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Summary

In recent years both industry and the academic world are becoming more and more interested
in techniques to model, analyse and control complex systems such as flexible production
systems, parallel processing systems, railway traffic networks and so on. This kind of systems
are typical examples of discrete event dynamic systems, the subject of an emerging discipline
in systems and control theory. In this paper we present an overview of some of the important
methodologies for discrete event dynamic systems. All these methods have been studied
intensively by the authors in the framework of projects.

1 Introduction

A discrete event dynamic system (DEDS) is a dynamic, asynchronous system, where the state
transitions are initiated by events that occur at discrete instants of time. Typical examples
of DEDS are flexible manufacturing systems, telecommunication networks, traffic control
systems, multiprocessor operating systems, . . . . An event corresponds to the start or the
end of an activity. In the case of a production system possible events are: the completion of
a part on a machine, a machine breakdown, a buffer becoming empty, and so on. Intervals
between events are not necessarily identical; they can be deterministic or stochastic. DEDS
typically exhibit an asynchronous behaviour with a lot of parallelism and interaction with their
environment. DEDS are usually man-made and are characterised by a complex, hierarchical
structure. In recent years much attention has been devoted to DEDS both in academic
research and industrial development in order to guarantee safety and to improve efficiency
and flexibility.

There are many frameworks to model, analyse and control DEDS. In this paper we present
a survey of the most important DEDS methodologies studied by the authors. In Section 2
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we first describe why one would want to model, analyse and control DEDS. In the next
sections we give an overview of Petri nets, controlled Petri nets, max algebra and Lagrangian
relaxation. We also give a brief explanation of the connection between Petri nets, Grafcets
and PLC design. We conclude with a comparison of the advantages and disadvantages of the
methodologies mentioned above.

2 Goals of DEDS methodologies

In this section we briefly discuss three major objectives in DEDS research: modelling, analysis
and control.

2.1 Modelling and analysis

When we want to (re)design a system or develop a controller to ensure that the system
meets certain requirements, or when we want to verify or optimise its behaviour, we should
represent our knowledge about the properties and the behaviour of the system in a model
allowing prediction of the performance of the system. There are many modelling and analysis
techniques for DEDS, such as queueing theory, (extended) state machines, max algebra,
formal languages, automata, temporal logic, generalised semi-Markov processes, Petri nets,
perturbation analysis, computer simulation and so on. In this paper we shall only discuss
some of these methods. For more information on the other methods the interested reader is
referred to [8, 19, 20, 27, 36] and the references cited therein. All these techniques have their
advantages and disadvantages and it really depends on the system we want to model and on
the goals we want to achieve which of the above methodologies best suits our needs. When we
have to select the most appropriate method, then one of the most important trade-offs that
has to be taken into account is modelling power versus decision power: the more accurate the
model is the less we can analytically say about its properties.

Up to now the most widely used technique to study DEDS is certainly computer simu-
lation. One of the major disadvantages of computer simulation is that it is computationally
quite demanding since it requires a high degree of detail in the model. However, this also
leads to a high degree of correspondence between the model and the real system. Another
disadvantage of computer simulation is that it does not always give us a real understanding
of the effects of parameter changes on properties such as robustness, stability, optimality of
the system performance (did we reach a global or a local optimum?), and so on. Hence, we
prefer to use mathematical models that are more suited for mathematical analysis and that
allow us to make predictions about the system behaviour and to analytically design good
controllers. The main appeal of a mathematical description of the system lies in the exis-
tence of efficient algorithms to evaluate system performance. This is a significant advantage
over time-consuming and expensive simulation, which is usually required to obtain the same
information. Furthermore, analytic techniques also provide a better insight in the effects of
parameter changes on the system properties. However, as we have already mentioned, we
have to take into account that there is a trade-off between the accuracy of our model on the
one hand and the techniques available for analysis on the other hand. Therefore, we normally
use a mixture of analytic methods, approximations and computer simulation when we want
to study the properties and the behaviour of DEDS.

2



2.2 Control and optimisation of system performance

The aim of DEDS control is to develop controllers and control strategies that improve the
global performance of the system. Hereby we consider both qualitative properties (safety,
prevention of buffer overflow, prevention of congestion, prevention of deadlock, . . . ) and
quantitative properties (maximal throughput, minimal average delay, minimal stocks, optimal
employment of resources, . . . ).

The first aim of DEDS control is to ensure that the system behaves ‘properly’: dangerous
situations must be avoided, the system should not reach a state from which it cannot leave
(deadlock) and so on. In order to control the system the controller must be able to prevent
certain transitions from occurring: e.g. cars can be prevented from entering an intersection
by setting a traffic light to the position ‘red’. Transitions that can be blocked are called
controllable transitions. The decision on which controllable transitions should be blocked
from happening will be based on knowledge about the past behaviour of the system. Hence,
at each time, the controller should have at its disposal certain partial observations of the
evolution of the system state. Using the model specification the ensemble of all possible
future event sequences can be calculated. In particular it is possible to determine whether
the set of possible future event sequences contains any undesirable event sequences. If there
are such undesirable sequences, then one has to determine how they can be prevented by
blocking as few controllable transitions as possible. It is always important to find a control
that blocks as few transitions as possible, since this allows maximal freedom to the evolution
of the system and since this allows a maximal degree of freedom for a higher level controller
that has to optimise other properties of the system. However, even for small-sized systems
the number of possible future event sequences can explode combinatorially. This means that
in general the system model (and thus also the control design) would become hopelessly more
complicated if one described the full behaviour of the system. Therefore, it is necessary to
have a compact but also sufficiently accurate mathematical description of the system, which
also allows an efficient search for a good control strategy. By efficient search, we mean a
procedure that does not depend on the enumeration of all the possibilities one by one.

Note that the fundamental idea for continuous system controllers (such as PID, LQG,
H∞) and for DEDS controllers is the same: define a partitioning of the set of all possible
input-output sequences in a subset of ‘good’ sequences and its complement the subset of
unacceptable sequences. In the case of a PID controller this is expressed in terms of the long
term behaviour (stability), the overshoot, behaviour of the high frequency components, etc.,
or in terms of the cost associated with trajectories for a particular choice of state model (but
note that state models for a given input output behaviour are not unique). For DEDS the
same is true. We want to design a control guaranteeing that certain sequences of transitions
will never occur. This may for example be specified via a set of forbidden states for a particular
Petri net (state space) model for the DEDS. The set of forbidden states may be chosen in
such a way that even in the case of failure of some components of the system, safety will not
be affected. Afterwards it is possible to try to schedule events in such a way as to achieve
good performance, under the safety constraints imposed by the first layer of control. What
is different between continuous time systems and DEDS is that the control values chosen
for a continuous system are typically a small number of real values (settings for adjustable
parameters), while in a DEDS the control is specified by a large number of binary values
(enabling or disabling transitions).

As an example of a forbidden state specification consider the problem of deadlock avoid-
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ance. Deadlock occurs when several processes are each holding a number of resources, and no
process can proceed to completion because each process is waiting for the other processes to
be completed. For example material can be removed from a buffer only when another buffer
or another resource is free, but then this resource can only be freed by placing the workpiece it
is working on in this same buffer. This leads to deadlock whenever there is a cycle, a circular
chain, of such interdependent resources and buffers. Deadlock is avoided by making sure that
the state where each of the resources and buffers of the cycle are full can never occur.

So far we have only considered the logical behaviour of the DEDS, i.e. the sequence in
which the events take place without taking into account the time between two consecutive
events. In most applications one is also interested in optimising quantitative properties of the
system, such as producing as many items as possible in a given time span, having as many
cars as possible flow through an intersection, etc. This is the second aim of DEDS control.
The first level controller specifies a control that allows as large a set of possible sequences
of future events to take place as is compatible with the safety constraints. This usually still
leaves a large degree of freedom in choosing the actual order in which events are executed.
This freedom can be used to optimise quantitative measures: throughput, delays, tardiness,
and so on. This will typically result in a scheduling problem in which we have to find a
strategy that determines e.g. which jobs have to be processed on which machines, the optimal
order to process the jobs and how we have to adapt the schedule in case of a rush order or a
(minor) system failure.

3 Petri nets — synthesis, simulation and control

3.1 An introduction to Petri nets

An interesting class of mathematical models for discrete event systems are Petri nets. Petri
nets give a graphical representation of a DEDS, which is a mathematical model very closely
resembling the physical reality. At the same time the Petri net formalism is very well suited
for implementation as a computer language.

An example of a Petri net, representing an assembly plant, is shown in Figure 1. Petri
nets consist of a number of places — drawn as circles — interconnected via directed arcs to
transitions — drawn as bars. Places can be marked by tokens — indicated graphically by
marking the circle with a point. The number of tokens in p is indicated as m(p). The set
of all places from which an arc starts, pointing towards a given transition t, forms the set
of input places of transition t. If all input places of transition t are marked by at least one
token, then transition t is enabled and can fire. When t fires, it removes one token from each
of its input places, and puts one token in each of its output places — the places reached by
an arc that starts at the given transition t. A Petri net is said to be in deadlock if none of
the transitions is enabled. The state of the Petri net is described by specifying the number of
tokens in each of the places of the net. With such a model of a DEDS, it is usually simple to
describe unsafe situations or deadlocks as particular sets of markings of the Petri net. If the
tokens represent workpieces held in the buffer or being processed by the resource, deadlock
would occur if all the places of a cycle simultaneously hold the maximum number of tokens
they can store. This is an example of a forbidden state specification [2, 6].

The basic ingredients of a complex discrete event system are synchronisation between
certain events and choice between certain event sequences. In a Petri net choice is modelled
by having a place with more than one output transition. Either of these output transitions
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can fire if the place is marked by one token, but not more than one of these transitions can
fire (using the same token). The place p6 in Figure 1 is an example of choice: either transition
t1 or transition t3 can fire. This means that the robot can be used for loading, processing
and unloading a part either on workstation W1 or on workstation W3, but not on both at the
same time.

In an assembly plant it is essential that the task of assembling several pieces together
only starts after all the pieces have become ready and available. This kind of synchronisation
requirement is modelled by having a transition with more than one input place. The transition
can only fire if all the input places are marked simultaneously. The transitions t1, t2 and t3
in Figure 1 are all examples of synchronisation. For t1 and t3 the synchronisation means that
both a part and a robot have to be available in order to proceed with the operation. For t2
it means that there has to be an empty place in the buffer in W2 to hold the part in order to
start with the operation in W2. Another form of synchronisation occurs when several places
always become marked simultaneously. This can be modelled by a transition with several
output places. It occurs e.g. when a piece enters a buffer and at the same time the robot that
operated on the piece becomes available again.

3.2 Using Petri nets to model flexible manufacturing systems

Flexible manufacturing systems (FMS) are typical examples of asynchronous concurrent sys-
tems. Petri nets have evolved into a powerful tool for analysing asynchronous concurrent
systems. To model a complex manufacturing system using Petri nets, deadlock prevention is
one of the key issues. Two different methods, deadlock prevention and deadlock avoidance,
will be explored in this and the next section.

The first method, which will be discussed in this section, uses standard Petri nets to avoid
possible deadlock by carefully constructing the Petri net model of the system [34, 39, 40, 41].
The Petri net model includes all deadlock prevention information as well as other information
(resource sharing, precedence constraints, etc.). So in this case the deadlock prevention
mechanism is also modelled with Petri nets.

The second method uses controlled transitions to prevent possible deadlock [3, 24, 28].
Control places are added to some of the transitions in order to prevent them from being fired
in certain circumstances. This will be described in more detail in Section 3.3.

These methods have been applied to the pilot flexible assembly system that was built at the
division PMA of the K.U.Leuven (Belgium). A description of this testbed (See Figure 2) can
be found in [38]. Using Petri nets, an integrated simulation/control system for the flexible
assembly system has been designed and implemented [34, 39]. It can serve as a simulator
or a real-time controller. The system functions as a simulation when feedback information
is generated from a random number generator and some stochastic distribution functions.
Currently, the research activities have only tested the simulation/controller system in its
simulation mode. The system functions as a control system when the parts of the Petri net
model that correspond to the underlying physical production system are made to reflect the
real-world situation. For instance, when a pallet enters a buffer, the corresponding transition
in the Petri net will be fired. Conversely, the Petri net interpreter will issue commands to the
real-world system when it fires a corresponding transition in the model (e.g. to start executing
an assembly operation). Evidently, such a link between the Petri net simulation/controller
and the real-world system requires a significant software implementation effort, which today
must be repeated for every new physical production system.
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The control of the flexible assembly system is partitioned into 2 smaller subproblems: the
first one deals with resource sharing and the precedence constraints of the products. The
second one deals with the automatic transport system. Two Petri net models are gener-
ated automatically for each of the subproblems. A simulation engine, which is the kernel
of the integrated simulation/control system, takes those two Petri net models as input and
synchronises/co-ordinates them in the time domain.

Modelling

Four important types of information are presented by Petri net models: the precedence graphs
of the products, the shared manufacturing resources, the product routes, and the deadlock
prevention mechanisms. The first two are not difficult to model. A coloured Petri net [25],
where tokens with different colours represent different products, can be used to model the
various product routes. Modelling the deadlock prevention mechanisms is the most difficult
task. The Petri nets that are automatically generated are guaranteed to be deadlock-free. This
is achieved through the design of suitable Petri net building blocks and formal proof that their
combinations, which are generated automatically, are indeed deadlock-free; details [34, 39]
are beyond the scope of this paper. Neither the design of these building blocks nor the
construction of the formal proof happens automatically; it requires a properly trained human
being. However, the set of Petri net models that can be obtained through the automatic
combination of the building blocks represents a useful collection for the application domain,
and allows one to guarantee that the resulting models are deadlock-free even when they
become very complex/large. In summary, this approach is not fully automated but is capable
of handling problems of more realistic size and complexity than most known research results
in the domain.

Timed Petri nets [16, 35] are used for both the product/FMS Petri net and the transport
Petri net model. In timed Petri nets times are assigned to transitions. The execution of a
transition takes a certain time that can be stochastic or deterministic. During the firing, the
enabling tokens of the transition are reserved and not available for other transitions. There
is no ‘overtake’ on a timed transition: the firing transition cannot be fired again.

Priority Petri nets [35, 37] are used for solving scheduling problems. In priority Petri
nets numbers (priorities) are assigned to the transitions. When more than one transition
is enabled, the one with the highest priority will be selected to fire. Implementing different
(heuristic) dispatching rules is equivalent to writing a compare function that determines which
one of two given transitions has higher priority.

A Petri net model of the transport system is generated automatically according to the
layout of the automatic transport system of the flexible assembly system. The initial marking
of the transport Petri net model represents the initial position of the pallets in the transport
system.

Simulation and control

The control of the flexible assembly system is partitioned into 2 smaller subproblems: the
scheduler and the transport controller. The scheduler takes the precedence graph and the
resource requirements of the products as input and proposes a least commitment schedule to
the controller. The transport controller takes the proposed schedule as input and makes the
final decision based on the status of the transport system. It tries to minimise the transport
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time and always honours the (partially ordered) schedule proposed by the scheduler. Both
the scheduler and the transport controller make decisions opportunistically using heuristic
dispatching rules. The Petri net models guarantee that all the constraints are respected
regardless of what scheduling and control strategies are used. Different scheduling/controlling
strategies can be implemented for the simulation engine. Heuristic dispatching rules are used
for the scheduling and the implementation is simple and straightforward. This is the major
advantage of using Petri nets in this way to handle scheduling/control of FMS. Another
advantage of this method is that one can add more products dynamically, which provides
further flexibility for the simulation.

The simulation engine is responsible for the co-ordination and communication between
the scheduler and the transport controller. It integrates the two subsystems into one. It runs
in two modes: simulation mode or real-time control mode. In simulation mode, the event
times are calculated according to some stochastic distribution and heuristic dispatching rules
are determined by the human operator. The system will simulate the behaviour of the flexible
assembly system for a given scheduling/control strategy. In this mode some statistical data
for the selection of the scheduling/control strategies can be gathered. This will provide useful
information for the human operator to make final decisions. In real-time control mode, the
event times are collected in real time from the flexible assembly system and the system will
select appropriate scheduling/control strategies and control the flexible assembly system in
real time.

Optimisation

There are two kinds of optimisation: the selection of scheduling/control strategies and the
determination of the system parameters. There are many heuristic dispatching rules for
scheduling and control of transport systems. It is difficult to find one dispatching rule that
suits all situations. There always is an optimal set of dispatching rules for any given produc-
tion load. The simulation provides useful information to determine ‘good’ dispatching rules
for the given production load. Once the scheduling/control strategies are determined, there
is still room to determine the system parameters such as the mix of the different products
and the number of pallets per product. Different products normally have different resource
requirements. The optimal mix of different products will help to balance the resource utili-
sation and increase the system throughput. The optimal number of pallets per product will
also directly affect the system throughput.

For more information on the integrated simulation/control system for the pilot flexible
assembly system the interested reader is encouraged to consult [34, 39].

3.3 Controlled Petri nets

Consider Figure 3. It is quite easy to interpret this figure as a metro network. While modern
dispatching centres for a rail or metro network have very accurate information on the position
of each train, we assume, in order to obtain a very robust control design, that only the fact
whether a train is in a particular section of the line is known. Typically these sections are a
few hundred metres long (though in switching yards smaller sections may be used). To each
section we associate 4 different places in the Petri net, drawn under each other in Figure 3.
One place corresponds to a train crossing the corresponding section at normal speed, another
place corresponds to a train standing still or moving very slowly through the section; a third
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place corresponds to a train slowing down from normal speed to a very low speed, and a
fourth place corresponds to a train speeding up from slow speed to normal speed in the
section. Inertia of a train has been taken into account in Figure 3 since we see that a train
leaving a section at normal speed can only reach the places that correspond to passing the
next section at normal speed or slowing down; similarly a train leaving a section at slow speed
can only reach the places that correspond to passing the next section slowly or speeding up in
the next section. Signals at the entrance of some sections force trains to slow down or stop.
This corresponds to the transitions leading to the places where trains go at normal speed or
where trains speed up, being prevented from occurring. One design goal could be to ensure
that there are never 2 or more trains in the same section (i.e. the 4 places corresponding to
1 section cannot contain more than 1 token at the same time) and that there are at least N
free sections ahead of a train running at normal speed (i.e. the 4N places corresponding to
the N sections ahead of a train running at normal speed or speeding up should not contain
any token). The dispatcher of a train can choose for each train at the entrance of each section
to allow the train to run at normal speed or to slow it down (assuming the train is running
at normal speed in the preceding section), provided the transition representing entering the
section at normal speed is not blocked by a red light.

Controlled events correspond to transitions in the Petri net that can only fire if a control
place — to be marked by the operator — contains a token. In drawings of Petri nets, such
control places are indicated by rectangles. Such controlled Petri nets can be prevented from
executing certain undesirable sequences of transitions by disabling some of the controllable
transitions. This corresponds to not marking certain control places (‘red signals’ in the metro
network). In the manufacturing example of Section 3.2 one designed a Petri net modelling
both the evolution of the plant and the deadlock prevention algorithm. In this section we
discuss an alternative approach, using a Petri net model only for the plant. Given a set of
forbidden states, we construct an algorithm that works as follows: Each time a transition has
been executed, the new state is observed; based on this observation, the algorithm calculates
for each controlled transition whether it should be disabled in order to prevent the state from
ever reaching the forbidden set. Moreover, the algorithm disables as few controlled transi-
tions as possible, leaving maximal freedom for a higher level controller (e.g. for maximising
throughput). Since this algorithm is implemented on-line on a control processor, we do not
make any attempt to model it as a Petri net. Sometimes the algorithm may be representable
as a Petri net, in other cases this may not be possible.

The easiest way to represent the goal of a controller for a Petri net is to describe a set
of forbidden states. As a first step, consider a constraint that place p should never contain
more than k tokens. We want to achieve this by blocking the smallest number of transitions
possible, i.e. by impeding the flow through the network as little as possible. For a Petri net
without synchronisation requirements this problem can be solved as follows. Let us call the
influencing zone for the place p the set of all places contained in paths leading towards p

such that these paths contain no controlled transitions and no loops. Clearly any token in the
influencing zone of p can reach p no matter what control is used. Between the present position
of the token and p there is no controllable transition that could be blocked to stop the progress
of the token. Hence, the control design problem does not have a solution if the influencing
zone, including p, already contains more than k tokens. If the influencing zone contains l ≤ k

tokens, and if more than k − l of the input transitions leading to the influencing zone are
enabled by having all their input places marked, then k − l of these controlled transitions at
the entrance of the influencing zone will have to be blocked.
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Similar algorithms work for more complicated control goals, such as upper limits on the
weighted number

∑

i νim(pi) in a set of places pi, i ∈ I, or for unions and intersections of
such constraints [3, 4]. It turns out that there exist efficient algorithms for most interesting
constraints, provided the forbidden sets are such that if a given state is forbidden, then any
state with at least as many tokens in any place is also forbidden. The reason for this is that
the control design is very safe: it can prevent a transition from firing, but it will never force a
transition to fire. Thus the control design is also robust against component failures, but the
model never can ensure that a certain transition will actually execute.

Similar efficient methods exist for Petri nets without choice. This has been studied in detail
by Holloway and Krogh [24]. Especially in this case it is very important to consider timed
models. Here one assumes that transitions take a certain amount of time to fire, i.e. there is
a specification of the time interval between the moment when transition t becomes validated,
and the moment it actually fires. Once this timing information is included in the model, it
becomes possible to study performance measures such as throughput. If the firing times are
deterministic these timed Petri nets can be represented as max-algebraic models. This will
be considered in the next section.

Recently there has been done a lot of work in connecting Petri nets, Grafcets and PLC
design. Grafcet [10, 11] is a standardised graphical representation of all the logical inter-
connections in a DEDS. Grafcets are very similar to Petri nets, except for the fact that the
transitions in a Grafcet get executed immediately after they become both state enabled and
control enabled (Note that in the computer literature on Petri nets as well as in the Grafcet
literature one talks of an interpreted transition for what has been called a controlled transi-
tion in this paper). Thus in a Grafcet the control enabling at the same time adds a timing
specification for the event represented by the transition. A promising methodology for de-
signing logic controllers for DEDS is as follows. First take a simple Petri net model of the
plant (simple because it does not include any of the specifications) and explicitly state all the
specifications to be met after control has been implemented. This can be done via successive
steps, first incorporating the most important specifications using the methods described in
this subsection, then simulating the performance, and then, if still possible, adding less im-
portant specifications, and so on until behaviour is found satisfactory. The controlled Petri
net can then be translated into a Grafcet — this is quite easy because of the close similarity
between Grafcets and Petri nets. Finally transform the graphical Grafcet representation into
code for a PLC that implements the control of the plant. In recent years there has been a
lot of research [14, 26] on automatic translation of Grafcets into PLC code (via Relay Ladder
Logic or via State Function Charts) so that this can also be an automatic operation.

4 Max algebra

Although DEDS lead to a non-linear description in linear algebra, there exists a subclass of
DEDS for which the model becomes ‘linear’ when we formulate it in the max algebra [1, 7, 9].
The main operations of the max algebra are the maximum and the addition. We use the
following notations to represent the basic operations of the max algebra:

a⊕ b = max(a, b)

a⊗ b = a+ b
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with a, b ∈ IR ∪ {−∞}. The reason for choosing these symbols is that a lot of concepts and
properties of linear algebra (such as eigenvectors and eigenvalues, Cramer’s rule, . . . ) can
be translated to max algebra by replacing + by ⊕ and × by ⊗. This analogy is one of the
most attractive features of the max algebra since it allows us to translate many concepts
and techniques from linear system theory to discrete event system theory. However, there is
also one major difference that prevents a straightforward translation of properties from linear
algebra to max algebra: in general there exists no inverse element for the maximum operator.
It should also be pointed out that the max algebra is not fully developed yet and that a lot
of research on this subject is still needed in order to get a comprehensive system theory.

We shall now show how a simple production system can be modelled using max algebra.
First we need some extra definitions. The operations ⊕ and ⊗ are extended to matrices in
the usual way. So if A and B are m by n matrices, then (A⊕B)ij = aij ⊕ bij and if A is an

m by p matrix and B is a p by n matrix, then (A⊗B)ij =
p
⊕

l=1

ail ⊗ blj .

Example : A simple production system.
Consider the production system of Figure 4. This system consists of 3 processing units P1,
P2 and P3 and 2 buffers B1 and B2. Raw material is fed to P1 and P2, processed and sent to
P3 where assembly takes place. Between P1 and P3 and between P2 and P3 there are buffers
that can each hold one intermediate part. The processing times for P1, P2 and P3 are d1 = 9,
d2 = 10 and d3 = 7 time units respectively. We assume that the raw material needs 3 time
units to get from the input of the system to P1. The other transportation times are assumed
to be negligible. We assume that there are buffers at the input and at the output of the
system with a capacity that is large enough to ensure that no overflow will occur. Define:

• u(k) : time instant at which raw material is fed to the system for the (k + 1)st time,

• xi(k) : time instant at which the ith processing unit starts working for the kth time,

• y(k) : time instant at which the kth finished product leaves the system.

A processing unit can only start working on a new product if it has finished processing the
previous one and if the buffer at its output is empty. We assume that each processing unit
starts working as soon as all parts are available. Processing unit P1 can start working on the
(k + 1)st part as soon as the following conditions are satisfied: the (k + 1)st batch of raw
material is available at the input of P1, P1 has finished processing the kth part, and the buffer
B1 is empty, i.e. P3 has finished processing the (k − 1)st part. This leads to

x1(k + 1) = max(u(k) + 3, x1(k) + 9, x3(k − 1) + 7) .

Using an analogous reasoning for P2 and P3 we get

x2(k + 1) = max(u(k), x2(k) + 10, x3(k − 1) + 7)

x3(k + 1) = max(x1(k + 1) + 9, x2(k + 1) + 10, x3(k) + 7 ) .

In order to get a first order recursion relation we introduce an extra state variable x4(k)
def
=

x3(k − 1). Then we get the following evolution equations for the system:

x1(k + 1) = max(x1(k) + 9, x4(k) + 7, u(k) + 3 )
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x2(k + 1) = max(x2(k) + 10, x4(k) + 7, u(k) )

x3(k + 1) = max(x1(k) + 9 + 9, x4(k) + 7 + 9, u(k) + 3 + 9, x2(k) + 10 + 10,

x4(k) + 7 + 10, u(k) + 10, x3(k) + 7 )

= max(x1(k) + 18, x2(k) + 20, x3(k) + 7, x4(k) + 17, u(k) + 12 )

x4(k + 1) = x3(k)

y(k) = x3(k) + 7 ,

or in max-algebraic matrix notation:

x(k + 1) =











9 −∞ −∞ 7
−∞ 10 −∞ 7
18 20 7 17

−∞ −∞ 0 −∞











⊗ x(k) ⊕











3
0
12

−∞











⊗ u(k)

y(k) =
[

−∞ −∞ 7 −∞
]

⊗ x(k) ,

where x(k) = [ x1(k) x2(k) x3(k) x4(k) ]
T .

Note that this production system can also be represented as a timed Petri net. ✷

If we limit ourselves to time-invariant deterministic systems in which the sequence of the events
and the duration of the activities are fixed or can be determined in advance (like repetitive
production processes), we can always write down a max-algebraic state space model of the
form

x(k + 1) = A⊗ x(k) ⊕ B ⊗ u(k)

y(k) = C ⊗ x(k)

where u(k) is the input vector, x(k) the state vector and y(k) the output vector. Note that
this state space description closely resembles the classical state space description for linear
time-invariant systems.

Once we have a model of this form, we can determine the following properties of the
system rather easily:

• If we know the time instants at which raw material is fed to the system, we can calculate
the time instants at which the finished products leave the system.

• If we know the latest times Y at which the finished products have to leave the system, we
can calculate the time instants U at which the raw material has to be fed to the system.
This amounts to solving a system of max-linear equations of the form H ⊗ U = Y .

• However, if we have perishable goods it is sometimes better to minimise the maximal
deviation between the desired and the actual finishing times. In this case there also
exist an analytic expression for the optimal starting times.

• If the raw material is fed to the system at such a rate that the input buffer never
becomes empty, we can calculate the steady state behaviour of the system by solving
a max-algebraic eigenvalue problem of the form A ⊗ x = λ ⊗ x. The eigenvalue λ will

be the average duration of a cycle of the production process (in steady state) and
1

λ
is

the average production rate. This also allows us to calculate the utilisation levels of the
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various machines in the production process. Furthermore, the algorithm to calculate
the eigenvalue also yields the critical paths of the production process and the bottleneck
machines.

One of the main advantages of an analytic max-algebraic model of a DEDS is that it allows
us to derive some properties of the system (in particular the steady state behaviour) fairly
easily, whereas in some cases simulation might require quite a large amount of computation
time.

If we allow variable or stochastic processing and transportation times and variable routing,
we can still describe the system by a max-algebraic model [30, 31, 32] but it will not be time-
invariant and max-linear any more, which means that it becomes more difficult to analyse its
properties mathematically. For more information on the max algebra, its application to the
study of DEDS and ongoing research the interested reader is referred to [1, 7, 9, 12, 13] and
the references therein.

5 Lagrangian relaxation

Besides the DEDS methodologies already described, there also exists a lot of research on
scheduling of discrete manufacturing. Although seen from a completely different viewpoint,
the fundamental problems and the application areas are similar for both methodologies. An
important difference in viewpoint with respect to the research goal is that several typical
DEDS methodologies — and more specifically those that work with untimed models — focus
on the safety of operation, while scheduling focuses on the performance of the system with
respect to time.

Next to the more classical scheduling algorithms and heuristics found in operational re-
search, nowadays methodologies are appearing that combine a near-optimality of the perfor-
mance with a reasonable calculation time for a realistic application. An example of such a
near-optimal realistic methodology is Lagrangian relaxation. Like max algebra, it is a discrete
event application of methodologies that proved their value in the continuous space.

Lagrangian relaxation has been used for several types of scheduling problems. The ex-
ample given here discusses the non-preemptive scheduling of multi-operation jobs with due
dates on several machines (‘job shop’ scheduling problem). The objective of the schedule is
to meet the due dates as well as possible. This corresponds to a minimisation problem for
the weighted quadratic tardiness [29].

First the problem formulation is elaborated. Then the theoretical background is discussed
and applied to the problem. Finally, some remaining problems are discussed. Additional
information can be found in [5].

5.1 Problem formulation

First, a mathematical problem formulation of the scheduling problem is stated. For job shops,
a common formulation is as follows:

minimise J ≡
∑

i

wiT
2
i ,

where J is the cost function, Ti = max(0, ciNi
− ddi) is the tardiness of order i, wi is the

weight of order i and ddi is the due date for order i.
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This minimisation problem is subject to three types of constraints: the capacity constraints,
the precedence constraints and the processing time requirements. The capacity constraints
are represented by

∑

i,j

δijkh ≤ Mkh for k = 1, 2, . . . ,K and h = 1, 2, . . . , H ,

where δijkh = 1 if operation j of job i is being processed on machine type h in time period
k, and δijkh = 0 otherwise; Mkh is the capacity of machine type h during time period k; K
is the time horizon and H is the number of machine types. The precedence constraints are
represented by

cij + Sijl + 1 ≤ bil for i = 1, 2, . . . , N ; j = 1, 2, . . . , Ni − 1 and l ∈ Iij ,

where bij and cij are the beginning time and the completion time of operation j of job i; Sijl

is the minimum time delay between the end of operation j and the beginning of operation l

of job i (e.g. caused by transportation); Iij is the set of operations of job i directly following
operation j of job i; N is the number of orders and Ni is the number of operations of job
i. The term ‘+1’ is introduced because cij and bil refer to time periods instead of to time
instances. cij is the last time period in which operation j of job i is executing, thus — apart
from some delay Sijl (e.g. for transportation) — operation l of job i can only start one time
period later.
The processing time requirements are represented by

cij − bij + 1 = tijmij
for i = 1, 2, . . . , N and j = 1, 2, . . . , Ni ,

where tijmij
is the processing time of operation j of job i, if this operation is allocated to

machine type mij . The term ‘+1’ is introduced for the same reason as for the precedence
constraints.

Notice that bij and mij are the decision variables. All other variables can be deduced
from these ones.

The constraints can be modelled as well via the max-algebraic approach of the preceding
section, and also via timed Petri nets (cf. Section 3). The ability to make decisions, however,
is hard to model in the max algebra. As such, optimisation in general is hard to apply to
classical discrete event system modelling techniques.

5.2 Lagrangian relaxation

The basic concept behind Lagrangian relaxation is to get rid of difficult constraints by relaxing
them, and adding a penalty term in the objective function for disobeying this constraint. If
the penalty term is added before the relaxation is made, it is easy to see that the solution
of the modified minimisation problem is a lower bound for the optimal value of the original
objective function. The higher the lower bound is, the more interesting this lower bound
becomes. Fisher gives a very clear introduction to Lagrangian relaxation in [15].

Another idea behind Lagrangian relaxation is to give a weight to the penalty of each
relaxed constraint. This weight is called the Lagrangian multiplier. By fine-tuning these
multipliers, the lower bound can get tighter. It can be proven that for Continuous (i.e. non
integer) Linear Programming Problems the lower bound is equal to the optimal cost, if the set
of multipliers is chosen optimally. This property cannot be generalised for the case of integer
programming problems, but the gap between the lower bound and the optimal solution often
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is quite small. By relaxing the constraints, the problem is transformed from a minimisation
problem in the space of the decision variables into a maximisation problem in the multiplier
space.

The obtained schedule however is not a feasible one because some constraints have been
relaxed. A heuristic procedure should make this schedule feasible while keeping its cost near
to the optimal one. The difference between the lower bound (called dual cost) and the cost of
the feasible schedule is called the duality gap. It is a measure of the quality of the schedule.

In Lagrangian relaxation, the difficult question is the choice of which constraints to re-
lax. In the algorithms described by Luh [21, 22, 23, 29, 33], this decision is based on the
idea of decomposing the problem in smaller and easier subproblems. Relaxing the capac-
ity constraints decomposes the problem in job-level subproblems. Relaxing the precedence
constraints decomposes the problem in operation-level subproblems.

We now give an simple example that illustrates this approach.

Example

For simplicity, only one operation per order will be considered in this example. There are 2
machines, and 4 orders. Operation 1 of order i = 1 (1,1) is to be executed on machine h = 1.
Operations (2,1), (3,1) and (4,1) of orders 2, 3, and 4 have to be executed on machine h = 2.
The capacity of each machine type Mkh = 1 for all time periods. The due dates and weights
of all orders and the duration of the (only) operation of these orders are given in this table:

Order Due date Weight Duration

1 3 5 2

2 1 1 1

3 2 5 2

4 3 10 2

There are no precedence constraints, and thus no delays Sijl either. The time horizon K is
chosen big enough, e.g. K = 8.
The problem formulation is as follows

minimise J = 5(max(0, c11 − 3))2 + (max(0, c21 − 1))2 +

5(max(0, c31 − 2))2 + 10(max(0, c41 − 3))2

subject to
(

4
∑

i=1

δi1kh

)

− 1 ≤ 0 for k = 0, 1, . . . , 8 and h = 1, 2

c11 − b11 + 1 = 2

c21 − b21 + 1 = 1

c31 − b31 + 1 = 2

c41 − b41 + 1 = 2 .

To solve this problem, the capacity constraints are relaxed, and penalty terms are added to
the objective function. Therefore, Lagrangian multipliers λkh are introduced, which can be
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interpreted as the cost for machine h at time period k. This results in a modified problem
formulation:

minimise J ′ = 5(max(0, c11 − 3))2 + λb11,1 + λb11+1,1 + (max(0, c21 − 1))2 +

λb21,2 + 5(max(0, c31 − 2))2 + λb31,2 + λb31+1,2 +

10(max(0, c41 − 3))2 + λb41,2 + λb41+1,2 −
∑

k,h

λkh

subject to

c11 − b11 + 1 = 2

c21 − b21 + 1 = 1

c31 − b31 + 1 = 2

c41 − b41 + 1 = 2 .

This problem is easier to solve, because it can be split up into 4 independent subproblems:

minimise J1 = 5(max(0, c11 − 3))2 + λb11,1 + λb11+1,1

subject to c11 − b11 + 1 = 2 ,
(1)

minimise J2 = (max(0, c21 − 1))2 + λb21,2

subject to c21 − b21 + 1 = 1 ,
(2)

minimise J3 = 5(max(0, c31 − 2))2 + λb31,2 + λb31+1,2

subject to c31 − b31 + 1 = 2 ,
(3)

minimise J4 = 10(max(0, c41 − 3))2 + λb41,2 + λb41+1,2

subject to c41 − b41 + 1 = 2 .
(4)

Given all λ values, each of these subproblems can be solved easily. If the initial values of the
multipliers are all chosen equal to 1, then via complete enumeration the optimal value of b11
can be selected. For values of b11 ranging from 1 till 7, the corresponding values of J1 are:
2, 2, 7, 22, 47, 82, 127. b11 = 8 is not a valid decision, since then c11 is larger than the time
horizon K. Thus, an optimal value for b11 is 1. Similarly, also b21, b31 and b41 are chosen to
be 1, and this results in J ′ = J1 + J2 + J3 + J4 − 16 = 2+ 1+ 2+ 2− 16 = −9. The resulting
schedule is of course infeasible. Therefore, better values for the multipliers are required, such
that J ′ is higher and closer to the optimal cost J of the original problem. A better set of
multipliers is found by taking the derivative of J ′ to the λ values (the gradient, or — if the
derivative does not exist — the subgradient g(λ), where λ is the vector containing all λkh

values). We have

gkh(λ) =

(

4
∑

i=1

δi1kh

)

− 1 .

For this example:

g(λ)T =

[

1− 1 1− 1 0− 1 0− 1 0− 1 0− 1 0− 1 0− 1
3− 1 2− 1 0− 1 0− 1 0− 1 0− 1 0− 1 0− 1

]

.

To find better multiplier values, λ is changed in the direction of the (sub)gradient, with a
certain step size, e.g. α = 0.2. How the step size is to be chosen can be found in [21]. The
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new λ can be calculated as follows:

λT = λT
old + αg(λ)T

=

[

1 + 0 1 + 0 1− 0.2 1− 0.2 1− 0.2 1− 0.2 1− 0.2 1− 0.2
1 + 0.4 1 + 0.2 1− 0.2 1− 0.2 1− 0.2 1− 0.2 1− 0.2 1− 0.2

]

=

[

1 1 0.8 0.8 0.8 0.8 0.8 0.8
1.4 1.2 0.8 0.8 0.8 0.8 0.8 0.8

]

.

Remark that the multipliers have increased for the time periods that the schedule was infea-
sible, while they have decreased for the time periods where the machine was under-utilised.
With these new multipliers, the subproblems (1) – (4) can be solved again. For J1 and for
b11 ranging from 1 till 7, the costs are 2, 1.8, 6.6, 21.6, 46.6, 81.6, 126.6. As such, b11 =
2 and J1 = 1.8. For J2 and b21 ranging from 1 till 8, the costs are 1.4, 2.2, 4.8, 9.8, 16.8,
25.8, 36.8, 49.8. For J3 and b31 ranging from 1 till 7, the costs are 2.6, 7, 21.6, 46.6, 81.6,
126.6, 181.6. For J4 and b41 ranging from 1 till 7, the costs are 2.6, 2, 11.6, 41.6, 91.6, 161.6,
251.6. Therefore, b21 = 1, b31 = 1 and b41 = 2. J ′ = 1.8 + 1.4 + 2.6 + 2 − 14.2 = −6.4,
which is larger than in the previous iteration. One can see that the penalty for infeasibilities
forces the operations to seek less favourite execution times, and as such reduces the amount
of infeasibilities. This will go on until the schedule is almost feasible. A heuristic will then
remove all leftover infeasibilities and produce a near-optimal performance. ✷

Remarks

While the relaxation of the capacity constraints works extremely well, the relaxation of the
precedence constraints gives problems concerning solution oscillation between very early and
very late beginning times. How these problems are solved, as well as a more elaborate de-
scription of the solution methodology can be found in [21, 22, 23, 29, 33].
Another problem is the fact that Lagrangian relaxation still takes a lot of time to converge.
Therefore research is being done to implement the Lagrangian relaxation algorithm in a par-
allel program. In this version, by negotiating about the resource prices, the orders and the
machines co-operate to produce a schedule that is near-optimal according to global perfor-
mance criteria [17, 18].

6 Evaluation

In this paper we have tried to present some of the problems that can be solved by the ongoing
research on DEDS systems in the interactions between our respective research groups. It is
clear that the control of complex man-made systems such as manufacturing systems with a
very high flexibility, transportation systems, etc. will require the solution of many different
subproblems. We have presented some examples of techniques usable for ensuring safety
constraints of different types, as well as methods for using the remaining freedom of choice
in well-designed, safe systems, to schedule operations so as to maximise income.

For the first category of problems we have emphasised the use of Petri nets, even though
in the literature also many other mathematical models are commonly used. We believe that
the advantage of Petri nets is that they give a mathematical model that very closely resembles
the physical lay-out of the system under study. The major difficulty in applying the results on
discrete event systems (the same difficulty encountered in applying most theoretical results in

16



systems theory to control design!) is the problem of obtaining a good model. For Petri nets
this is directly possible from a description of all the constraints in the physical system. Of
course a lot of work is needed in finding ‘good’ models for black-box systems (e.g. when some
components are proprietary design of a supplier, so that the user does not have a complete
knowledge of the system) where only a limited set of input-output observations is available.
Another problem is the simplification of Petri net models when it turns out that the model is
too detailed and leads to too high a computational burden. Although there exist methods for
speeding up the algorithms, even the best polynomial time algorithms will eventually become
too time consuming. Therefore, model simplification is undoubtedly one of the important
focuses of future research.

After modelling, control actions prevent the system from entering dangerous or unwanted
situations. Control can be exerted implicitly or explicitly. Implicit control is achieved by
extending the Petri net model. This extended Petri net constrains the course of events so that
only allowable event sequences remain. Explicitly, controlled Petri nets prevent transitions
from firing if the transition would possibly cause unwanted situations. Petri net control of
real-world systems is achieved by mapping sensor signals and actuator commands to Petri
net transitions.

Once a good controller has been found, guaranteeing all the safety requirements for the
system, one has to design a higher level controller optimising some goal function. Here we have
presented two different methods — max algebra and Lagrangian relaxation. Here again it is
important to choose a model that includes all the important constraints, but does not make
the model overly large. Otherwise even these efficient methods will run out of computation
time.

Furthermore, as already said in the introduction, one of the major trade-offs that has to
be taken into account when deciding which model to use is modelling power versus decision
power. If we consider for example Petri nets, one of the most powerful mathematical modelling
frameworks for DEDS, then a complete analytic solution is usually not available. Furthermore,
the execution time of some algorithms explodes exponentially as the size of the problem
increases. There are even some problems in connection with Petri nets for which there do
not exist generally applicable algorithms that solve the problem. On the other side, the max
algebra allows to say a lot about the properties of the system but it can only be applied to
the subclass of DEDS that can be described by a max-linear time-invariant system.

The above trade-off is the Achilles heel for the industrial relevance of DEDS research.
The problems for which execution times explode exponentially are precisely those problems
for which industry awaits solutions and vice versa. Exploration of concepts that are potential
solutions to this dilemma is vital for the research domain. One sample approach is to seek
closer co-operation/integration of the systems that enforce safety (forbidden state avoidance)
with optimising systems (maximising system benefits). In such an approach, the latter present
the former with problems that can be handled efficiently.
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Figure 1: Petri net model of an assembly plant.



Figure 2: The PMA flexible assembly system testbed.
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