
results on the max-algebraic SVD and the max-algebraic QRD of [8, 6] and we prove that
a matrix with finite entries always has a max-algebraic SVD with finite singular values and
finite singular vectors. In Section 4 we show that the problem of finding a max-algebraic
SVD or a max-algebraic QRD of a matrix can be reformulated as a system of multivariate
max-algebraic polynomial equalities and inequalities and thus also as an ELCP. Next we show
that the extended definitions of the max-algebraic SVD and the max-algebraic QRD that were
proposed in [6] also lead to a system of multivariate max-algebraic polynomial equalities and
inequalities or an ELCP. We conclude with some worked examples.

1.2 Notations and definitions

If a ∈ R
n, then ai is the ith component of a. If A is a matrix, then aij or (A)ij is the entry on

the ith row and the jth column. The ith row of A is represented by Ai.. The n by n identity
matrix is denoted by In and the m by n zero matrix is denoted by Om×n.

If f : A→ C is a function then the value of f at x ∈ A is denoted by f(x). The number
of elements of the domain of definition Df of the function f is denoted by #Df . If f : A→ C
and g : B → D are functions and if A ∩ B = ∅, then f ∪ g is a function that is defined as
follows: f ∪ g : A ∪B → C ∪D with

(f ∪ g)(x) = f(x) if x ∈ A ,

= g(x) if x ∈ B .

Definition 1.1 (Asymptotic equivalence) Let α ∈ R∪{∞} and let f and g be real func-
tions. The function f is asymptotically equivalent to g in the neighborhood of α, denoted by

f(x) ∼ g(x), x→ α, if lim
x→α

f(x)

g(x)
= 1.

If β ∈ R and if ∃δ > 0, ∀x ∈ (β − δ, β + δ) \ {β} : f(x) = 0 then f(x) ∼ 0, x→ β.

We say that f(x) ∼ 0, x→∞ if ∃K ∈ R, ∀x > K : f(x) = 0 .

If F (·) and G(·) are real m by n matrix-valued functions then F (x) ∼ G(x), x→ α if
fij(x) ∼ gij(x), x→ α for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

The main difference with the classic definition of asymptotic equivalence is that Definition 1.1
also allows us to say that a function is asymptotically equivalent to 0.
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1.3 The max algebra and the extended max algebra

Now we give a short introduction to the max algebra and the extended max algebra. A com-
plete overview of the max algebra can be found in [1, 3]. The basic max-algebraic operations
are defined as follows:

x⊕ y = max (x, y) (1)

x⊗ y = x+ y (2)

where x, y ∈ R∪ {−∞}. The resulting structure Rmax = (R ∪ {−∞},⊕,⊗) is called the max
algebra. Define ε = −∞ and Rε = R ∪ {−∞}. The zero element for ⊕ in Rε is ε. Let r ∈ R.
The rth max-algebraic power of x ∈ R is denoted by x⊗

r
and corresponds to rx in linear

algebra. If x ∈ R then x⊗
0
= 0 and the inverse element of x w.r.t. ⊗ is x⊗

−1
= −x. If r > 0

then ε⊗
r
= ε. If r 6 0 then ε⊗

r
is not defined.

The max-algebraic operations are extended to matrices as follows: if α ∈ Rε and if X,
Y ∈ R

m×n
ε then (α ⊗ X)ij = α ⊗ xij and (X ⊕ Y )ij = xij ⊕ yij for all i, j. If X ∈ R

m×p
ε

and Y ∈ R
p×n
ε then (X ⊗ Y )ij =

p
⊕

k=1

xik ⊗ ykj for all i, j. The matrix En is the n by n

max-algebraic identity matrix: (En)ii = 0 for i = 1, 2, . . . , n and (En)ij = ε for all i, j with
i 6= j. The m by n max-algebraic zero matrix is represented by εm×n: (εm×n)ij = ε for all
i, j. The off-diagonal entries of a max-algebraic diagonal matrix D ∈ R

m×n
ε are equal to ε:

dij = ε for all i, j with i 6= j. A matrix R ∈ R
m×n
ε is a max-algebraic upper triangular matrix

if rij = ε for all i, j with i > j. A max-algebraic permutation matrix is square matrix P with
exactly one 0 entry in each row and in each column and where the other entries are equal to
ε.

In contrast to linear algebra, there exist no inverse elements w.r.t. ⊕ in Rε. To over-
come this problem we need the extended max algebra Smax [1, 9, 10], which is a kind of
symmetrization of the max algebra. We shall restrict ourselves to a short introduction to
the most important features of Smax. For a more formal derivation the interested reader is
referred to [1, 8, 9, 10].
First we define two new elements for every x ∈ Rε: ⊖x and x•. This gives rise to an extension
S of Rε that contains three classes of elements:

• S
⊕ ≡ Rε, the set of the max-positive or zero elements,

• S
⊖ = {⊖x |x ∈ Rε }, the set of max-negative or zero elements,

• S
• = {x• |x ∈ Rε }, the set of the balanced elements.

We have S = S
⊕ ∪ S

⊖ ∪ S
• and S

⊕ ∩ S
⊖ ∩ S

• = {ε} since ε = ⊖ε = ε•. The max-positive
elements, the max-negative elements and the zero element ε are called signed (S∨ = S

⊕∪S⊖).
The ⊕ and the ⊗ operation can be extended to S. The resulting structure Smax = (S,⊕,⊗)
is called the extended max algebra. The ⊕ law is associative, commutative and idempotent
in S and its zero element is ε; the ⊗ law is associative and commutative in S and its unit
element is 0. The ⊗ law is distributive w.r.t. the ⊕ law in S. If x, y ∈ Rε then

x⊕ (⊖y) = x if x > y ,

x⊕ (⊖y) = ⊖y if x < y ,

x⊕ (⊖x) = x• .

3



Furthermore, we have

a• = (⊖a)• = (a•)•

a⊗ b• = (a⊗ b)•

⊖(⊖a) = a

⊖(a⊕ b) = (⊖a)⊕ (⊖b)

⊖(a⊗ b) = (⊖a)⊗ b

for all a, b ∈ S. The last three properties allow us to write a⊖ b instead of a ⊕ (⊖b). So the
⊖ operator in Smax could be considered as the equivalent of the - operator in linear algebra.
Let a ∈ S. The max-positive part a⊕ and the max-negative part a⊖ of a are defined as follows:

• if a ∈ S
⊕ then a⊕ = a and a⊖ = ε ,

• if a ∈ S
⊖ then a⊕ = ε and a⊖ = ⊖a ,

• if a ∈ S
• then ∃b ∈ Rε such that a = b• and then a⊕ = a⊖ = b.

Note that a = a⊕ ⊖ a⊖ and a⊕, a⊖ ∈ Rε. We define the max-absolute value of a ∈ S as
|a|

⊕
= a⊕ ⊕ a⊖.

We say that a ∈ S is finite if |a|
⊕
∈ R. If |a|

⊕
= ε then we say that a is infinite.

Proposition 1.2 ∀a, b ∈ S : |a⊕ b|
⊕
= |a|

⊕
⊕ |b|

⊕
.

Proposition 1.3 ∀a, b ∈ S : |a⊗ b|
⊕
= |a|

⊕
⊗ |b|

⊕
.

In linear algebra we have ∀x ∈ R : x − x = 0, but in Smax we have ∀a ∈ S : a ⊖ a = a• 6= ε
unless a = ε, the zero element for ⊕. Therefore, we introduce a new relation, the balance
relation, represented by ∇.

Definition 1.4 (Balance relation) Consider a, b ∈ S. We say that a balances b, denoted
by a ∇ b, if a⊕ ⊕ b⊖ = a⊖ ⊕ b⊕ .

Since ∀a ∈ S : a ⊖ a = a• = |a|
⊕
⊖ |a|

⊕
∇ ε, we could say that the balance relation in S

is the counterpart of the equality relation in linear algebra. The balance relation is reflexive
and symmetric but it is not transitive. The balance relation is extended to matrices in the
usual way: if A,B ∈ S

m×n then A ∇ B if aij ∇ bij for all i, j.
An element with a ⊖ sign can be transferred to the other side of a balance as follows:

Proposition 1.5 ∀a, b, c ∈ S : a⊖ c ∇ b if and only if a ∇ b⊕ c .

If both sides of a balance are signed, we can replace the balance by an equality:

Proposition 1.6 ∀a, b ∈ S
∨ : a ∇ b ⇒ a = b .

These properties can be extended to the matrix case as follows:

Proposition 1.7 ∀A,B,C ∈ S
m×n : A⊖ C ∇ B if and only if A ∇ B ⊕ C .

Proposition 1.8 ∀A,B ∈ (S∨)m×n : A ∇ B ⇒ A = B .
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Definition 1.9 (Max-algebraic norm) The max-algebraic norm of a vector a ∈ S
n is de-

fined as

‖a‖
⊕

=
n
⊕

i=1

|ai|⊕ =
n
⊕

i=1

(a⊕

i ⊕ a⊖

i ) .

The max-algebraic norm of a matrix A ∈ S
m×n is defined as

‖A‖
⊕

=
m
⊕

i=1

n
⊕

j=1

|aij |⊕ .

Definition 1.10 (Max-algebraic determinant) Consider a matrix A ∈ S
n×n. The max-

algebraic determinant of A is defined as

det⊕ A =
⊕

σ∈Pn

sgn
⊕
(σ)⊗

n
⊗

i=1

aiσ(i)

where Pn is the set of all the permutations of {1, 2, . . . , n} and sgn
⊕
(σ) = 0 if the permutation

σ is even and sgn
⊕
(σ) = ⊖0 if the permutation is odd.

Theorem 1.11 Let A ∈ S
n×n. The homogeneous linear balance A ⊗ x ∇ εn×1 has a non-

trivial signed solution if and only if det⊕ A ∇ ε.

Proof : See [9]. ✷

Definition 1.12 (Max-linear independence)
A set of vectors {xi ∈ S

n | i = 1, 2, . . . ,m } is max-linearly independent if the only signed so-
lution of

m
⊕

i=1

αi ⊗ xi ∇ εn×1

is α1 = α2 = . . . = αm = ε . Otherwise we say that the vectors xi are max-linearly dependent.

So if A ∈ S
n×n then the columns of A are max-linearly independent if and only if det⊕ A ∇/ ε.

1.4 A link between the field of the real numbers and the extended max

algebra

In [8] we have introduced the following mapping for x ∈ Rε:

F(x, s) = µexs

F(⊖x, s) = −µexs

F(x•, s) = νexs

where µ is an arbitrary positive real number or parameter and ν is an arbitrary real number
or parameter different from 0 and s is a real parameter. Note that F(ε, s) = 0.

To reverse the mapping F we have to take lim
s→∞

log( | F(x, s) | )

s
and adapt the max-sign

depending on the sign of the coefficient of the exponential. So if f is a real function, if x ∈ Rε
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and if µ is a positive real number or if µ is a parameter that can only take on positive real
values then

f(s) ∼ µexs , s→∞ ⇒ R(f) = x

f(s) ∼ −µexs , s→∞ ⇒ R(f) = ⊖x

where R is the reverse mapping of F . If ν is a parameter that can take on both positive and
negative real values then

f(s) ∼ νexs , s→∞ ⇒ R(f) = x• .

Note that if the coefficient of exs is a number then the reverse mapping always yields a signed
result.
Now we have for a, b, c ∈ S:

a⊕ b = c → F(a, s) + F(b, s) ∼ F(c, s) , s→∞ (3)

F(a, s) + F(b, s) ∼ F(c, s) , s→∞ → a⊕ b ∇ c (4)

a⊗ b = c ↔ F(a, s) · F(b, s) = F(c, s) for all s ∈ R (5)

for an appropriate choice of the µ’s and ν’s in F(c, s) in (3) and in (5) from the left to the
right. This leads to the following correspondences:

(R+,+,×) ↔ (Rε,⊕,⊗) = Rmax

(R,+,×) ↔ (S,⊕,⊗) = Smax .

We can extend this mapping to matrices such that if A ∈ S
m×n then Ã(·) = F(A, ·) is a real

m by n matrix-valued function with ãij(s) = F(aij , s) for some choice of the µ’s and ν’s.
Note that the mapping is performed entrywise — it is not a matrix exponential ! If A, B and
C are matrices with entries in S, we have

A⊕B = C → F(A, s) + F(B, s) ∼ F(C, s) , s→∞ (6)

F(A, s) + F(B, s) ∼ F(C, s) , s→∞ → A⊕B ∇ C (7)

A⊗B = C → F(A, s) · F(B, s) ∼ F(C, s) , s→∞ (8)

F(A, s) · F(B, s) ∼ F(C, s) , s→∞ → A⊗B ∇ C (9)

for an appropriate choice of the µ’s and ν’s in F(C, s) in (6) and (8).

2 Systems of multivariate max-algebraic polynomial equalities

and inequalities

In this section we consider systems of multivariate max-algebraic polynomial equalities and
inequalities, which can be seen as a generalized framework for many important max-algebraic
problems such as matrix decompositions, transformation of state space models, state space re-
alization of impulse responses, construction of matrices with a given characteristic polynomial
and so on [5, 7].
Consider the following problem:
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Given a set of integers {mk} and three sets of real numbers {aki}, {bk} and {ckij} with
k = 1, 2, . . . , p1 + p2, i = 1, 2, . . . ,mk and j = 1, 2, . . . , n, find x ∈ R

n such that
mk
⊕

i=1

aki ⊗
n
⊗

j=1

xj
⊗
ckij

= bk for k = 1, 2, . . . , p1 , (10)

mk
⊕

i=1

aki ⊗
n
⊗

j=1

xj
⊗
ckij

6 bk for k = p1 + 1, p1 + 2, . . . , p1 + p2 , (11)

or show that no such x exists.

We call (10) – (11) a system of multivariate max-algebraic polynomial equalities and inequal-
ities. Note that the exponents can be negative or real.

In [7] we have shown that this problem is equivalent to an Extended Linear Complemen-
tarity Problem (ELCP) [4]:

Given A ∈ R
p×n, B ∈ R

q×n, c ∈ R
p, d ∈ R

q and m subsets φj , j = 1, 2, . . . ,m, of
{1, 2, . . . , p}, find x ∈ R

n such that

m
∑

j=1

∏

i∈φj

(Ax− c)i = 0 (12)

subject to

Ax > c

Bx = d ,

or show that no such x exists.

In [4] we have developed an algorithm to compute all the solutions of an ELCP. Consequently,
we can also calculate the entire solution set of problem (10) – (11). This solution set can be
described in terms of linear algebra concepts as follows: in general it consists of the union of
faces of a polyhedron P and is defined by three sets of vectors X cen, X inf , X fin and a set Λ.
These sets can be characterized as follows:

• X cen is a set of central rays of P. It is a basis for the largest linear subspace of P. Let
Pred be the polyhedron obtained by subtracting this largest linear subspace from P.

• X inf is a set of extreme rays or vertices at infinity of the polyhedron Pred.

• X fin is the set of the finite vertices of the polyhedron Pred.

• Λ is a set of pairs
{

X inf
s ,X fin

s

}

with X inf
s ⊂ X inf , X fin

s ⊂ X fin and X fin
s 6= ∅. Each pair

{

X inf
s ,X fin

s

}

determines a face Fs of the polyhedron P that belongs to the solution set:

X inf
s contains the extreme rays of Fs and X fin

s contains the finite vertices of Fs. The
rays and vertices of X inf

s ∪X
fin
s are called cross-complementary since every combination

of the form

x =
∑

xk∈X inf
s

κkxk +
∑

xk∈Xfin
s

µkxk

with κk, µk > 0 and
∑

k

µk = 1 satisfies the complementarity condition (12).
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The solution set of problem (10) – (11) can be characterized by the following theorems:

Theorem 2.1 When X cen, X inf , X fin and Λ are given, then x is a solution of the system of
multivariate max-algebraic polynomial equalities and inequalities if and only if there exists a

pair
{

X inf
s ,X fin

s

}

∈ Λ such that

x =
∑

xk∈X cen

λkxk +
∑

xk∈X inf
s

κkxk +
∑

xk∈Xfin
s

µkxk (13)

with λk ∈ R, κk, µk > 0 and
∑

k

µk = 1.

Theorem 2.2 In general the set of (finite) solutions of a system of multivariate max-algebraic
polynomial equalities and inequalities either is empty or consists of the union of faces of a
polyhedron.

Remark 2.3 In order to apply the ELCP technique we have only considered finite coefficients
and solutions with finite components in the formulation of problem (10) – (11).
However, in some cases we can allow bk’s that are equal to ε. Then we have to introduce a

positive number ξ that is large enough and transform equations of the form
⊕

i

ti = ε into

⊕

i

ti 6 −ξ . Once we have found a solution x of the system of multivariate max-algebraic

polynomial equalities and inequalities we replace every negative component of x that has the
same order of magnitude as ξ by ε provided that this does not cause any problems arising
from taking negative powers of ε, and that x has no positive components of the same order
of magnitude as ξ. Positive components of the same order of magnitude as ξ would have to
be replaced by ∞, but ∞ does not belong to Rε.
Another way to obtain solutions with components equal to ε is to allow some of the λk’s or
κk’s in (13) to become infinite, but in a controlled way, since we only allow infinite components
that are equal to ε and since negative powers of ε are not defined. Solutions obtained in this
way will correspond to points at infinity of the polyhedron P. Since the max operation hides
small numbers from larger numbers, it suffices in practice to replace the negative components
that are large enough in absolute value by ε provided that there are no positive components
of the same order of magnitude.
The solutions of systems of multivariate max-algebraic polynomial equalities and inequalities
that arise from max-algebraic SVDs and max-algebraic QRDs will always be bounded from
above. This means that in these cases there will be no solutions with positive components of
the same order of magnitude as ξ if we take ξ large enough.
We shall illustrate all these techniques in Example 6.1.

3 The singular value decomposition and the QR decomposi-

tion in the extended max algebra

In this section we recapitulate the main results of [8, 6] concerning the max-algebraic singular
value decomposition (SVD) and the max-algebraic QR decomposition (QRD). We also prove
that for matrix with finite entries there always exists a max-algebraic SVD with finite singular
values and finite singular vectors.
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Theorem 3.1 (The singular value decomposition in Smax)
Let A ∈ S

m×n and let r = min(m,n). Then there exist a max-algebraic diagonal matrix
Σ ∈ R

m×n
ε and matrices U ∈ (S∨)m×m and V ∈ (S∨)n×n such that

A ∇ U ⊗ Σ⊗ V T (14)

with

UT ⊗ U ∇ Em

V T ⊗ V ∇ En

and ‖A‖
⊕
> σ1 > σ2 > . . . > σr > ε where σi = (Σ)ii.

Every decomposition of the form (14) that satisfies the above conditions is called a max-
algebraic singular value decomposition of A.

Note that (14) can also be written as

A ∇
r

⊕

i=1

σi ⊗ ui ⊗ vTi (15)

where ui is the ith column of U and vi is the ith column of V .

Proposition 3.2 Consider A ∈ S
m×n . If there is at least one signed entry in A that is equal

to ‖A‖
⊕
in max-absolute value then σ1 = ‖A‖

⊕
for every max-algebraic SVD of A.

In contrast to the singular values in linear algebra the max-algebraic singular values are not
always unique. This leads to the definition of a maximal max-algebraic SVD – where we take
all the singular values as large as possible – and a minimal max-algebraic SVD – where we
take all the singular values as small as possible. Now we can define a rank based on the
max-algebraic SVD:

Definition 3.3 (Max-algebraic SVD rank) Let A ∈ S
m×n. The max-algebraic SVD rank

of A is defined as

rank⊕,SVD(A) = min

{

ρ

∣

∣

∣

∣

∣

A ∇
ρ

⊕

i=1

σi ⊗ ui ⊗ vTi , U ⊗ Σ⊗ V T is a max-algebraic

SVD of A

}

where ui is the ith column of U , vi is the ith column of V and
0

⊕

i=1

σi ⊗ ui ⊗ vTi is equal to

εm×n by definition.

So the max-algebraic SVD rank of a matrix A is equal to the minimal number of non-ε
singular values over the set of all the max-algebraic SVDs of A.

Proposition 3.4 Consider U ∈ (S∨)m×m. If U ⊗ UT ∇ Em then

|uij |⊕ 6 0 for i = 1, 2, . . . ,m and j = 1, 2, . . . ,m .
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Theorem 3.5 Consider a matrix A ∈ S
m×n with finite entries: |aij |⊕ 6= ε for all i, j. Then

there exists a max-algebraic SVD of A for which all the singular values and all the components
of the singular vectors are finite.

Proof : First we define a matrix-valued function Ã(·) = F(A, ·). In [8] we have shown that
there exists a path of SVDs Ũ(·) Σ̃(·) Ṽ T (·) of Ã(·) on some interval [L,∞), i.e. for all s > L:

Ã(s) = Ũ(s) Σ̃(s) Ṽ T (s)

ŨT (s) Ũ(s) = Im

Ṽ T (s) Ṽ (s) = In ,

where the entries of Ũ(·), Σ̃(·) and Ṽ T (·) are asymptotically equivalent to an exponential in
the neighborhood of ∞. If we apply the reverse mapping R, we obtain a max-algebraic SVD
of A:

A ∇ U ⊗ Σ⊗ V T . (16)

If all the singular values and all the components of the singular vectors of this max-algebraic
SVD are finite then the theorem is proved.
Now we shall show how a max-algebraic SVD that contains infinite singular values or singular
vectors with infinite components can be transformed into a max-algebraic SVD Û ⊗ Σ̂⊗ V̂ T

with finite singular values and vectors. This will be done in three steps: first we make all
the singular values finite; next we make the components of the left singular vectors finite and
finally we make the components of the right singular vectors finite.

Step 1: We make all the singular values finite.

If we extract the max-positive and the max-negative parts of each matrix of (16) and if we
use Proposition 1.7, we obtain

A⊕ ⊕ U⊕ ⊗ Σ⊗ (V ⊖)T ⊕ U⊖ ⊗ Σ⊗ (V ⊕)T ∇

A⊖ ⊕ U⊕ ⊗ Σ⊗ (V ⊕)T ⊕ U⊖ ⊗ Σ⊗ (V ⊖)T .

Both sides of this balance are signed. So by Proposition 1.8 we can replace the balance by an
equality. If we extract the entry on the ith row and the jth column, we obtain

a⊕

ij ⊕
r

⊕

k=1

u⊕

ik ⊗ σk ⊗ v⊖

jk ⊕
r

⊕

k=1

u⊖

ik ⊗ σk ⊗ v⊕

jk

= a⊖

ij ⊕
r

⊕

k=1

u⊕

ik ⊗ σk ⊗ v⊕

jk ⊕
r

⊕

k=1

u⊖

ik ⊗ σk ⊗ v⊖

jk (17)

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Since |aij |⊕ is finite for all i, j, we can augment the
terms of (17) that contain σk as long these terms stay less than or equal to |aij |⊕. Since
|ujk|⊕ 6 0 and |vjk|⊕ 6 0 for all j, k by Proposition 3.4, this condition will be satisfied as long
as the σ̂k’s stay less than or equal to |aij |⊕. If we define f = min

i,j
{ |aij |⊕ } then f is finite.

Assume that σl = σl+1 = . . . = σr = ε. If we set

σ̂i = σj for i = 1, 2, . . . , l − 1 ,

= f for i = l, l + 1, . . . , r ,
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then

A ∇ U ⊗ Σ̂⊗ V

where Σ̂ is a max-algebraic diagonal matrix with Σ̂ii = σ̂i. Since the σ̂i’s are ordered and
since we did not change the other equations, we now have a max-algebraic SVD in which all
the singular values are finite.

Step 2: We make the components of the left singular vectors finite.

We shall replace the left singular vectors ui by new left singular vectors ûi. If we consider
(17) with the σk’s replaced by the σ̂k’s and if we take into account that |vjk|⊕ 6 0 for all j, k,
then we see that this equation will still hold if the entries of the vectors ûi satisfy

|ûik|⊕ = û⊕

ik ⊕ û⊖

ik 6 min
j
{ |aij |⊕ } − σ̂k for i = 1, 2, . . . ,m

and k = 1, 2, . . . , r .

(18)

If we define g = min
i,j
{ |aij |⊕ }− σ̂1, then g is finite. Since σ̂k 6 σ̂1 for k = 1, 2, . . . , r, condition

(18) will be fulfilled if the entries of the vectors ûi satisfy

|ûik|⊕ = û⊕

ik ⊕ û⊖

ik 6 g for i = 1, 2, . . . ,m and k = 1, 2, . . . , r . (19)

Since Ũ(s) is an orthogonal matrix for s > L, either det Ũ(s) = 1 or det Ũ(s) = −1 for
s > L. The entries of an orthogonal matrix always lie in the interval [−1, 1]. Therefore, all
the (dominant) exponents of the entries of Ũ(s) are less than or equal to 0. So | det Ũ(s)| can
only be equal to 1 for s > L if there exists a permutation ϕ of the set {1, 2, . . . ,m} such that

m
∏

i=1

ũiϕ(i)(s) ∼ c , s→∞

with c ∈ R0 or equivalently

ũiϕ(i)(s) ∼ ci , s→∞ for i = 1, 2, . . . ,m (20)

with ci ∈ R0. If we apply the reverse mapping R to (20), we get

uiϕ(i) = 0 or uiϕ(i) = ⊖0 for i = 1, 2, . . . ,m (21)

since R(ci) = 0 if ci > 0 and R(ci) = ⊖0 if ci < 0.
We shall permute the columns of U such that the entries that are equal to 0 in max-absolute
value will be on the main diagonal. This can be done as follows: We define an m by m
max-algebraic permutation matrix P such that

pij = 0 if i = ϕ(j) ,

= ε otherwise .

If we define W = U ⊗P then W contains the same columns as U but in a (possibly) different
order. Furthermore,

wii = 0 or wii = ⊖0 for i = 1, 2, . . . ,m .

We have U = W ⊗ P T and UT ⊗ U = P ⊗W T ⊗W ⊗ P T . So UT ⊗ U ∇ Em if and only if
W T ⊗W ∇ Em. Let wi be the ith column of W . Since wTi ⊗ wi ∇ 0 and since both sides of
this balance are signed, we have wTi ⊗ wi = 0 for all i by Proposition 1.6.
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Now we copy all the entries of W to Ŵ . We shall update the columns of Ŵ in two steps.
First we make all max-algebraic inner products of two different columns of Ŵ finite. Next we
make the entries of Ŵ that are still infinite finite.

Step 2a: We make all max-algebraic inner products of two different columns of Ŵ finite.

Define

h = min
i,j

{

|wTi ⊗ wj |⊕

∣

∣

∣ wTi ⊗ wj 6= ε
}

and M = min (g, h − 1) . Note that h and M are finite. Since |wij |⊕ 6 0 for all i, j by

Proposition 3.4, we have |wTi ⊗ wj |⊕ 6 0 for all i, j. Hence, h 6 0 and M < 0. Furthermore,

if wTi ⊗ wj 6= ε then |wTi ⊗ wj |⊕ > M .

Consider the following algorithm in which some of the infinite entries of Ŵ will be replaced
by M or ⊖M :

for i = 1, 2, . . . ,m− 1

for j = i+ 1, 2, . . . ,m

if wTi ⊗ wj = ε

then

ŵij ← M

ŵji ← (⊖M)⊗ ŵii ⊗ ŵjj

endif

endfor

endfor

Now we prove that this algorithm will result in

ŵTi ⊗ ŵj = wTi ⊗ wj if |wTi ⊗ wj |⊕ 6= ε , (22)

ŵTi ⊗ ŵj = M• if |wTi ⊗ wj |⊕ = ε . (23)

First we prove (22).

Later on we shall prove that only infinite entries of Ŵ are replaced by M or ⊖M . The finite
entries of Ŵ do not change. So if wTi ⊗ wj is finite then

ŵTi ⊗ ŵj =
⊕

wki is finite and
wkj is finite

ŵki ⊗ ŵkj ⊕
⊕

wki is infinite or
wkj is infinite

ŵki ⊗ ŵkj

=
⊕

wki is finite and
wkj is finite

wki ⊗ wkj ⊕
⊕

wki is infinite or
wkj is infinite

ŵki ⊗ ŵkj

= wTi ⊗ wj ⊕ sij (24)

where

sij =
⊕

wki is infinite or
wkj is infinite

ŵki ⊗ ŵkj .
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Since

|ŵki|⊕ 6 M and |ŵkj |⊕ 6 0 if wki is infinite,

|ŵki|⊕ 6 0 and |ŵkj |⊕ 6 M if wkj is infinite,

we have

|sij |⊕ =
⊕

wki is infinite or
wkj is infinite

|ŵki ⊗ ŵkj |⊕

=
⊕

wki is infinite or
wkj is infinite

|ŵki|⊕ ⊗ |ŵkj |⊕

6 M

< |wTi ⊗ wj |⊕ ,

where we have used Proposition 1.2 and 1.3. If we combine this with (24), we obtain ŵTi ⊗ŵj =
wTi ⊗ wj . So the values of the finite inner products do not change.

Now we prove (23).

If wTi ⊗ wj = ε then

wsi ⊗ wsj = ε for s = 1, 2, . . . ,m

or equivalently

wsi = ε or wsj = ε for s = 1, 2, . . . ,m . (25)

Since |wii|⊕ and |wjj |⊕ are equal to 0, this implies that both wij and wji are equal to ε.
It is possible that some of the infinite components of ŵi and ŵj have already been replaced
by M or ⊖M . However, ŵij and ŵji are still equal to ε since each pair of indices (i, j) is
encountered only once in the above algorithm. Hence, we only replace infinite entries of Ŵ
by M or ⊖M if we execute the algorithm.
If we replace ŵij by M and ŵji by (⊖M)⊗ ŵii ⊗ ŵjj , we obtain

|ŵji|⊕ = |(⊖M)⊗ ŵii ⊗ ŵjj |⊕ = M ⊗ |ŵii|⊕ ⊗ |ŵjj |⊕ = M ⊗ 0⊗ 0 = M

where we have used Proposition 1.3.
Since M , ŵii and ŵjj are signed, ŵji is also signed. So either ŵji = M or ŵji = ⊖M .
Now we have

ŵTi ⊗ ŵj = ŵii ⊗ ŵij ⊕ ŵji ⊗ ŵjj ⊕
⊕

s 6=i,s 6=j

ŵsi ⊗ ŵsj

= ŵii ⊗M ⊕ (⊖M)⊗ ŵii ⊗ ŵjj ⊗ ŵjj ⊕ tij (26)

where

tij =
⊕

s 6=i,s 6=j

ŵsi ⊗ ŵsj .

By (25) we have

wsi = ε and thus |ŵsi|⊕ 6 M or wsj = ε and thus |ŵsj |⊕ 6 M
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for s = 1, 2, . . . ,m. Furthermore, since |wpq|⊕ 6 0 for all p, q by Proposition 3.4 and since
M < 0, we have |ŵpq|⊕ 6 0 for all p, q. Hence, |ŵsi ⊗ ŵsj |⊕ 6 M and thus |tij |⊕ 6 M .
Since ŵjj is signed and |ŵjj |⊕ = 0, either ŵjj = 0 or ŵjj = ⊖0. So ŵjj ⊗ ŵjj = 0. Therefore,
(26) results in

ŵTi ⊗ ŵj = M ⊗ ŵii ⊕ (⊖M)⊗ ŵii ⊕ tij .

Since ŵii is either 0 or ⊖0 and since |tij |⊕ 6 M , this leads to

ŵTi ⊗ ŵj = M• ⊕ tij = M• .

So now all max-algebraic inner products of two columns of W̃ are finite.

Step 2b: We make the remaining infinite entries of Ŵ finite by replacing them by M .

As already explained above this does not change the value of the finite inner products ŵTi ⊗
ŵj = wTi ⊗ wj . Furthermore, since the other inner products ŵTi ⊗ ŵj , are already equal to
M• their value does not change either. So (22) and (23) still hold.

If we define Û = Ŵ ⊗ P T , then

ûTi ⊗ ûi = uTi ⊗ ui = 0 ,

ûTi ⊗ ûj = uTi ⊗ uj ∇ ε if |uTi ⊗ uj |⊕ 6= ε and i 6= j ,

ûTi ⊗ ûj = M• ∇ ε if |uTi ⊗ uj |⊕ = ε .

So now we have a finite matrix Û for which ÛT ⊗ Û ∇ Em. Furthermore, (17) still holds since
condition (19) is satisfied. Therefore, we now have obtained a max-algebraic SVD with finite
singular values and finite left singular vectors.

Step 3: Finally we make the components of the right singular vectors finite.

Using a reasoning that is analogous to the one of Step 2 we can transform the right singular
vectors vi into right singular vectors v̂i with finite entries.

This yields a max-algebraic SVD Û⊗ Σ̂⊗ V̂ of A with finite singular values and finite singular
vectors. ✷

Theorem 3.6 (The QR decomposition in Smax) If A ∈ S
m×n then there exist a matrix

Q ∈ (S∨)m×m and a max-algebraic upper triangular matrix R ∈ (S∨)m×n such that

A ∇ Q⊗R (27)

with

QT ⊗Q ∇ Em

and ‖R‖
⊕
6 ‖A‖

⊕
.

Every decomposition of the form (27) that satisfies the above conditions is called a max-
algebraic QR decomposition of A.

The decomposition (27) can be rewritten as:

A ∇
r

⊕

i=1

qi ⊗Ri.

where qi is the ith column of Q, Ri. is the ith row of R and r = min(m,n). Now we can also
define a max-algebraic QR rank:
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Definition 3.7 (Max-algebraic QR rank) Let A ∈ S
m×n. The max-algebraic QR rank of

A is defined as

rank⊕,QR(A) = min

{

ρ

∣

∣

∣

∣

∣

A ∇
ρ

⊕

i=1

qi ⊗Ri. , Q⊗R is a max-algebraic

QR decomposition of A

}

where qi is the ith column of Q, Ri. is the ith row of R and
0

⊕

i=1

qi ⊗Ri. is equal to εm×n by

definition.

Using a proof that is similar to that of Theorem 3.5 we get:

Theorem 3.8 Consider a matrix A ∈ S
m×n with finite entries: |aij |⊕ 6= ε for all i, j. Then

there exists a max-algebraic QR decomposition Q ⊗ R of A for which all of the entries of Q
and all of the entries of the upper triangular part of R are finite.

4 Calculation of the max-algebraic singular value decomposi-

tion and the max-algebraic QR decomposition

We can use the mapping F to calculate the SVD in Smax. However, max-algebraic singular
values and components of the max-algebraic singular vectors that are asymptotically equiv-
alent to an exponential of the form γecs with c < 0 in the neighborhood of ∞ will become
almost 0 even for relatively small s. Numerically they are then equal to 0 and they will be
mapped to ε instead of c by the reverse mapping R. Therefore, we now present another
technique to calculate the SVD in Smax without making use of the mapping F .
The original problem is:

Given A ∈ S
m×n, find a max-algebraic diagonal matrix Σ ∈ R

m×n
ε and matrices U ∈

(S∨)m×m and V ∈ (S∨)n×n such that

A ∇ U ⊗ Σ⊗ V T (28)

UT ⊗ U ∇ Em (29)

V T ⊗ V ∇ En (30)

with ‖A‖
⊕
> σ1 > σ2 > . . . > σr > ε, where σi = (Σ)ii and r = min(m,n).

We shall now transform the above conditions into relations in Rmax and show that we finally
get a system of multivariate max-algebraic polynomial equalities and inequalities.
If all the entries of A are finite then there exists a max-algebraic SVD of A with finite singular
values and finite singular vectors by Theorem 3.5. If some of the entries of A are not finite,
we can use the technique of Remark 2.3 and replace these entries by −ξ where ξ is large
enough. This will result in a finite matrix for which there exists a max-algebraic SVD with
finite singular values and vectors. Now we shall write down the equations that will yield a
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max-algebraic SVD U ⊗ Σ⊗ V T of A with finite singular values and finite singular vectors.
First of all, we want the entries of U and V to be signed:

u⊕

ij ⊗ u⊖

ij = ε for i = 1, 2, . . . ,m and j = 1, 2, . . . ,m (31)

v⊕

ij ⊗ v⊖

ij = ε for i = 1, 2, . . . , n and j = 1, 2, . . . , n . (32)

If we extract the max-positive and the max-negative parts of each matrix, (28) – (30) result
in

A⊕ ⊖A⊖ ∇ (U⊕ ⊖ U⊖)⊗ Σ⊗ (V ⊕ ⊖ V ⊖)T

(U⊕ ⊖ U⊖)T ⊗ (U⊕ ⊖ U⊖) ∇ Em

(V ⊕ ⊖ V ⊖)T ⊗ (V ⊕ ⊖ V ⊖) ∇ En

or

A⊕ ⊕ U⊕ ⊗ Σ⊗ (V ⊖)T ⊕ U⊖ ⊗ Σ⊗ (V ⊕)T ∇

A⊖ ⊕ U⊕ ⊗ Σ⊗ (V ⊕)T ⊕ U⊖ ⊗ Σ⊗ (V ⊖)T (33)

(U⊕)T ⊗ U⊕ ⊕ (U⊖)T ⊗ U⊖ ∇ Em ⊕ (U⊕)T ⊗ U⊖ ⊕ (U⊖)T ⊗ U⊕ (34)

(V ⊕)T ⊗ V ⊕ ⊕ (V ⊖)T ⊗ V ⊖ ∇ En ⊕ (V ⊕)T ⊗ V ⊖ ⊕ (V ⊖)T ⊗ V ⊕ (35)

by Proposition 1.7. Both sides of all the balances are now signed. So by Proposition 1.8 we
can replace the balances by equalities. Define three matrices T ∈ R

m×n
ε , P ∈ R

m×m
ε and

Q ∈ R
n×n
ε such that

A⊕ ⊕ U⊕ ⊗ Σ⊗ (V ⊖)T ⊕ U⊖ ⊗ Σ⊗ (V ⊕)T = T

(U⊕)T ⊗ U⊕ ⊕ (U⊖)T ⊗ U⊖ = P

(V ⊕)T ⊗ V ⊕ ⊕ (V ⊖)T ⊗ V ⊖ = Q .

Note that P and Q are symmetric. Since the max-algebraic singular values are finite, their
max-algebraic inverses are defined. The entries of the matrices T , P and Q are also finite. So
their max-algebraic inverses are also defined.
If we work out the matrix multiplications in (33) and if we transfer the entries of T to the
left hand side, we get

a⊕

ij ⊗ tij
⊗
−1
⊕

r
⊕

k=1

u⊕

ik ⊗ σk ⊗ v⊖

jk ⊗ tij
⊗
−1
⊕

r
⊕

k=1

u⊖

ik ⊗ σk ⊗ v⊕

jk ⊗ tij
⊗
−1

= 0 (36)

a⊖

ij ⊗ tij
⊗
−1
⊕

r
⊕

k=1

u⊕

ik ⊗ σk ⊗ v⊕

jk ⊗ tij
⊗
−1
⊕

r
⊕

k=1

u⊖

ik ⊗ σk ⊗ v⊖

jk ⊗ tij
⊗
−1

= 0 (37)

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.
Since P is symmetric and since eij = 0 if i = j and eij = ε if i 6= j, (34) leads to

m
⊕

k=1

u⊕

ki ⊗ u⊕

kj ⊗ pij
⊗
−1
⊕

m
⊕

k=1

u⊖

ki ⊗ u⊖

kj ⊗ pij
⊗
−1

= 0 (38)

m
⊕

k=1

u⊕

ki ⊗ u⊖

kj ⊗ pij
⊗
−1
⊕

m
⊕

k=1

u⊖

ki ⊗ u⊕

kj ⊗ pij
⊗
−1

= 0 (39)
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for i = 1, 2, . . . ,m and j = i+ 1, i+ 2, . . . ,m, and

m
⊕

k=1

u⊕

ki ⊗ u⊕

ki ⊕
m
⊕

k=1

u⊖

ki ⊗ u⊖

ki = 0 ⊕
m
⊕

k=1

u⊕

ki ⊗ u⊖

ki ⊕
m
⊕

k=1

u⊖

ki ⊗ u⊕

ki = pii

for i = 1, 2, . . . ,m, or

m
⊕

k=1

(u⊕

ki)
⊗
2
⊕

m
⊕

k=1

(u⊖

ki)
⊗
2
= 0 = pii for i = 1, 2, . . . ,m

since the entries of U are signed. If x ∈ Rε then x⊗
2
is equal to 2 ·x in linear algebra. Hence,

m
⊕

k=1

u⊕

ki ⊕
m
⊕

k=1

u⊖

ki = 0 for i = 1, 2, . . . ,m . (40)

Note that pii = 0 for i = 1, 2, . . . ,m.
Analogously we obtain

n
⊕

k=1

v⊕

ki ⊗ v⊕

kj ⊗ qij
⊗
−1
⊕

n
⊕

k=1

v⊖

ki ⊗ v⊖

kj ⊗ qij
⊗
−1

= 0 (41)

n
⊕

k=1

v⊕

ki ⊗ v⊖

kj ⊗ qij
⊗
−1
⊕

n
⊕

k=1

v⊖

ki ⊗ v⊕

kj ⊗ qij
⊗
−1

= 0 (42)

for i = 1, 2, . . . , n and j = i+ 1, i+ 2, . . . , n,

n
⊕

k=1

v⊕

ki ⊕
n
⊕

k=1

v⊖

ki = 0 for i = 1, 2, . . . , n (43)

and qii = 0 for i = 1, 2, . . . , n.
The condition σ1 6 ‖A‖⊕ can be rewritten as

‖A‖
⊕
⊗ σ1

⊗
−1

> 0 . (44)

Finally we order the max-algebraic singular values by requiring that

σi > σi+1 for i = 1, 2, . . . , r − 1

or

σi ⊗ (σi+1)
⊗
−1

> 0 for i = 1, 2, . . . , r − 1 . (45)

Expressions (31) – (45) constitute a system of multivariate max-algebraic polynomial equali-
ties and inequalities. Using the technique explained in Section 2 and taking Remark 2.3 into
account they can be transformed into an ELCP. So we can use the ELCP algorithm of [4] to
find all the solutions of (31) – (45).
An arbitrary solution of an ELCP is given by the sum of a linear combination of the central
rays, a nonnegative combination of cross-complementary extreme rays and a convex combi-
nation of cross-complementary finite vertices that are also cross-complementary with these
extreme rays. Since the max-algebraic singular values are bounded from above by ‖A‖

⊕
and

since the max-absolute values of the components of the max-algebraic singular vectors are
bounded from above by 0, there cannot be any central rays in the solution set of the ELCP
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that corresponds to (31) – (45). Furthermore, the fact that all the components of the solutions
are bounded from above also implies that the components of the extreme rays are less than
or equal to 0. Therefore, the finite vertices that result from the ELCP algorithm will always
correspond to a maximal max-algebraic SVD.
Since every matrix with finite entries has at least one max-algebraic SVD with finite sin-
gular values and finite singular vectors by Theorem 3.5, the solution set of the ELCP that
corresponds to (31) – (45) cannot be empty. Now we can characterize the set of all the max-
algebraic SVDs of a given matrix with finite entries:

Theorem 4.1 Let A ∈ S
m×n such that all the entries of A are finite. In general the set of

all the max-algebraic SVDs of A with finite singular values and finite singular vectors consists
of the union of faces of a polyhedron in the x-space, where x is the vector obtained by putting
the diagonal entries of Σ and the entries of matrices U and V in one large vector.

Max-algebraic SVDs for which some singular values are infinite or for which some singular
vectors have infinite components correspond to points at infinity if this polyhedron.

How to reduce the number of variables and equations?

The time and memory space needed to solve an ELCP with the algorithm described in [4]
increases rapidly as the number of variables and equations increases. Therefore, it is advan-
tageous to reduce the number of variables and equations as much as possible.
If there is a signed entry in A that is equal to ‖A‖

⊕
in max-absolute value then we already

know that σ1 = ‖A‖⊕ by Proposition 3.2.
Since

A =
r

⊕

i=1

σi ⊗ ui ⊗ vTi ,

a left singular vector stays a left singular vector if we max-multiply it (and the corresponding
right singular vector) by ⊖0. This means that we can further reduce the number of variables
and equations by requiring that the diagonal entries of U (or V , depending on which one has
the largest dimension) are max-positive:

u⊖

ii = ε for i = 1, 2, . . . ,m .

It is obvious that the max-algebraic QRD of a matrix A ∈ S
m×n can also be calculated using

this ELCP technique. In this case we can also reduce the number of variables by requiring
that the diagonal entries of Q are max-positive or zero: If Q satisfies Q ⊗ QT ∇ Em and if
we replace qi, the ith column of Q, by ⊖qi, we still have Q ⊗ QT ∇ Em. Furthermore, we
already know that A ∇ Q⊗R can be rewritten as:

A ∇
r

⊕

i=1

qi ⊗Ri. (46)

where qi is the ith column of Q, Ri. is the ith row of R and r = min(m,n). So if we replace
qi by ⊖qi and Ri. by ⊖Ri. in (46), we still have a max-algebraic QRD of A. This means that
we can always assume that the diagonal entries of Q are max-positive or zero.
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5 Extensions of the max-algebraic singular value decomposi-

tion and the max-algebraic QR decomposition

If U is a (real) m by m matrix then UTU = Im if and only if UUT = Im. Furthermore, if
UTU = Im then the columns of U are linearly independent. However, in the extended max
algebra UT ⊗U ∇ Em does not always imply that U⊗UT ∇ Em or that the columns of U are
max-linearly independent. Therefore, we have proposed some extensions of the definitions of
the max-algebraic SVD and the max-algebraic QRD in [6]. Now we show that these extended
decompositions can also be reformulated as an ELCP.

Theorem 5.1 (The extended SVD in Smax) Let A ∈ S
m×n and let r = min(m,n). Then

there exist a max-algebraic diagonal matrix Σ ∈ R
m×n
ε and matrices U ∈ (S∨)m×m and

V ∈ (S∨)n×n such that

A ∇ U ⊗ Σ⊗ V T

with

UT ⊗ U ∇ Em

U ⊗ UT ∇ Em

V T ⊗ V ∇ En

V ⊗ V T ∇ En ,

where the rows and the columns of U and V are max-linearly independent or equivalently

det⊕ U ∇/ ε

det⊕ V ∇/ ε

and with ‖A‖
⊕
> σ1 > σ2 > . . . > σr > ε where σi = (Σ)ii.

Theorem 5.2 (The extended QRD in Smax) If A ∈ S
m×n then there exist a matrix Q ∈

(S∨)m×m and a max-algebraic upper triangular matrix R ∈ (S∨)m×n such that

A ∇ Q⊗R

with

QT ⊗Q ∇ Em

Q⊗QT ∇ Em

det⊕ Q ∇/ ε

and ‖R‖
⊕
6 ‖A‖

⊕
.

If we use a reasoning similar to the one made for UT ⊗ U ∇ Em, then the conditions

U ⊗ UT ∇ Em (47)

V ⊗ V T ∇ En (48)

also yield multivariate max-algebraic polynomial equalities that could be added to (31) – (45) .
If the matrix A has finite entries, we can use a reasoning analogous to the one of the proof
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of Theorem 3.5 to show that there exists at least one extended max-algebraic SVD of A with
finite singular values and finite singular vectors that also satisfies (47) and (48).
The conditions

det⊕ U ∇/ ε

det⊕ V ∇/ ε

can be rewritten as

(det⊕ U)⊕ ⊗ (det⊕ U)⊖ = ε (49)

(det⊕ V )⊕ ⊗ (det⊕ V )⊖ = ε (50)

where

(det⊕ U)⊕ =
⊕

ϕ ∪ ψ ∈ Pn,even

Dϕ ∩Dψ = ∅, #Dψ is even

⊗

i

u⊕

iϕ(i) ⊗
⊗

j

u⊖

jψ(j) ⊕

⊕

ϕ ∪ ψ ∈ Pn,odd

Dϕ ∩Dψ = ∅, #Dψ is odd

⊗

i

u⊕

iϕ(i) ⊗
⊗

j

u⊖

jψ(j)

and

(det⊕ U)⊖ =
⊕

ϕ ∪ ψ ∈ Pn,even

Dϕ ∩Dψ = ∅, #Dψ is odd

⊗

i

u⊕

iϕ(i) ⊗
⊗

j

u⊖

jψ(j) ⊕

⊕

ϕ ∪ ψ ∈ Pn,odd

Dϕ ∩Dψ = ∅, #ψ is even

⊗

i

u⊕

iϕ(i) ⊗
⊗

j

u⊖

jψ(j)

where Pn,even is the set of even permutations of {1, 2, . . . , n} and Pn,odd is the set of odd
permutations of {1, 2, . . . , n}. Analogous expressions exist for (det⊕ V )⊕ and (det⊕ V )⊖. So
(49) and (50) can be considered as multivariate max-algebraic polynomial equalities. If we
also add these constraints to the system (31) – (45), we still have a system of multivariate
max-algebraic polynomial equalities and inequalities.
As a direct consequence of (21) the max-algebraic determinant of the matrix U of the proof
of Theorem 3.5 satisfies |det⊕ U |

⊕
= 0. Since M < 0 and since the entries of U are less than

or equal to 0 in max-absolute value, the value of det⊕ U will not change if we replace the
infinite entries of U by M or ⊖M . This also holds for V . So we can still use the procedure
of the proof of Theorem 3.5 to obtain an extended max-algebraic SVD with finite singular
values and finite singular vectors for a matrix with finite entries.
This means that in theory we can still use the ELCP algorithm to solve the extended system of
multivariate max-algebraic polynomial equalities and inequalities. However, we have to point
out that the conditions (49) and (50) would yield such a large number of extra inequalities
that in practice it will be impossible to solve the resulting ELCP in a reasonable amount of
CPU time with the algorithm of [4], especially if m and n are large.

Using a similar reasoning as for the extended max-algebraic SVD it can be shown that we
can still use the ELCP algorithm to solve the system of multivariate max-algebraic polynomial
equalities and inequalities that corresponds to the extended max-algebraic QRD of a matrix.
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6 Worked examples

In this section we calculate all the max-algebraic SVDs and all the max-algebraic QRDs of
the example of [8].

Example 6.1 Consider

A =

[

2 ⊖5
⊖0 3

]

.

In [8] we have used the link between Smax and linear algebra to calculate a max-algebraic SVD
of A. Now we use the transformation to a system of multivariate max-algebraic polynomial
equalities and inequalities to calculate all the max-algebraic SVDs of A. We always have
u⊕

ij ⊗ u⊖

ij = ε and thus u⊕

ij = ε or u⊖

ij = ε for all i, j. This also holds for the entries of V .
However, since the ELCP algorithm normally only yields finite solutions, we can no longer
work with the max-positive and the max-negative parts of the entries of U and V . Therefore,
we apply the technique of Remark 2.3 and we introduce new (finite) variables u⊞

ij and u⊟

ij

such that u⊞

ij ⊗ u⊟

ij 6 −ξ where ξ is a large positive real number. We still have uij = u⊞

ij ⊖ u⊟

ij

provided that ξ is large enough. In a similar way we also define v⊞

ij and v⊟

ij . Now we put all
the variables in one large column vector x:

x =
[

σ1 σ2 u⊞

11 u⊞

12 u⊞

21 u⊞

22 u⊟

11 u⊟

12 u⊟

21 u⊟

22 v⊞

11 v⊞

12 v⊞

21 v⊞

22

v⊟

11 v⊟

12 v⊟

21 v⊟

22 t11 t12 t21 t22 p12 q12
]T

.

Note that p11, p22, q11, q22, p21 and q21 are not considered as unknowns since we already know
that p11 = p22 = q11 = q22 = 0 and p21 = p12 and q21 = q12.
If we set ξ equal to 1000, the ELCP algorithm of [4] yields the rays and vertices of Tables 1
and 2 and the pairs of subsets of Table 3. Note that there are no central rays. Any arbitrary
solution of the system of multivariate polynomial equalities and inequalities can now be
expressed as

x = xfs +
∑

xi
k
∈X inf

s

κkx
i
k

with s ∈ {1, 2, . . . , 8} and κk > 0.
Consider ray xf1. Since u⊞

11, u
⊞

12, u
⊞

22, u
⊟

21, v
⊞

11, v
⊟

12, v
⊟

21 and v⊟

22 are negative numbers of the
same order of magnitude as ξ and since there are no positive components of the same order of
magnitude as ξ – as was to be expected since the max-algebraic singular values are bounded
from above by ‖A‖

⊕
= 5 and since the max-absolute values of the components of the max-

algebraic singular vectors are bounded from above by 0 – these entries can be replaced by ε
as explained in Remark 2.3. Then we get the following decomposition:

A ∇

[

⊖0 ⊖(−2)
−2 ⊖0

]

⊗

[

5 ε
ε 0

]

⊗

[

⊖(−3) 0
0 −3

]T

=

[

2 ⊖5
⊖0 3

]

. (51)

This solution can also be obtained as the following combination of the extreme rays and the

vertex of the pair
{

X inf
1 ,X fin

1

}

:

x = xf1 + ηxi1 + ηxi3 + ηxi4 + ηxi5 + ηxi6 + ηxi8 + ηxi15 + ηxi16
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for η →∞, or by using the fact that

uij = u⊞

ij ⊖ u⊟

ij = u⊞

ij if u⊞

ij > u⊟

ij ,

= u⊟

ij if u⊟

ij > u⊞

ij ,

and an analogous expression for vij .
Since the extreme ray xi11 belongs to the set X inf

3 , we can replace σ2 in (51) by any negative
real number or by ε. So

A ∇

[

⊖0 ⊖(−2)
−2 ⊖0

]

⊗

[

5 ε
ε σ2

]

⊗

[

⊖(−3) 0
0 −3

]T

=

[

2 ⊖5
⊖0 3

]

(52)

is a max-algebraic SVD of A for every σ2 ∈ Rε with σ2 6 0.
The decompositions that correspond to the other finite vertices of Table 2 can be obtained
from decomposition (51) by replacing u2 by ⊖u2, or by replacing v2 by ⊖v2 or by replacing u1
and v1 by ⊖u1 and ⊖v1 respectively, or by a combination of these replacements. Furthermore,
since the extreme ray xi11 belongs to every set of cross-complementary extreme rays, we can
replace σ2 in all these compositions by any negative real number or by ε. Since A ∇/ ε2×2,
this means that the max-algebraic SVD rank of A is equal to 1.
The solution of [8]:

A ∇

[

0 −2
⊖(−2) 0

]

⊗

[

5 ε
ε ε

]

⊗

[

−3 0
⊖0 −3

]T

=

[

2 ⊖5
⊖0 3

]

corresponds to the following combination of the extreme rays and the vertex of the pair
{

X inf
4 ,X fin

4

}

:

xf4 + ηxi2 + ηxi3 + ηxi5 + ηxi7 + ηxi9 + ηxi11 + ηxi12 + ηxi13 + ηxi17

for η →∞. ✷

Example 6.2 Now we calculate all the max-algebraic QR decompositions of

A =

[

2 ⊖5
⊖0 3

]

using the ELCP technique. To reduce the number of variables and equations we assume
that the diagonal entries of Q are max-positive or zero. We introduce a matrix T ∈ R

m×n
ε

such that T = A⊕ ⊕ Q⊕ ⊗ R⊖ ⊕ Q⊖ ⊗ R⊕ and a symmetric matrix P ∈ R
m×m
ε such

that P = (Q⊕)T ⊗ Q⊕ ⊕ (Q⊖)T ⊗ Q⊖. Note that p11 = p22 = 0 since we also have
P = E2 ⊕ (Q⊕)T ⊗ Q⊖ ⊕ (Q⊖)T ⊗ Q⊕. So the variables of the system of multivariate
max-algebraic polynomial equalities and inequalities that correspond to the max-algebraic
QRD of A are the off-diagonal entries of Q⊖, the entries of Q⊕ and T , the entries of the upper
triangular parts of R⊕ and R⊖, and p21. Just as in Example 6.1 we introduce new (finite)
variables q⊞

ij , q
⊟

ij , r
⊞

ij and r⊟

ij such that

qij = q⊞

ij ⊖ q⊟

ij and q⊞

ij ⊗ q⊟

ij 6 −ξ

rij = r⊞

ij ⊖ r⊟

ij and r⊞

ij ⊗ r⊟

ij 6 −ξ
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where ξ is a large positive real number. All the variables are put in one large column vector
x:

x =
[

q⊞

11 q⊞

12 q⊞

21 q⊞

22 q⊟

12 q⊞

21 r⊞

11 r⊞

12 r⊞

22

r⊟

11 r⊟

12 r⊟

22 t11 t12 t21 t22 p12
]T

.

If we set ξ equal to 1000, the ELCP algorithm of [4] yields the rays and vertices of Tables 4.
All the extreme rays and all the finite vertices are cross-complementary:

Λ =
{

{xi1, x
i
2, x

i
3, x

i
4, x

i
5, x

i
6} , {x

f
1, x

f
2}

}

.

Note that there are no central rays. Any arbitrary solution of the system of multivariate
polynomial equalities and inequalities can now be expressed as

x = µ1x
f
1 + µ2x

f
2 +

6
∑

k=1

κkx
i
k

with µ1, µ2, κk > 0 and µ1 + µ2 = 1.
Consider ray xf1. Since q⊞

21, q
⊟

12, r
⊞

12, r
⊞

22 and r⊟

11 are negative numbers of the same order of
magnitude as ξ and since there are no positive components of the same order of magnitude
as ξ these entries can be replaced by ε. This yields

Q =

[

0 −2
⊖(−2) 0

]

and R =

[

2 ⊖5
ε ⊖3

]

. (53)

We have

Q⊗R =

[

2 ⊖5
⊖0 3•

]

∇ A

QT ⊗Q =

[

0 (−2)•

(−2)• 0

]

∇ E2

and ‖R‖
⊕
= 5 = ‖A‖

⊕
.

Ray xf2 corresponds to

Q =

[

0 −2
⊖(−2) 0

]

and R =

[

2 ⊖5
ε 3

]

. (54)

The other max-algebraic QR decompositions of A can be obtained from (53) or (54) by
replacing q1 by ⊖q1 and R1. by ⊖R1., by replacing q2 by ⊖q2 and R2. by ⊖R2., or by a
combination of these replacements.
Since xf1 and xi3 are cross-complementary, we can replace r22 in (53) by ⊖ρ with ρ 6 3 or by
ε. Likewise, we can replace r22 in (54) by ρ with ρ 6 3 or by ε. Hence, the max-algebraic QR
rank of A is 1. ✷
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7 Conclusions and future research

We have used the fact that a system of multivariate polynomial equations in the max algebra
can be transformed into an Extended Linear Complementarity Problem (ELCP) to derive a
method to calculate all max-algebraic singular value decompositions of a matrix. The ELCP
technique of this paper can also be used to calculate many other max-algebraic matrix decom-
positions (such as the max-algebraic QR decomposition, the max-algebraic LU decomposition
and the max-algebraic eigenvalue decomposition of a symmetric matrix).

One of the main characteristics of the ELCP algorithm of [4] that we have used to solve
a system of multivariate max-algebraic polynomial equations is that it finds all (finite) so-
lutions. This provides us a geometrical insight in the set of all max-algebraic singular value
decompositions of a given matrix. On the other hand this also leads to large computation
times and storage space requirements even if the size of the matrix is small. Therefore, it
might be interesting to develop (heuristic) algorithms that only find one max-algebraic sin-
gular value decomposition. The knowledge about the geometric structure of the set of all the
max-algebraic singular value decompositions, as revealed in this paper, might be helpful to
develop such algorithms. This also holds for the other max-algebraic matrix decompositions
mentioned above.
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Set X inf

Ray xi1 xi2 xi3 xi4 xi5 xi6 xi7 xi8 xi9 xi10 xi11 xi12 xi13 xi14 xi15

σ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

σ2 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0

u⊞

11 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0

u⊞

12 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0

u⊞

21 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0

u⊞

22 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

u⊟

11 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0

u⊟

12 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0

u⊟

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1

u⊟

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

v⊞

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

v⊞

12 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0

v⊞

21 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0

v⊞

22 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0

v⊟

11 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0

v⊟

12 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0

v⊟

21 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0

v⊟

22 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0

t11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

q12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1: The rays and vertices for Example 6.1 .
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Set X inf X fin

Ray xi16 xi17 xf1 xf2 xf3 xf4 xf5 xf6 xf7 xf8

σ1 0 0 5 5 5 5 5 5 5 5

σ2 0 0 0 0 0 0 0 0 0 0

u⊞

11 0 0 -1000 -1000 0 0 -1000 -1000 0 0

u⊞

12 0 0 -998 -2 -998 -2 -998 -2 -998 -2

u⊞

21 0 0 -2 -2 -998 -998 -2 -2 -998 -998

u⊞

22 0 0 -1000 0 -1000 0 -1000 0 -1000 0

u⊟

11 0 0 0 0 -1000 -1000 0 0 -1000 -1000

u⊟

12 0 0 -2 -998 -2 -998 -2 -998 -2 -998

u⊟

21 0 0 -998 -998 -2 -2 -998 -998 -2 -2

u⊟

22 0 -1 0 -1000 0 -1000 0 -1000 0 -1000

v⊞

11 -1 0 -997 -997 -3 -3 -997 -997 -3 -3

v⊞

12 0 0 0 0 0 0 -1000 -1000 -1000 -1000

v⊞

21 0 0 0 0 -1000 -1000 0 0 -1000 -1000

v⊞

22 0 0 -3 -3 -3 -3 -997 -997 -997 -997

v⊟

11 0 0 -3 -3 -997 -997 -3 -3 -997 -997

v⊟

12 0 0 -1000 -1000 -1000 -1000 0 0 0 0

v⊟

21 0 0 -1000 -1000 0 0 -1000 -1000 0 0

v⊟

22 0 0 -997 -997 -997 -997 -3 -3 -3 -3

t11 0 0 2 2 2 2 2 2 2 2

t12 0 0 5 5 5 5 5 5 5 5

t21 0 0 0 0 0 0 0 0 0 0

t22 0 0 3 3 3 3 3 3 3 3

p12 0 0 -2 -2 -2 -2 -2 -2 -2 -2

q12 0 0 -3 -3 -3 -3 -3 -3 -3 -3

Table 2: The rays and vertices for Example 6.1 (continued).
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s X inf
s X fin

s

1 {xi1, x
i
3, x

i
4, x

i
5, x

i
6, x

i
8, x

i
11, x

i
15, x

i
16} {xf1}

2 {xi3, x
i
4, x

i
5, x

i
8, x

i
9, x

i
11, x

i
15, x

i
16, x

i
17} {xf2}

3 {xi1, x
i
2, x

i
3, x

i
5, x

i
6, x

i
7, x

i
11, x

i
12, x

i
13} {xf3}

4 {xi2, x
i
3, x

i
5, x

i
7, x

i
9, x

i
11, x

i
12, x

i
13, x

i
17} {xf4}

5 {xi1, x
i
4, x

i
6, x

i
8, x

i
10, x

i
11, x

i
14, x

i
15, x

i
16} {xf5}

6 {xi4, x
i
8, x

i
9, x

i
10, x

i
11, x

i
14, x

i
15, x

i
16, x

i
17} {xf6}

7 {xi1, x
i
2, x

i
6, x

i
7, x

i
10, x

i
11, x

i
12, x

i
13, x

i
14} {xf7}

8 {xi2, x
i
7, x

i
9, x

i
10, x

i
11, x

i
12, x

i
13, x

i
14, x

i
17} {xf8}

Table 3: The pairs of subsets for Example 6.1 .

Set X inf X fin

Ray xi1 xi2 xi3 xi4 xi5 xi6 xf1 xf2

q⊞

11 0 0 0 0 0 0 0 0

q⊞

12 0 0 0 0 0 0 -2 -2

q⊞

21 0 0 0 -1 0 0 -998 -998

q⊞

22 0 0 0 0 0 0 0 0

q⊟

12 0 -1 0 0 0 0 -998 -998

q⊟

21 0 0 0 0 0 0 -2 -2

r⊞

11 0 0 0 0 0 0 2 2

r⊞

12 0 0 0 0 0 -1 -1005 -1005

r⊞

22 -1 0 0 0 0 0 -1003 3

r⊟

11 0 0 0 0 -1 0 -1002 -1002

r⊟

12 0 0 0 0 0 0 5 5

r⊟

22 0 0 -1 0 0 0 3 -1003

t11 0 0 0 0 0 0 2 2

t12 0 0 0 0 0 0 5 5

t21 0 0 0 0 0 0 0 0

t22 0 0 0 0 0 0 3 3

p12 0 0 0 0 0 0 -2 -2

Table 4: The rays and vertices for Example 6.2 .
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