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THE QR DECOMPOSITION AND THE SINGULAR VALUE

DECOMPOSITION IN THE SYMMETRIZED MAX-PLUS ALGEBRA

BART DE SCHUTTER†§ AND BART DE MOOR‡§

Abstract. In this paper we discuss matrix decompositions in the symmetrized max-plus algebra.
The max-plus algebra has maximization and addition as basic operations. In contrast to linear
algebra many fundamental problems in the max-plus algebra still have to be solved. In this paper we
discuss max-algebraic analogues of some basic matrix decompositions from linear algebra. We show
that we can use algorithms from linear algebra to prove the existence of max-algebraic analogues
of the QR decomposition, the singular value decomposition, the Hessenberg decomposition, the LU
decomposition and so on.

Key words. max-plus algebra, matrix decompositions, QR decomposition, singular value de-
composition

AMS subject classifications. 15A23, 16Y99

1. Introduction. In recent years both industry and the academic world have
become more and more interested in techniques to model, analyze and control complex
systems such as flexible manufacturing systems, telecommunication networks, parallel
processing systems, traffic control systems, logistic systems and so on. These systems
are typical examples of discrete event systems (DESs), the subject of an emerging
discipline in system and control theory. The class of the DESs essentially contains
man-made systems that consist of a finite number of resources (e.g., machines, com-
munications channels or processors) that are shared by several users (e.g., product
types, information packets or jobs) all of which contribute to the achievement of some
common goal (e.g., the assembly of products, the end-to-end transmission of a set of
information packets or a parallel computation). Although in general DESs lead to
a non-linear description in conventional algebra, there exists a subclass of DESs for
which this model becomes “linear” when we formulate it in the max-plus algebra [1, 5].
DESs that belong to this subclass are called max-linear DESs.

The basic operations of the max-plus algebra are maximization and addition.
There exists a remarkable analogy between the basic operations of the max-plus alge-
bra on the one hand, and the basic operations of conventional algebra (addition and
multiplication) on the other hand. As a consequence many concepts and properties of
conventional algebra (such as the Cayley–Hamilton theorem, eigenvectors, eigenval-
ues and Cramer’s rule) also have a max-algebraic analogue. This analogy also allows
us to translate many concepts, properties and techniques from conventional linear
system theory to system theory for max-linear DESs. However, there are also some
major differences that prevent a straightforward translation of properties, concepts
and algorithms from conventional linear algebra and linear system theory to max-plus
algebra and max-algebraic system theory for DESs.

Compared to linear algebra and linear system theory, the max-plus algebra and
the max-algebraic system theory for DESs is at present far from fully developed, and
much research on this topic is still needed in order to get a complete system theory.
The main goal of this paper is to fill one of the gaps in the theory of the max-plus
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algebra by showing that there exist max-algebraic analogues of many fundamental
matrix decompositions from linear algebra such as the QR decomposition and the
singular value decomposition. These matrix decompositions are important tools in
many linear algebra algorithms (see [14] and the references cited therein) and in many
contemporary algorithms for the identification of linear systems (see [21, 22, 33, 34, 35]
and the references cited therein).

In [30], Olsder and Roos have used asymptotic equivalences to show that every
matrix has at least one max-algebraic eigenvalue and to prove a max-algebraic version
of Cramer’s rule and of the Cayley–Hamilton theorem. We shall use an extended and
formalized version of their technique to prove the existence of the QR decomposition
and the singular value decomposition in the symmetrized max-plus algebra. In our
existence proof we shall use algorithms from linear algebra. This proof technique can
easily be adapted to prove the existence of max-algebraic analogues of many other
matrix decompositions from linear algebra such as the Hessenberg decomposition, the
LU decomposition, the eigenvalue decomposition, the Schur decomposition, and so
on.

This paper is organized as follows. After introducing some concepts and defini-
tions in §2, we give a short introduction to the max-plus algebra and the symmetrized
max-plus algebra in §3. Next we establish a link between a ring of real functions (with
conventional addition and multiplication as basic operations) and the symmetrized
max-plus algebra. In §5 we use this link to define the QR decomposition and the
singular value decomposition of a matrix in the symmetrized max-plus algebra and
to prove the existence of these decompositions. We conclude with an example.

2. Notations and definitions. In this section we give some definitions that
will be needed in the next sections.

The set of all reals except for 0 is represented by R0 (R0 = R \ {0}). The set of
the nonnegative real numbers is denoted by R

+, and the set of the nonpositive real
numbers is denoted by R

−. We have R
+
0 = R

+ \ {0}.
We shall use “vector” as a synonym for “n-tuple”. Furthermore, all vectors are

assumed to be column vectors. If a is a vector, then ai is the ith component of a. If
A is a matrix, then aij or (A)ij is the entry on the ith row and the jth column. The
n by n identity matrix is denoted by In and the m by n zero matrix is denoted by
Om×n.
The matrix A ∈ R

n×n is called orthogonal if ATA = In.
The Frobenius norm of the matrix A ∈ R

m×n is represented by

‖A‖F =

√

√

√

√

m
∑

i=1

n
∑

j=1

a2ij .

The 2-norm of the vector a is defined by ‖a‖2 =
√
aTa and the 2-norm of the matrix

A is defined by

‖A‖2 = max
‖x‖

2
=1

‖Ax‖2 .

If A ∈ R
m×n, then there exist an orthogonal matrix Q ∈ R

m×m and an upper trian-
gular matrix R ∈ R

m×n such that A = QR. We say that QR is a QR decomposition
of A.
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Let A ∈ R
m×n and let r = min(m,n). Then there exist a diagonal matrix Σ ∈ R

m×n

and two orthogonal matrices U ∈ R
m×m and V ∈ R

n×n such that

A = U ΣV T(1)

with σ1 ≥ σ2 ≥ . . . ≥ σr ≥ 0 where σi = (Σ)ii for i = 1, 2, . . . , r. Factorization (1)
is called a singular value decomposition (SVD) of A. The diagonal entries of Σ are
the singular values of A. We have σ1 = ‖A‖2. The columns of U are the left singular
vectors of A and the columns of V are the right singular vectors of A. For more
information on the QR decomposition and the SVD the interested reader is referred
to [14, 18].

We use f , f(·) or x 7→ f(x) to represent a function. The domain of definition of
the function f is denoted by dom f and the value of f at x ∈ dom f is denoted by
f(x).

Definition 2.1 (Analytic function). Let f be a real function and let α ∈ R be an
interior point of dom f . Then f is analytic in α if the Taylor series of f with center
α exists and if there is a neighborhood of α where this Taylor series converges to f .
A real function f is analytic in an interval [α, β] ⊆ dom f if it is analytic in every
point of that interval.
A real matrix-valued function F̃ is analytic in [α, β] ⊆ dom F̃ if all its entries are
analytic in [α, β].

Definition 2.2 (Asymptotic equivalence in the neighborhood of ∞). Let f and
g be real functions such that ∞ is an accumulation point of dom f and dom g.

If there is no real number K such that g is identically zero in [K,∞) then we say
that f is asymptotically equivalent to g in the neighborhood of ∞, denoted by f(x) ∼
g(x), x → ∞, if lim

x→∞

f(x)

g(x)
= 1.

If there exists a real number L such that both f and g are identically zero in [L,∞)
then we also say that f(x) ∼ g(x), x → ∞.

Let F̃ and G̃ be real m by n matrix-valued functions such that ∞ is an accumulation
point of dom F̃ and dom G̃. Then F̃ (x) ∼ G̃(x), x → ∞ if f̃ij(x) ∼ g̃ij(x), x → ∞
for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.
The main difference with the conventional definition of asymptotic equivalence is that
Definition 2.2 also allows us to say that a function is asymptotically equivalent to 0 in
the neighborhood of ∞: f(x) ∼ 0, x → ∞ if there exists a real number L such that
f(x) = 0 for all x ≥ L.

3. The max-plus algebra and the symmetrized max-plus algebra. In this
section we give a short introduction to the max-plus algebra and the symmetrized max-
plus algebra. A complete overview of the max-plus algebra can be found in [1, 5, 12].

3.1. The max-plus algebra. The basic max-algebraic operations are defined
as follows:

x⊕ y = max (x, y)(2)

x⊗ y = x+ y(3)

for x, y ∈ R ∪ {−∞} with, by definition, max(x,−∞) = x and x + (−∞) = −∞ for
all x ∈ R ∪ {−∞}. The reason for using the symbols ⊕ and ⊗ to represent maxi-
mization and addition is that there is a remarkable analogy between ⊕ and addition,
and between ⊗ and multiplication: many concepts and properties from conventional
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linear algebra (such as the Cayley–Hamilton theorem, eigenvectors, eigenvalues and
Cramer’s rule) can be translated to the (symmetrized) max-plus algebra by replacing
+ by ⊕ and × by ⊗ (see also §4). Therefore, we also call ⊕ the max-algebraic addition.
Likewise, we call ⊗ the max-algebraic multiplication. The resulting algebraic struc-
ture Rmax = (R ∪ {−∞},⊕,⊗) is called the max-plus algebra. Define Rε = R∪{−∞}.
The zero element for ⊕ in Rε is represented by ε

def
= −∞. So x⊕ ε = x = ε⊕ x for all

x ∈ Rε.
Let r ∈ R. The rth max-algebraic power of x ∈ R is denoted by x⊗

r
and corresponds

to rx in conventional algebra. If x ∈ R then x⊗
0
= 0 and the inverse element of x

w.r.t. ⊗ is x⊗
−1

= −x. There is no inverse element for ε since ε is absorbing for ⊗.
If r > 0 then ε⊗

r
= ε. If r ≤ 0 then ε⊗

r
is not defined.

The rules for the order of evaluation of the max-algebraic operators are similar to
those of conventional algebra. So max-algebraic power has the highest priority, and
max-algebraic multiplication has a higher priority than max-algebraic addition.
Consider the finite sequence a1, a2, . . . , an with ai ∈ Rε for all i. We define

n
⊕

i=1

ai = a1 ⊕ a2 ⊕ . . . ⊕ an .

The matrix En is the n by n max-algebraic identity matrix:

(En)ii = 0 for i = 1, 2, . . . , n ,

(En)ij = ε for i = 1, 2, . . . , n and j = 1, 2, . . . , n with i 6= j .

The m by n max-algebraic zero matrix is represented by εm×n: we have (εm×n)ij = ε
for all i, j.
The off-diagonal entries of a max-algebraic diagonal matrix D ∈ R

m×n
ε are equal to ε:

dij = ε for all i, j with i 6= j. A matrix R ∈ R
m×n
ε is a max-algebraic upper triangular

matrix if rij = ε for all i, j with i > j. If we permute the rows or the columns of the
max-algebraic identity matrix, we obtain a max-algebraic permutation matrix.
The operations ⊕ and ⊗ are extended to matrices as follows. If α ∈ Rε and if
A,B ∈ R

m×n
ε then

(α⊗A)ij = α⊗ aij for i = 1, 2, . . . ,m and j = 1, 2, . . . , n

and

(A⊕B)ij = aij ⊕ bij for i = 1, 2, . . . ,m and j = 1, 2, . . . , n .

If A ∈ R
m×p
ε and B ∈ R

p×n
ε then

(A⊗B)ij =

p
⊕

k=1

aik ⊗ bkj for i = 1, 2, . . . ,m and j = 1, 2, . . . , n .

3.2. The symmetrized max-plus algebra. One of the major differences be-
tween conventional algebra and the max-plus algebra is that there exist no inverse
elements w.r.t. ⊕ in Rε: if x ∈ Rε then there does not exist an element yx ∈ Rε such
that x ⊕ yx = ε = yx ⊕ x, except when x is equal to ε. So (Rε,⊕) is not a group.
Therefore, we now introduce Smax [1, 12, 25], which is a kind of symmetrization of the
max-plus algebra. This can be compared with the extension of (N,+,×) to (Z,+,×).
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In §4 we shall show that Rmax corresponds to a set of nonnegative real functions with
addition and multiplication as basic operations and that Smax corresponds to a set
of real functions with addition and multiplication as basic operations. Since the ⊕
operation is idempotent, we cannot use the conventional symmetrization technique
since every idempotent group reduces to a trivial group [1, 25]. Nevertheless, it is
possible to adapt the method of the construction of Z from N to obtain “balancing”
elements rather than inverse elements.

We shall restrict ourselves to a short introduction to the most important features
of Smax. This introduction is based on [1, 12, 25]. First we introduce the “algebra of

pairs”. We consider the set of ordered pairs Pε
def
= Rε × Rε with operations ⊕ and ⊗

that are defined as follows:

(x, y)⊕ (w, z) = (x⊕ w, y ⊕ z)(4)

(x, y)⊗ (w, z) = (x⊗ w ⊕ y ⊗ z, x⊗ z ⊕ y ⊗ w)(5)

for (x, y), (w, z) ∈ Pε and where the operations ⊕ and ⊗ on the right-hand side
correspond to maximization and addition as defined in (2) and (3). The reason for
also using ⊕ and ⊗ on the left-hand side is that these operations correspond to ⊕ and
⊗ as defined in Rmax as we shall see later on. It is easy to verify that in Pε the ⊕
operation is associative, commutative and idempotent, and its zero element is (ε, ε);
that the ⊗ operation is associative, commutative and distributive w.r.t. ⊕; that the
identity element of ⊗ is (0, ε); and that the zero element (ε, ε) is absorbing for ⊗. We
call the structure (Pε,⊕,⊗) the algebra of pairs.
If u = (x, y) ∈ Pε then we define the max-absolute value of u as |u|

⊕
= x⊕ y and we

introduce two unary operators ⊖ (the max-algebraic minus operator) and ( · )• (the
balance operator) such that ⊖u = (y, x) and u• = u⊕ (⊖u) = (|u|

⊕
, |u|

⊕
). We have

u• = (⊖u)
•
= (u•)

•
(6)

u⊗ v• = (u⊗ v)
•

(7)

⊖(⊖u) = u(8)

⊖(u⊕ v) = (⊖u)⊕ (⊖v)(9)

⊖(u⊗ v) = (⊖u)⊗ v(10)

for all u, v ∈ Pε. The last three properties allow us to write u⊖ v instead of u⊕ (⊖v).
Since the properties (8) – (10) resemble properties of the − operator in conventional
algebra, we could say that the ⊖ operator of the algebra of pairs can be considered as
the analogue of the − operator of conventional algebra (see also §4). As for the order
of evaluation of the max-algebraic operators, the max-algebraic minus operator has
the same, i.e., the lowest, priority as the max-algebraic addition operator.
In conventional algebra we have x − x = 0 for all x ∈ R, but in the algebra of pairs
we have u⊖ u = u• 6= (ε, ε) for all u ∈ Pε unless u is equal to (ε, ε), the zero element
for ⊕ in Pε. Therefore, we introduce a new relation:

Definition 3.1 (Balance relation). Consider u = (x, y), v = (w, z) ∈ Pε. We
say that u balances v, denoted by u∇v, if x⊕ z = y ⊕ w.
We have u⊖u = u• = (|u|

⊕
, |u|

⊕
) ∇ (ε, ε) for all u ∈ Pε. The balance relation is reflex-

ive and symmetric but it is not transitive since, e.g., (2, 1)∇ (2, 2) and (2, 2)∇ (1, 2)
but (2, 1)∇/ (1, 2). Hence, the balance relation is not an equivalence relation and we
cannot use it to define the quotient set of Pε by ∇ (as opposed to conventional algebra
where (N × N)/= yields Z). Therefore, we introduce another relation that is closely
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related to the balance relation and that is defined as follows: if (x, y), (w, z) ∈ Pε

then

(x, y)B(w, z) if

{

(x, y) ∇ (w, z) if x 6= y and w 6= z ,
(x, y) = (w, z) otherwise.

Note that if u ∈ Pε then we have u ⊖ u B/ (ε, ε) unless u is equal to (ε, ε). It is easy
to verify that B is an equivalence relation that is compatible with ⊕ and ⊗, with
the balance relation ∇ and with the ⊖, | · |

⊕
and ( · )• operators. We can distinguish

between three kinds of equivalence classes generated by B:
1. (w,−∞) = { (w, x) ∈ Pε |x < w }, called max-positive;

2. (−∞, w) = { (x,w) ∈ Pε |x < w }, called max-negative;

3. (w,w) = { (w,w) ∈ Pε }, called balanced.

The class (ε, ε) is called the max-zero class.
Now we define the quotient set S = Pε/B. The algebraic structure Smax = (S,⊕,⊗) is

called the symmetrized max-plus algebra. By associating (w,−∞) with w ∈ Rε, we can
identify Rε with the set of max-positive or max-zero classes denoted by S

⊕. The set of
max-negative or max-zero classes will be denoted by S

⊖, and the set of balanced classes
will be represented by S

•. This results in the following decomposition: S = S
⊕∪S⊖∪S•.

Note that the max-zero class (ε, ε) corresponds to ε. The max-positive elements, the
max-negative elements and ε are called signed. Define S

∨ = S
⊕ ∪ S

⊖. Note that
S

⊕ ∩ S
⊖ ∩ S

• =
{

(ε, ε)
}

and ε = ⊖ε = ε•.

These notations allow us to write, e.g., 2⊕ (⊖4) instead of (2,−∞)⊕ (−∞, 4). Since

(2,−∞)⊕ (−∞, 4) = (2, 4) = (−∞, 4), we have 2⊕ (⊖4) = ⊖4.
Let x, y ∈ Rε. Since we have

(x,−∞)⊕ (y,−∞) = (x⊕ y, −∞)

(x,−∞)⊗ (y,−∞) = (x⊗ y, −∞) ,

the operations ⊕ and ⊗ of the algebra of pairs as defined by (4) – (5) correspond to
the operations ⊕ and ⊗ of the max-plus algebra as defined by (2) – (3).
In general, if x, y ∈ Rε then we have

x⊕ (⊖y) = x if x > y ,(11)

x⊕ (⊖y) = ⊖y if x < y ,(12)

x⊕ (⊖x) = x• .(13)

Now we give some extra properties of balances that will be used in the next sections.
An element with a ⊖ sign can be transferred to the other side of a balance as follows:

Proposition 3.2. ∀a, b, c ∈ S : a⊖ c∇ b if and only if a∇ b⊕ c .
If both sides of a balance are signed, we may replace the balance by an equality:

Proposition 3.3. ∀a, b ∈ S
∨ : a∇ b ⇒ a = b .

Let a ∈ S. The max-positive part a⊕ and the max-negative part a⊖ of a are defined
as follows:

• if a ∈ S
⊕ then a⊕ = a and a⊖ = ε ,

• if a ∈ S
⊖ then a⊕ = ε and a⊖ = ⊖a ,

• if a ∈ S
• then there exists a number x ∈ Rε such that a = x• and then

a⊕ = a⊖ = x.
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So a = a⊕ ⊖ a⊖ and a⊕, a⊖ ∈ Rε. Note that a decomposition of the form a = x ⊖ y
with x, y ∈ Rε is unique if it is required that either x 6= ε and y = ε; x = ε and y 6= ε;
or x = y. Hence, the decomposition a = a⊕ ⊖ a⊖ is unique.
Note that |a|

⊕
= a⊕ ⊕ a⊖ for all a ∈ S. We say that a ∈ S is finite if |a|

⊕
∈ R. If

|a|
⊕
= ε then we say that a is infinite.

Definition 3.1 can now be reformulated as follows:
Proposition 3.4. ∀a, b ∈ S : a∇ b if and only if a⊕ ⊕ b⊖ = a⊖ ⊕ b⊕ .

The balance relation is extended to matrices in the usual way: if A,B ∈ S
m×n then

A∇B if aij∇ bij for i = 1, . . . ,m and j = 1, . . . , n. Propositions 3.2 and 3.3 can be
extended to the matrix case as follows:

Proposition 3.5. ∀A,B,C ∈ S
m×n : A⊖ C ∇B if and only if A∇B ⊕ C .

Proposition 3.6. ∀A,B ∈ (S∨)m×n : A∇B ⇒ A = B .

We conclude this section with a few extra examples that illustrate the concepts defined
above.
Example 3.7. We have 2⊕ = 2, 2⊖ = ε and (5•)⊕ = (5•)⊖ = 5. Hence, 2∇ 5• since
2⊕ ⊕ (5•)⊖ = 2⊕ 5 = 5 = ε⊕ 5 = 2⊖ ⊕ (5•)⊕.
We have 2∇/ ⊖5 since 2⊕ ⊕ (⊖5)⊖ = 2⊕ 5 = 5 6= ε = ε⊕ ε = 2⊖ ⊕ (⊖5)⊕. ✸

Example 3.8. Consider the balance x⊕ 2 ∇ 5 . From Proposition 3.2 it follows that
this balance can be rewritten as x∇ 5⊖ 2 or x∇ 5 since 5⊖ 2 = 5 by (11).
If we want a signed solution, the balance x∇ 5 becomes an equality by Proposition 3.3.
This yields x = 5.
The balanced solutions of x∇ 5 are of the form x = t• with t ∈ Rε. We have t• ∇ 5
or equivalently t = 5⊕ t if and only if t ≥ 5.
So the solution set of x⊕ 2 ∇ 5 is given by {5} ∪ { t• | t ∈ Rε, t ≥ 5 } . ✸

Definition 3.9 (Max-algebraic norm). Let a ∈ S
n. The max-algebraic norm of

a is defined by

‖a‖
⊕

=

n
⊕

i=1

|ai|⊕ .

The max-algebraic norm of the matrix A ∈ S
m×n is defined by

‖A‖
⊕

=

m
⊕

i=1

n
⊕

j=1

|aij |⊕ .

The max-algebraic vector norm corresponds to the p-norms from linear algebra since

‖a‖
⊕
=

(

n
⊕

i=1

|ai|⊕
⊗
p

)⊗

1

p

for every a ∈ S
n and every p ∈ N0 .

The max-algebraic matrix norm corresponds to both the Frobenius norm and the
p-norms from linear algebra since we have

‖A‖
⊕
=





m
⊕

i=1

n
⊕

j=1

|aij |⊕
⊗
2





⊗

1

2

for every A ∈ S
m×n

and also ‖A‖
⊕
= max

‖x‖
⊕
=0

‖A⊗ x‖
⊕
(the maximum is reached for x = On×1).
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4. A link between conventional algebra and the symmetrized max-plus

algebra. In [30] Olsder and Roos have used a kind of link between conventional
algebra and the max-plus algebra based on asymptotic equivalences to show that every
matrix has at least one max-algebraic eigenvalue and to prove a max-algebraic version
of Cramer’s rule and of the Cayley–Hamilton theorem. In [10] we have extended and
formalized this link. Now we recapitulate the reasoning of [10] but in a slightly
different form that is mathematically more rigorous.

In the next section we shall encounter functions that are asymptotically equivalent
to an exponential of the form νexs for s → ∞. Since we want to allow exponents that
are equal to ε, we set eεs equal to 0 for all positive real values of s by definition. We
also define the following classes of functions:

R+
e =

{

f : R+
0 → R

+
∣

∣

∣ f(s) =

n
∑

i=0

µie
xis with n ∈ N,

µi ∈ R
+
0 and xi ∈ Rε for all i

}

Re =
{

f : R+
0 → R

∣

∣

∣
f(s) =

n
∑

i=0

νie
xis with n ∈ N,

νi ∈ R0 and xi ∈ Rε for all i
}

.

It is easy to verify that (Re,+,×) is a ring.
For all x, y, z ∈ Rε we have

x⊕ y = z ⇔ exs + eys ∼ cezs , s → ∞(14)

x⊗ y = z ⇔ exs · eys = ezs for all s ∈ R
+
0(15)

where c = 1 if x 6= y and c = 2 if x = y. The relations (14) and (15) show that there
exists a connection between the operations ⊕ and ⊗ performed on the real numbers
and −∞, and the operations + and × performed on exponentials. We shall extend this
link between (R+

e ,+,×) and Rmax that has already been used in [26, 27, 28, 29, 30]
— and under a slightly different form in [6] — to Smax.
We define a mapping F with domain of definition S× R0 × R

+
0 and with

F(a, µ, s) = |µ|eas if a ∈ S
⊕

F(a, µ, s) = −|µ|e|a|⊕s if a ∈ S
⊖

F(a, µ, s) = µe|a|⊕s if a ∈ S
•

where a ∈ S, µ ∈ R0 and s ∈ R
+
0 .

In the remainder of this paper the first two arguments of F will most of the time be
fixed and we shall only consider F in function of the third argument, i.e., for a given
a ∈ S and µ ∈ R0 we consider the function F(a, µ, ·). Note that if x ∈ Rε and µ ∈ R0

then we have

F(x, µ, s) = |µ|exs

F(⊖x, µ, s) = −|µ|exs

F(x•, µ, s) = µexs

for all s ∈ R
+
0 . Furthermore, F(ε, µ, ·) = 0 for all µ ∈ R0 since we have eεs = 0 for

all s ∈ R
+
0 by definition.



THE MAX-ALGEBRAIC QRD AND THE MAX-ALGEBRAIC SVD 9

For a given µ ∈ R0 the number a ∈ S will be mapped by F to an exponential
function s 7→ νe|a|⊕s where ν = |µ|, ν = −|µ| or ν = µ depending on the max-
algebraic sign of a. In order to reverse this process, we define the mapping R, which
we shall call the reverse mapping and which will map a function that is asymptotically
equivalent to an exponential function s 7→ νe|a|⊕s in the neighborhood of ∞ to the
number |a|

⊕
or ⊖ |a|

⊕
depending on the sign of ν. More specifically, if f is a real

function, if x ∈ Rε and if µ ∈ R0 then we have

f(s) ∼ |µ|exs , s → ∞ ⇒ R(f) = x

f(s) ∼ −|µ|exs , s → ∞ ⇒ R(f) = ⊖x .

Note that R will always map a function that is asymptotically equivalent to an ex-
ponential function in the neighborhood of ∞ to a signed number and never to a
balanced number that is different from ε. Furthermore, for a fixed µ ∈ R0 the map-
pings a 7→ F(a, µ, ·) and R are not each other’s inverse since these mappings are not
bijections as is shown by the following example.
Example 4.1. Let µ = 1. We have F(2, µ, s) = e2s and F(2•, µ, s) = e2s for all
s ∈ R

+
0 . So R(F(2•, µ, ·)) = 2 6= 2•.

Consider the real functions f and g defined by f(s) = e2s and g(s) = e2s + 1. We
have f(s) ∼ g(s) ∼ e2s, s → ∞. Hence, R(f) = R(g) = 2. So F(R(g), µ, ·) = f 6= g.
✸

Let µ ∈ R0. It is easy to verify that in general we have R(F(a, µ, ·)) = a if a ∈ S
⊕∪S⊖,

R(F(a, µ, ·)) = |a|
⊕
if a ∈ S

• and µ > 0, and R(F(a, µ, ·)) = ⊖ |a|
⊕
if a ∈ S

• and
µ < 0. Furthermore, if f is a real function that is asymptotically equivalent to
an exponential function in the neighborhood of ∞, then we have F(R(f), µ, s) ∼
f(s) , s → ∞.

For all a, b, c ∈ S we have

a⊕ b = c ⇒
{

∃µa, µb, µc ∈ R0 such that

F(a, µa, s) + F(b, µb, s) ∼ F(c, µc, s) , s → ∞(16)

∃µa, µb, µc ∈ R0 such that

F(a, µa, s) + F(b, µb, s) ∼ F(c, µc, s) , s → ∞

}

⇒ a⊕ b ∇ c(17)

a⊗ b = c ⇒
{ ∃µa, µb, µc ∈ R0 such that

F(a, µa, s) · F(b, µb, s) = F(c, µc, s) for all s ∈ R
+
0

(18)

∃µa, µb, µc ∈ R0 such that

F(a, µa, s) · F(b, µb, s) = F(c, µc, s) for all s ∈ R
+
0

}

⇒ a⊗ b ∇ c .(19)

As a consequence, we could say that the mapping F provides a link between the struc-
ture (R+

e ,+,×) and Rmax = (Rε,⊕,⊗), and a link between the structure (Re,+,×)
and Smax = (S,⊕,⊗).
Remark 4.2. The balance in (17) results from the fact that we can have cancellation
of equal terms with opposite sign in (R+

e ,+,×) whereas this is in general not possible
in the symmetrized max-plus algebra since ∀a ∈ S \ {ε} : a⊖ a 6= ε.
The following example shows that the balance on the right-hand side of (19) is also
necessary: we have F(0, 1, s) · F(0, 1, s) = 1 · 1 = 1 = F(0•, 1, s) for all s ∈ R

+
0 , but

0⊗ 0 = 0 6= 0•.
We have 1 ⊕ 2 = 2∇3•. However, there do not exist real numbers µ1, µ2, µ3 ∈ R0
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such that

F(1, µ1, s) + F(2, µ2, s) ∼ F(3•, µ3, s) , s → ∞

or equivalently

|µ1| es + |µ2| e2s ∼ µ3 e
3s , s → ∞ .

This implies that in general (16) does not hold any more if we replace the equality on
the left-hand side by a balance.
In a similar way we can show that in general a⊗ b∇ c with a, b, c,∈ S does not imply
that there exist real numbers µa, µb, µc ∈ R0 such that F(a, µa, s) · F(b, µb, s) =
F(c, µc, s) for all s ∈ R

+
0 . ✸

We extend the mapping F to matrices as follows. If A ∈ S
m×n and if M ∈ R

m×n
0

then Ã = F(A,M, ·) is a real m by n matrix-valued function with domain of definition
R

+
0 and with ãij(s) = F(aij ,mij , s) for all i, j. Note that the mapping is performed

entrywise. The reverse mapping R is extended to matrices in a similar way: if Ã is
a real matrix-valued function with entries that are asymptotically equivalent to an
exponential in the neighborhood of ∞, then (R(Ã))ij = R(ãij) for all i, j. If A, B
and C are matrices with entries in S, we have

A⊕B = C ⇒
{

∃MA,MB ,MC such that

F(A,MA, s) + F(B,MB , s) ∼ F(C,MC , s) , s → ∞(20)

∃MA,MB ,MC such that

F(A,MA, s) + F(B,MB , s) ∼ F(C,MC , s) , s → ∞

}

⇒ A⊕B ∇ C(21)

A⊗B = C ⇒
{

∃MA,MB ,MC such that

F(A,MA, s) · F(B,MB , s) ∼ F(C,MC , s) , s → ∞(22)

∃MA,MB ,MC such that

F(A,MA, s) · F(B,MB , s) ∼ F(C,MC , s) , s → ∞

}

⇒ A⊗B ∇ C .(23)

Example 4.3. Let A =

[

0 ε
⊖1 ⊖2

]

and B =

[

−3 1
2• ⊖0

]

. Hence, A ⊗ B =
[

−3 1
4• 2•

]

. Let M , N and P ∈ R
2×2
0 . In general we have

F(A,M, s) =

[ |m11| 0

−|m21| es −|m22| e2s
]

F(B,N, s) =

[ |n11| e−3s |n12| es
n21 e

2s −|n22|

]

F(A⊗B,P , s) =

[ |p11| e−3s |p12| es
p21 e

4s p22 e
2s

]

for all s ∈ R
+
0 . Furthermore,

F(A,M, s) · F(B,N, s) =
[ |m11| |n11| e−3s |m11| |n12| es

−|m21| |n11| e−2s − |m22|n21 e
4s (−|m21| |n12| + |m22| |n22|) e2s

]
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for all s ∈ R
+
0 .

If −|m21||n12| + |m22||n22| 6= 0 and if we take

p11 = |m11| |n11| , p12 = |m11| |n12| ,
p21 = −|m22|n21 , p22 = −|m21| |n12| + |m22| |n22| ,

then we have F(A,M, s) · F(B,N, s) ∼ F(A⊗B,P , s) , s → ∞.

If we take mij = nij = 1 for all i, j, we get

F(A, s) · F(B, s) ∼
[

e−3s es

−e4s 0

]

def
= C̃(s) , s → ∞ .

The reverse mapping results in C = R(C̃) =

[

−3 1
⊖4 ε

]

. Note that A⊗B ∇ C.

Taking mij = nij = (−1)(i+j)(i+ j) for all i, j leads to

F(A, s) · F(B, s) ∼
[

4e−3s 6es

12e4s 7e2s

]

def
= D̃(s) , s → ∞ .

The reverse mapping results in D = R(D̃) =

[

−3 1
4 2

]

and again we have A ⊗
B ∇D. ✸

5. The QR decomposition and the singular value decomposition in the

symmetrized max-plus algebra. In [10] we have used the mapping from Smax to
(Re,+,×) and the reverse mapping R to prove the existence of a kind of singular
value decomposition (SVD) in Smax. The proof of [10] is based on the analytic SVD.
In this section we present an alternative proof for the existence theorem of the max-
algebraic SVD. The major advantage of the new proof technique that will be developed
in this section over the one of [10] is that it can easily be extended to prove the
existence of many other matrix decompositions in the symmetrized max-plus algebra
such as the max-algebraic QR decomposition, the max-algebraic LU decomposition,
the max-algebraic eigenvalue decomposition (for symmetric matrices) and so on. This
proof technique consists in transforming a matrix with entries in S to a matrix-valued
function with exponential entries (using the mapping F), applying an algorithm from
linear algebra and transforming the result back to the symmetrized max-plus algebra
(using the mapping R).

5.1. Sums and series of exponentials. The entries of the matrices that are
used in the existence proofs for the max-algebraic QR decomposition and the max-
algebraic SVD that will be presented in this section are sums or series of exponentials.
Therefore, we first study some properties of this kind of functions.

Definition 5.1 (Sum or series of exponentials). Let Se be the set of real func-
tions that are analytic and that can be written as a (possibly infinite, but absolutely
convergent) sum of exponentials in a neighborhood of ∞:

Se =
{

f : A → R

∣

∣

∣ A ⊆ R, ∃K ∈ R
+
0 such that [K,∞) ⊆ A and

f is analytic in [K,∞) and either

∀x ≥ K : f(x) =

n
∑

i=0

αie
aix(24)
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with n ∈ N, αi ∈ R0, ai ∈ Rε for all i and a0 > a1 > . . . > an ; or

∀x ≥ K : f(x) =

∞
∑

i=0

αie
aix(25)

with αi ∈ R0, ai ∈ R, ai > ai+1 for all i , lim
i→∞

ai = ε and

where the series converges absolutely for every x ≥ K
}

.

If f ∈ Se then the largest exponent in the sum or the series of exponentials that
corresponds to f is called the dominant exponent of f .
Recall that by definition we have eεs = 0 for all s ∈ R

+
0 . Since we allow exponents

that are equal to ε = −∞ in the definition of Se, the zero function also belongs to
Se. Since we require that the sequence of the exponents that appear in (24) or (25)
is decreasing and since the coefficients cannot be equal to 0, any sum of exponentials
of the form (24) or (25) that corresponds to the zero function consists of exactly one
term: e.g., 1 · eεx.
If f ∈ Se is a series of the form (25) then the set {ai | i = 0, 1, . . . ,∞} has no
finite accumulation point since the sequence {ai}∞i=0 is decreasing and unbounded
from below. Note that series of the form (25) are related to (generalized) Dirichlet
series [23].

The behavior of the functions in Se in the neighborhood of ∞ is given by the following
property:

Lemma 5.2. Every function f ∈ Se is asymptotically equivalent to an exponential
in the neighborhood of ∞:

f ∈ Se ⇒ f(x) ∼ α0e
a0x , x → ∞

for some α0 ∈ R0 and some a0 ∈ Rε.

Proof. See Appendix A.

The set Se is closed under elementary operations such as additions, multiplications,
subtractions, divisions, square roots and absolute values:

Proposition 5.3. If f and g belong to Se then ρf , f + g, f − g, fg, f l and |f |
also belong to Se for any ρ ∈ R and any l ∈ N.
Furthermore, if there exists a real number P such that f(x) 6= 0 for all x ≥ P then

the functions
1

f
and

g

f
restricted to [P,∞) also belong to Se.

If there exists a real number Q such that f(x) > 0 for all x ≥ Q then the function
√

f restricted to [Q,∞) also belongs to Se.

Proof. See Appendix B.

5.2. The max-algebraic QR decomposition. Let Ã and R̃ be real m by n
matrix-valued functions and let Q̃ be a real m by m matrix-valued function. Sup-
pose that these matrix-valued functions are defined in J ⊆ R. If Q̃(s) R̃(s) = Ã(s),
Q̃T (s) Q̃(s) = Im and R̃(s) is an upper triangular matrix for all s ∈ J then we say
that Q̃R̃ is a path of QR decompositions of Ã on J . A path of singular value decom-
positions is defined in a similar way.
Note that if Q̃R̃ is a path of QR decompositions of Ã on J then we have ‖R̃(s)‖F =

‖Ã(s)‖F for all s ∈ J . Now we prove that for a matrix with entries in Se there exists
a path of QR decompositions with entries that also belong to Se. Next we use this
result to prove the existence of a max-algebraic analogue of the QR decomposition.
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Proposition 5.4. If Ã ∈ Sm×n
e then there exists a path of QR decompositions

Q̃R̃ of Ã for which the entries of Q̃ and R̃ belong to Se.
Proof. To compute the QR decomposition of a matrix with real entries we can

use the Givens QR algorithm (see [14]). The operations used in this algorithm are
additions, multiplications, subtractions, divisions and square roots. Furthermore, the
number of operations used in this algorithm is finite.
So if we apply this algorithm to a matrix-valued function Ã with entries in Se then
the entries of the resulting matrix-valued functions Q̃ and R̃ will also belong to Se by
Proposition 5.3.

Theorem 5.5 (Max-algebraic QR decomposition). If A ∈ S
m×n then there exist

a matrix Q ∈ (S∨)m×m and a max-algebraic upper triangular matrix R ∈ (S∨)m×n

such that

A ∇ Q⊗R(26)

with QT ⊗Q ∇ Em and ‖R‖
⊕
= ‖A‖

⊕
.

Every decomposition of the form (26) that satisfies the above conditions is called a
max-algebraic QR decomposition of A.

Proof. If A ∈ S
m×n has entries that are not signed, we can always define a matrix

Â ∈ (S∨)m×n such that

âij =

{

aij if aij is signed,
|aij |⊕ if aij is not signed,

for all i, j. Since |âij |⊕ = |aij |⊕ for all i, j, we have ‖Â‖
⊕
= ‖A‖

⊕
. Moreover, we have

∀a, b ∈ S : a ∇ b ⇒ a• ∇ b ,

which means that if Â ∇ Q ⊗ R then also A ∇ Q ⊗ R. Therefore, it is sufficient to
prove this theorem for signed matrices A.

So from now on we assume that A is signed. We construct Ã = F(A,M, ·) where
M ∈ R

m×n with mij = 1 for all i, j. Hence, ãij(s) = γije
cijs for all s ∈ R

+
0 and for

all i, j with γij ∈ {−1, 1} and cij = |aij |⊕ ∈ Rε for all i, j. Note that the entries of

Ã belong to Se. By Proposition 5.4 there exists a path of QR decompositions of Ã.
So there exists a positive real number L and matrix-valued functions Q̃ and R̃ with
entries in Se such that

Ã(s) = Q̃(s) R̃(s) for all s ≥ L(27)

Q̃T (s) Q̃(s) = Im for all s ≥ L(28)

‖R̃(s)‖F = ‖Ã(s)‖F for all s ≥ L .(29)

The entries of Q̃ and R̃ belong to Se and are thus asymptotically equivalent to an
exponential in the neighborhood of ∞ by Lemma 5.2.
If we define Q = R(Q̃) and R = R(R̃), then Q and R have signed entries. If we apply
the reverse mapping R to (27) – (29), we get

A ∇ Q⊗R , QT ⊗Q ∇ Em and ‖R‖
⊕
= ‖A‖

⊕
.

If f , g and h belong to Se then they are asymptotically equivalent to an exponential
in the neighborhood of ∞ by Lemma 5.2. So if L is large enough, then f(L) ≥ 0
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and g(L) ≥ h(L) imply that f(s) ≥ 0 and g(s) ≥ h(s) for all s ∈ [L,∞). This fact
and the fact that Se is closed under some elementary algebraic operations explain
why many algorithms from linear algebra — such as the Givens QR algorithm and
Kogbetliantz’s SVD algorithm (see §5.3) — also work for matrices with entries that
belong to Se instead of R. If we apply an algorithm from linear algebra to a matrix-
valued function Ã with entries in Se that is defined on some interval [L,∞), we
are in fact applying this algorithm on the (constant) matrix Ã(s) for every value of
s ∈ [L,∞) in parallel.

If QR is a QR decomposition of a matrix A ∈ R
m×n then we always have ‖R‖F =

‖A‖F since Q is an orthogonal matrix. However, the following example shows that
A∇Q⊗R and QT ⊗Q∇Em do not always imply that ‖R‖

⊕
= ‖A‖

⊕
.

Example 5.6. Consider

A =





⊖0 0 0
0 ⊖0 0
0 0 0



 .

Without the condition ‖R‖
⊕
= ‖A‖

⊕
every max-algebraic product of the form

Q⊗R(ρ) =





⊖0 0 0
0 ⊖0 0
0 0 ⊖0



⊗





0 ε ρ
ε 0 ρ
ε ε ρ



 =





⊖0 0 ρ•

0 ⊖0 ρ•

0 0 ρ•





with ρ ≥ 0 would have been a max-algebraic QR decomposition of A. However, since
‖R(ρ)‖

⊕
= ρ if ρ ≥ 0 and since ‖A‖

⊕
= 0, we do not have ‖R‖

⊕
= ‖A‖

⊕
if ρ > 0.

✸

This example explains why we have included the condition ‖R‖
⊕

= ‖A‖
⊕

in the
definition of the max-algebraic QR decomposition.

Now we explain why we really need the symmetrized max-plus algebra Smax to
define the max-algebraic QR decomposition: we shall show that the class of matrices
with entries in Rε that have max-algebraic QR decompositions for which the entries
of Q and R belong to Rε is rather limited. Let A ∈ R

m×n
ε and let Q ⊗ R be a

max-algebraic QR decomposition of A for which the entries of Q and R belong to Rε.
Since the entries of A, Q and R are signed, it follows from Proposition 3.6 that the
balances A ∇ Q⊗ R and QT ⊗Q ∇ Em result in A = Q⊗ R and QT ⊗Q = Em. It
is easy to verify that we can only have QT ⊗Q = Em if every column and every row
of Q contains exactly one entry that is equal to 0 and if all the other entries of Q are
equal to ε. Hence, Q is max-algebraic permutation matrix. As a consequence, A has
to be a row-permuted max-algebraic upper triangular matrix.
So only row-permuted max-algebraic upper triangular matrices with entries in Rε

have a max-algebraic QR decomposition with entries in Rε. This could be compared
with the class of real matrices in linear algebra that have a QR decomposition with
only nonnegative entries: using an analogous reasoning one can prove that this class
coincides with the set of the real row-permuted upper triangular matrices. Further-
more, it is obvious that every QR decomposition in Rmax is also a QR decomposition
in Smax.

5.3. The max-algebraic singular value decomposition. Now we give an
alternative proof for the existence theorem of the max-algebraic SVD. In this proof
we shall use Kogbetliantz’s SVD algorithm [20], which can be considered as an ex-
tension of Jacobi’s method for the computation of the eigenvalue decomposition of
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a real symmetric matrix. We now state the main properties of this algorithm. The
explanation below is mainly based on [4] and [17].
A Givens matrix is a square matrix of the form



































1 0 · · · 0 · · · 0 · · · 0 0
0 1 · · · 0 · · · 0 · · · 0 0
...

...
. . .

...
...

...
...

0 0 · · · cos(θ) · · · sin(θ) · · · 0 0
...

...
...

. . .
...

...
...

0 0 · · · − sin(θ) · · · cos(θ) · · · 0 0
...

...
...

...
. . .

...
...

0 0 · · · 0 · · · 0 · · · 1 0
0 0 · · · 0 · · · 0 · · · 0 1



































.

The off-norm of the matrix A ∈ R
m×n is defined by

‖A‖off =

√

√

√

√

n
∑

i=1

n
∑

j=1, j 6=i

a2ij

where the empty sum is equal to 0 by definition (so if A is a 1 by 1 matrix then we
have ‖A‖off = 0). Let A ∈ R

m×n. Since USV T is an SVD of A if and only if V STUT

is an SVD of AT , we may assume without loss of generality that m ≥ n. Before
applying Kogbetliantz’s SVD algorithm we compute a QR decomposition of A:

A = Q

[

R
O(m−n)×n

]

where R is an n by n upper triangular matrix.
Now we apply Kogbetliantz’s SVD algorithm to R. In this algorithm a sequence of
matrices is generated as follows:

U0 = In , V0 = In , S0 = R,

Uk = Uk−1Gk , Vk = Vk−1Hk , Sk = GT
k Sk−1Hk for k = 1, 2, 3, . . .

such that ‖Sk‖off decreases monotonously as k increases. So Sk tends more and more
to a diagonal matrix as the iteration process progresses. The absolute values of the
diagonal entries of Sk will converge to the singular values of R as k goes to ∞.
The matrices Gk and Hk are Givens matrices that are chosen such that (Sk)ikjk =
(Sk)jkik = 0 for some ordered pair of indices (ik, jk). As a result we have

‖Sk‖2off = ‖Sk−1‖2off − (Sk−1)
2
ikjk

− (Sk−1)
2
jkik

.

Since the matrices Gk and Hk are orthogonal for all k ∈ N0, we have

‖Sk‖F = ‖R‖F , R = UkSkV
T
k , UT

k Uk = In and V T
k Vk = In(30)

for all k ∈ N.
We shall use the row-cyclic version of Kogbetliantz’s SVD algorithm: in each cycle
the indices ik and jk are chosen such that the entries in the strictly upper triangular
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part of the Sk’s are selected row by row. This yields the following sequence for the
ordered pairs of indices (ik, jk):

(1, 2) → (1, 3) → . . . → (1, n) → (2, 3) → (2, 4) → . . . → (n− 1, n) .

A full cycle (1, 2) → . . . → (n− 1, n) is called a sweep. Note that a sweep corresponds

to N =
(n− 1)n

2
iterations. Sweeps are repeated until Sk becomes diagonal. If we

have an upper triangular matrix at the beginning of a sweep then we shall have a
lower triangular matrix after the sweep and vice versa.
For triangular matrices the row-cyclic Kogbetliantz algorithm is globally conver-
gent [11, 17]. Furthermore, for triangular matrices the convergence of this algorithm
is quadratic if k is large enough [2, 3, 15, 16, 31]:

∃K ∈ N such that ∀k ≥ K : ‖Sk+N‖off ≤ γ ‖Sk‖2off(31)

for some constant γ that does not depend on k, under the assumption that diagonal
entries that correspond to the same singular value or that are affiliated with the same
cluster of singular values occupy successive positions on the diagonal. This assumption
is not restrictive since we can always reorder the diagonal entries of Sk by inserting an
extra step in which we select a permutation matrix P̂ ∈ R

n×n such that the diagonal
entries of Sk+1 = P̂TSkP̂ exhibit the required ordering. Note that ‖Sk+1‖F = ‖Sk‖F.
If we define Uk+1 = UkP̂ and Vk+1 = VkP̂ then Uk+1 and Vk+1 are orthogonal since
P̂T P̂ = In. We also have

Uk+1Sk+1V
T
k+1 =

(

UkP̂
) (

P̂TSkP̂
) (

P̂TV T
k

)

= UkSkV
T
k = R .

Furthermore, once the diagonal entries have the required ordering, they hold it pro-
vided that k is sufficiently large [15].
If we define S = lim

k→∞
Sk, U = lim

k→∞
Uk and V = lim

k→∞
Vk then S is a diagonal matrix, U

and V are orthogonal matrices and USV T = R. We make all the diagonal entries of S
nonnegative by multiplying S with an appropriate diagonal matrix D. Next we con-
struct a permutation matrix P such that the diagonal entries of PTSDP are arranged
in descending order. If we define UR = UP , SR = PTSDP and VR = V D−1P , then
UR and VR are orthogonal, the diagonal entries of SR are nonnegative and ordered
and

URSRV
T
R = (UP )

(

PTSDP
) (

PTD−1V T
)

= USV T = R .

Hence, URSRV
T
R is an SVD of R. If we define

UA = Q

[

UR On×(m−n)

O(m−n)×n Im−n

]

, SA =

[

SR

O(m−n)×n

]

and VA = VR ,

then UASAV
T
A is an SVD of A.

Theorem 5.7 (Max-algebraic singular value decomposition). Let A ∈ S
m×n and

let r = min(m,n). Then there exist a max-algebraic diagonal matrix Σ ∈ R
m×n
ε and

matrices U ∈ (S∨)m×m and V ∈ (S∨)n×n such that

A ∇ U ⊗ Σ⊗ V T(32)

with UT ⊗ U ∇ Em, V T ⊗ V ∇ En and ‖A‖
⊕
= σ1 ≥ σ2 ≥ . . . ≥ σr where σi = (Σ)ii

for i = 1, 2, . . . , r.
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Every decomposition of the form (32) that satisfies the above conditions is called a
max-algebraic singular value decomposition of A.

Proof. Using a reasoning that is similar to the one that has been used at the
beginning of the proof of Theorem 5.5, we can show that it is sufficient to prove this
theorem for signed matrices A. So from now on we assume that A is signed.
Define c = ‖A‖

⊕
. If c = ε then A = εm×n. If we take U = Em, Σ = εm×n

and V = En, we have A = U ⊗ Σ ⊗ V T , UT ⊗ U = Em, V T ⊗ V = En and
σ1 = σ2 = . . . = σr = ε = ‖A‖

⊕
. So U ⊗ Σ⊗ V T is a max-algebraic SVD of A.

From now on we assume that c 6= ε. We may assume without loss of generality that
m ≥ n: if m < n, we can apply the subsequent reasoning to AT since A ∇ U⊗Σ⊗V T

if and only if AT ∇ V ⊗ ΣT ⊗ UT . So U ⊗ Σ ⊗ V T is a max-algebraic SVD of A if

and only if V ⊗ ΣT ⊗ UT is a max-algebraic SVD of AT .

Now we distinguish between two different situations depending on whether or not all
the aij ’s have a finite max-absolute value. In Remark 5.8 we shall explain why this
distinction is necessary.

Case 1: All the aij ’s have a finite max-absolute value.

We construct Ã = F(A,M, ·) where M ∈ R
m×n with mij = 1 for all i, j. The entries

of Ã belong to Se.
In order to determine a path of SVDs of Ã, we first compute a path of QR decompo-
sitions of Ã on R

+
0 :

Ã = Q̃

[

R̃
O(m−n)×n

]

where R̃ is an n by n upper triangular matrix-valued function. By Proposition 5.4
the entries of Q̃ and R̃ belong to Se.
Now we use the row-cyclic Kogbetliantz algorithm to compute a path of SVDs of
R̃. The operations used in this algorithm are additions, multiplications, subtractions,
divisions, square roots and absolute values. So if we apply this algorithm to a matrix
with entries in Se, the entries of all the matrices generated during the iteration process
also belong to Se by Proposition 5.3.
In theory we should run the row-cyclic Kogbetliantz algorithm forever in order to
produce a path of exact SVDs of Ã. However, since we are only interested in the
asymptotic behavior of the singular values and the entries of the singular vectors of
Ã, we may stop the iteration process after a finite number of sweeps:
Let S̃k, Ũk and Ṽk be the matrix-valued functions that are computed in the kth step of
the algorithm. Let ∆̃p be the diagonal matrix-valued function obtained by removing

the off-diagonal entries of S̃pN (where N =
n(n− 1)

2
is the number of iterations per

sweep), making all diagonal entries nonnegative and arranging them in descending
order, and adding m− n zero rows (cf. the transformations used to go from S to SA

in the explanation of Kogbetliantz’s algorithm given above). Let X̃p and Ỹp be the
matrix-valued functions obtained by applying the corresponding transformations to
ŨpN and ṼpN respectively. If we define a matrix-valued function C̃p = X̃p∆̃pỸ

T
p , we

have a path of exact SVDs of C̃p on some interval [L,∞). This means that we may
stop the iteration process as soon as

F(A,N, s) ∼ C̃p(s), s → ∞(33)

for some N ∈ R
m×n
0 . Note that eventually this condition will always be satisfied
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due to the fact that Kogbetliantz’s SVD algorithm is globally convergent and — for
triangular matrices — also quadratically convergent if p is large enough, and due to
the fact that the entries of Ã — to which the entries of C̃p should converge — are not
identically zero since they have a finite dominant exponent.

Let Ũ S̃Ṽ T be a path of approximate SVDs of Ã on some interval [L,∞) that was
obtained by the procedure given above. Since we have performed a finite number of
elementary operations on the entries of Ã, the entries of Ũ , S̃ and Ṽ belong to Se.
We have

F(A,N, s) ∼ Ũ(s) Σ̃(s) Ṽ T (s) , s → ∞(34)

for some N ∈ R
m×n
0 . Furthermore,

ŨT (s) Ũ(s) = Im for all s ≥ L(35)

Ṽ T (s) Ṽ (s) = In for all s ≥ L .(36)

The diagonal entries of Σ̃ and the entries of Ũ and Ṽ belong to Se and are thus
asymptotically equivalent to an exponential in the neighborhood of ∞ by Lemma 5.2.
Define σ̃i = Σ̃ii for i = 1, 2, . . . , r.
Now we apply the reverse mapping R in order to obtain a max-algebraic SVD of A.
If we define

Σ = R(Σ̃) , U = R(Ũ) , V = R(Ṽ ) and σi = (Σ)ii = R(σ̃i) for all i ,

then Σ is a max-algebraic diagonal matrix and U and V have signed entries. If we
apply the reverse mapping R to (34) – (36), we get

A ∇ U ⊗ Σ⊗ V T , UT ⊗ U ∇ Em and V T ⊗ V ∇ En .

The σ̃i’s are nonnegative in [L,∞) and therefore we have σi ∈ Rε for all i. Since
the σ̃i’s are ordered in [L,∞), their dominant exponents are also ordered. Hence,
σ1 ≥ σ2 ≥ . . . ≥ σr.

We have ‖Ã(s)‖F ∼ γecs, s → ∞ for some γ > 0 since c = ‖A‖
⊕

is the largest

exponent that appears in the entries of Ã. Hence, R
(

‖Ã‖F
)

= c = ‖A‖
⊕
.

If P ∈ R
m×n then

1√
n

‖P‖F ≤ ‖P‖2 ≤ ‖P‖F . As a consequence, we have

1√
n

‖Ã‖F ≤ ‖Ã‖2 ≤ ‖Ã‖F for all s ≥ L .

Since σ̃1(s) ∼ ‖Ã(s)‖2, s → ∞ and since the mapping R preserves the order, this
leads to ‖A‖

⊕
≤ σ1 ≤ ‖A‖

⊕
and consequently, σ1 = ‖A‖

⊕
.

Case 2: Not all the aij ’s have a finite max-absolute value.

First we construct a sequence {Al}∞l=1 of m by n matrices such that

(Al)ij =

{

aij if |aij |⊕ 6= ε ,

‖A‖
⊕
− l if |aij |⊕ = ε ,

for all i, j. So the entries of the matrices Al are finite and ‖A‖
⊕

= ‖Al‖⊕
for all

l ∈ N0. Furthermore, lim
l→∞

Al = A.
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Now we construct the sequence {Ãl}∞l=1 with Ãl = F(Al,M, ·) for l = 1, 2, 3, . . . with
M ∈ R

m×n and mij = 1 for all i, j. We compute a path of approximate SVDs

Ũl Σ̃l Ṽ
T
l of each Ãl using the method of Case 1 of this proof.

In general, it is possible that for some of the entries of the Ũl’s and the Ṽl’s the sequence
of the dominant exponents and the sequence of the corresponding coefficients have
more than one accumulation point (since if two or more singular values coincide the
corresponding left and right singular vectors are not uniquely defined). However,
since we use a fixed computation scheme (the row-cyclic Kogbetliantz algorithm), all
the sequences will have exactly one accumulation point. So some of the dominant
exponents will reach a finite limit as l goes to ∞, while the other dominant exponents
will tend to −∞. If we take the reverse mappingR, we get a sequence of max-algebraic
SVDs {Ul ⊗ Σl ⊗ V T

l }∞l=1 where some of the entries, viz. those that correspond to
dominant exponents that tend to −∞, tend to ε as l goes to ∞.
If we define

U = lim
l→∞

Ul, Σ = lim
l→∞

Σl and V = lim
l→∞

Vl

then we have

A ∇ U ⊗ Σ⊗ V T , UT ⊗ U ∇ Em and V T ⊗ V ∇ En .

Since the diagonal entries of all the Σl’s belong to Rε and are ordered, the diagonal
entries of Σ also belong to Rε and are also ordered. Furthermore, (Σ)11 = ‖A‖

⊕
since

(Σl)11 = ‖A‖
⊕
for all l. Hence, U ⊗ Σ⊗ V T is a max-algebraic SVD of A.

Remark 5.8. Now we explain why we have distinguished between two different cases
in the proof of Theorem 5.7.

If there exist indices i and j such that aij = ε then ãij(s) = 0 for all s ∈ R
+
0 , which

means that we cannot guarantee that condition (33) will be satisfied after a finite
number of sweeps. This is why we make a distinction between the case where all the
entries of A are finite and the case where at least one entry of A is equal to ε.

Let us now show that we do not have to take special precautions if Ã has singular
values that are identically zero in the neighborhood of ∞. If Ψ̃ is a real matrix-valued
function that is analytic in some interval J ⊆ R then the rank of Ψ̃ is constant in J
except in some isolated points where the rank drops [13]. If the rank of Ψ̃(s) is equal
to ρ for all s ∈ J except for some isolated points then we say that the generic rank of
Ψ̃ in J is equal to ρ. The entries of all the matrix-valued functions created in the row-
cyclic Kogbetliantz algorithm when applied to Ã are real and analytic in some interval
[L∗,∞). Furthermore, for a fixed value of s the matrices Ã(s), R̃(s), S̃1(s), S̃2(s), . . .
all have the same rank since they are related by orthogonal transformations. So if ρ is
the generic rank of Ã in [L∗,∞) then the generic rank of R̃, S̃1, S̃2, . . . in [L∗,∞) is
also equal to ρ. If ρ < n then the n−ρ smallest singular values of R̃ will be identically
zero in [L∗,∞). However, since R̃, S̃N , S̃2N , . . . are triangular matrices, they have at
least n − ρ diagonal entries that are identically zero in [L∗,∞) since otherwise their
generic rank would be greater than ρ. In fact this also holds for S̃1, S̃2, . . . since these
matrix-valued functions are hierarchically triangular, i.e., block triangular such that
the diagonal blocks are again block triangular, etc. [17]. Furthermore, if k is large
enough, diagonal entries do not change their affiliation any more, i.e., if a diagonal
entry corresponds to a specific singular value in the kth iteration then it will also
correspond to that singular value in all the next iterations. Since the diagonal entries
of S̃k are asymptotically equivalent to an exponential in the neighborhood of ∞, this
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means that at least n− ρ diagonal entries (with a fixed position) of S̃k, S̃k+1, . . . will
be identically zero in some interval [L,∞) ⊆ [L∗,∞) if k is large enough. Hence, we
do not have to take special precautions if Ã has singular values that are identically
zero in the neighborhood of ∞ since convergence to these singular values in a finite
number of iteration steps is guaranteed.

For inner products of two different columns of Ũ there are no problems either: these
inner products are equal to 0 by construction since the matrix-valued function Ũk is
orthogonal on [L,∞) for all k ∈ N. This also holds for inner products of two different
columns of Ṽ . ✸

If UΣV T is an SVD of a matrix A ∈ R
m×n then we have σ1 = (Σ)11 = ‖A‖2. How-

ever, in Smax the balances A∇U ⊗Σ⊗V T , UT ⊗U ∇Em and V T ⊗V ∇En where Σ
is a diagonal matrix with entries in Rε and where the entries of U and V are signed
do not always imply that (Σ)11 = ‖A‖

⊕
[10]. Therefore, we have included the extra

condition σ1 = ‖A‖
⊕
in the definition of the max-algebraic SVD.

Using a reasoning that is similar to the one that has been used at the end of §5.2
we can show that only permuted max-algebraic diagonal matrices with entries in Rε

have a max-algebraic SVD with entries in Rε [7, 10].
For properties of the max-algebraic SVD and for a possible application of this de-
composition in a method to solve the identification problem for max-linear DESs the
interested reader is referred to [7, 10]. In [7] we have also proposed some possible
extensions of the definitions of the max-algebraic QR decomposition and the max-
algebraic singular value decomposition.

The proof technique that has been used in this section essentially consists in applying
an algorithm from linear algebra to a matrix with entries in Se. This proof technique
can also be used to prove the existence of many other max-algebraic matrix decompo-
sitions: it can easily be adapted to prove the existence of a max-algebraic eigenvalue
decomposition for symmetric matrices (by using the Jacobi algorithm for the compu-
tation of the eigenvalue decomposition of a real symmetric matrix), a max-algebraic
LU decomposition, a max-algebraic Schur decomposition, a max-algebraic Hessenberg
decomposition and so on.

6. A worked example of the max-algebraic QR decomposition and the

max-algebraic singular value decomposition. Now we give an example of the
computation of a max-algebraic QR decomposition and a max-algebraic singular value
decomposition of a matrix using the mapping F .

Example 6.1. Consider the matrix

A =

[

⊖0 3• ⊖(−1)
1 ⊖(−2) ε

]

.

Let us first compute a max-algebraic QR decomposition of A using the mapping F .

Let M =

[

1 1 1
1 1 1

]

and define Ã = F(A,M, ·). Hence,

Ã(s) =

[

−1 e3s −e−s

es −e−2s 0

]

for all s ∈ R
+
0 .
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If we use the Givens QR algorithm, we get a path of QR decompositions Q̃R̃ of Ã
with

Q̃(s) =











−e−s

√

1 + e−2s

−1
√

1 + e−2s

1
√

1 + e−2s

−e−s

√

1 + e−2s











R̃(s) =











es
√

1 + e−2s
−e2s − e−2s

√

1 + e−2s

e−2s

√

1 + e−2s

0
−e3s + e−3s

√

1 + e−2s

e−s

√

1 + e−2s











for all s ∈ R
+
0 . Hence,

Q̃(s) ∼
[

−e−s −1
1 −e−s

]

, s → ∞

R̃(s) ∼
[

es −e2s e−2s

0 −e3s e−s

]

, s → ∞ .

If we define Q = R(Q̃) and R = R(R̃), we obtain

Q =

[

⊖(−1) ⊖0
0 ⊖(−1)

]

and R =

[

1 ⊖2 −2
ε ⊖3 −1

]

.

We have

Q⊗R =

[

⊖0 3 ⊖(−1)
1 2• (−2)

•

]

∇ A

QT ⊗Q =

[

0 (−1)
•

(−1)
•

0

]

∇ E2

and ‖R‖
⊕
= 3 = ‖A‖

⊕
.

Let us now compute a max-algebraic SVD of A. Since Ã is a 2 by 3 matrix-valued
function, we can compute a path of SVDs Ũ Σ̃Ṽ T of Ã analytically, e.g., via the
eigenvalue decomposition of ÃT Ã (see [14, 32]). This yields1

Ũ(s) ∼
[

1 2 e−5s

−2 e−5s 1

]

, s → ∞

Σ̃(s) ∼
[

e3s 0 0
0 es 0

]

, s → ∞

Ṽ (s) ∼





−e−3s 1 e−7s

1 e−3s e−4s

−e−4s −2 e−7s 1



 , s → ∞ .

1We have used the symbolic computation tool MAPLE to compute a path of SVDs ŨΣ̃Ṽ T of Ã.
However, since the full expressions for the entries of Ũ , S̃ and Ṽ are too long and too intricate to
display here, we only give the dominant exponentials.
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If we apply the reverse mapping R, we get a max-algebraic SVD U ⊗ Σ ⊗ V T of A
with

U = R(Ũ) =

[

0 −5
⊖(−5) 0

]

Σ = R(Σ̃) =

[

3 ε ε
ε 1 ε

]

V = R(Ṽ ) =





⊖(−3) 0 −7
0 −3 −4

⊖(−4) ⊖(−7) 0



 .

We have

U ⊗ Σ⊗ V T =

[

⊖0 3 ⊖(−1)
1 (−2)

•
(−6)

•

]

∇ A

UT ⊗ U =

[

0 (−5)
•

(−5)
•

0

]

∇E2

V T ⊗ V =





0 (−3)
•

(−4)
•

(−3)
•

0 (−7)
•

(−4)
•

(−7)
•

0



 ∇E3

and σ1 = 3 = ‖A‖
⊕
≥ 1 = σ2. ✸

Another example of the computation of a max-algebraic SVD can be found in [7, 10].

Remark 6.2. In [7] we have shown that the max-algebraic QR decomposition and
the max-algebraic SVD of a matrix can also be computed by solving an Extended
Linear Complementarity Problem — which is a kind of mathematical programming
problem. Although it would lead us too far to explain this procedure in detail, we
shall now give a brief outline of how the equations that appear in the definition of
the max-algebraic QR decomposition and the max-algebraic SVD can be transformed
into a system of multivariate max-algebraic polynomial equalities.
Consider the equation A∇Q⊗R. If we extract the max-positive and the max-negative
parts of each matrix, we obtain

A⊕ ⊖A⊖ ∇ (Q⊕ ⊖Q⊖)⊗ (R⊕ ⊖R⊖)

or

A⊕ ⊖A⊖ ∇ Q⊕ ⊗R⊕ ⊖ Q⊕ ⊗R⊖ ⊖ Q⊖ ⊗R⊕ ⊕ Q⊖ ⊗R⊖ .

By Proposition 3.5 this can be rewritten as

A⊕ ⊕ Q⊕ ⊗R⊖ ⊕ Q⊖ ⊗R⊕ ∇ A⊖ ⊕ Q⊕ ⊗R⊕ ⊕ Q⊖ ⊗R⊖ .

Both sides of this balance are signed. So by Proposition 3.6 we may replace the
balance by an equality. If we introduce a matrix T of auxiliary variables, we obtain:

A⊕ ⊕ Q⊕ ⊗R⊖ ⊕ Q⊖ ⊗R⊕ = T(37)

A⊖ ⊕ Q⊕ ⊗R⊕ ⊕ Q⊖ ⊗R⊖ = T .(38)
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If we write out the max-algebraic matrix multiplications in (37) and if we transfer the
entries of T to the opposite side, we get

a⊕

ij ⊗ tij
⊗
−1 ⊕

m
⊕

k=1

q⊕

ik ⊗ r⊖

kj ⊗ tij
⊗
−1 ⊕

m
⊕

k=1

q⊖

ik ⊗ r⊕

kj ⊗ tij
⊗
−1

= 0 for all i, j .(39)

Equation (38) can be rewritten in a similar way. The condition QT ⊗ Q∇Em also
leads to similar equations.
The condition that the entries of Q and R should be signed can be written as

q⊕

ij ⊗ q⊖

ij = ε for all i, j(40)

r⊕

ij ⊗ r⊖

ij = ε for all i, j .(41)

The condition ‖R‖
⊕
= ‖A‖

⊕
is equivalent to

m
⊕

i=1

n
⊕

j=1

(

r⊕

ij ⊕ r⊖

ij

)

= ‖A‖
⊕

for all i, j .(42)

So if we combine all equations of the form (39) – (42), we obtain a system of multi-
variate max-algebraic polynomial equalities of the following form:

Given l integers m1, m2, . . . , ml ∈ N0 and real numbers aki, bk
and ckij for k = 1, 2, . . . , l, i = 1, 2, . . . ,ml and j = 1, 2, . . . , r, find
x ∈ R

r
ε such that

ml
⊕

i=1

aki ⊗
r
⊗

j=1

xj
⊗
ckij

= bk for k = 1, 2, . . . , l ,

or show that no such x exists;
where the vector x contains the max-positive and the max-negative parts of the en-
tries of Q and R and the auxiliary variables.
Using a similar reasoning we can also show that the equations that appear in the def-
inition of the max-algebraic SVD also lead to a system of multivariate max-algebraic
polynomial equalities.
In [7, 9] we have shown that a system of multivariate max-algebraic polynomial equal-
ities can be rewritten as a mathematical programming problem of the following form:

Given two matrices A ∈ R
p×r, B ∈ R

q×r, two vectors c ∈ R
p, d ∈ R

q

and s subsets φ1, φ2, . . . , φs of {1, 2, . . . , p}, find x ∈ R
r such that

s
∑

j=1

∏

i∈φj

(Ax− c)i = 0

subject to Ax ≥ c and Bx = d, or show that no such x exists.
This problem is called an Extended Linear Complementarity Problem (ELCP). In [7, 8]
we have developed an algorithm to find all solutions of a general ELCP. However, the
execution time of this algorithm increases exponentially as the number of equations
and variables of the ELCP increases. Furthermore, in [7, 8] we have shown that the
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general ELCP is an NP-hard problem. As a consequence, the ELCP approach can
only be used to compute max-algebraic QR decompositions and max-algebraic SVDs
of small-sized matrices. So there certainly is a need for efficient algorithms to compute
max-algebraic QR decompositions and max-algebraic SVDs: this will be one of the
most important topics for further research. An important question is whether we can
develop efficient algorithms for special classes of matrices, e.g., is it possible to come
up with more efficient algorithms by making use of the nonzero structure (sparsity,
bandedness, . . . ) of the matrix? ✸

7. Conclusions and future research. In this paper we have tried to fill one of
the gaps in the theory of the (symmetrized) max-plus algebra by showing that there
exist max-algebraic analogues of many fundamental matrix decompositions from linear
algebra.

We have established a link between a ring of real functions (with addition and
multiplication as basic operations) and the symmetrized max-plus algebra. Next we
have introduced a class of functions that are analytic and that can be written as a
sum or a series of exponentials in a neighborhood of ∞. This class is closed under
basic operations such as additions, subtractions, multiplications, divisions, powers,
square roots and absolute values. This fact has then been used to prove the exis-
tence of a QR decomposition and a singular value decomposition of a matrix in the
symmetrized max-plus algebra. These decompositions are max-algebraic analogues
of basic matrix decompositions from linear algebra. The proof technique that has
been used to prove the existence of these max-algebraic matrix decompositions can
also be used to prove the existence of max-algebraic analogues of other real matrix
decompositions from linear algebra such as the LU decomposition, the Hessenberg
decomposition, the eigenvalue decomposition (for symmetric matrices), the Schur de-
composition and so on.

In [7, 10] we have introduced a further extension of the symmetrized max-plus
algebra: the max-complex structure Tmax, which corresponds to a ring of complex
functions (with addition and multiplication as basic operations). We could also define
max-algebraic matrix decompositions in Tmax. These decompositions would then be
analogues of matrix decompositions from linear algebra for complex matrices (such
as the eigenvalue decomposition or the Jordan decomposition).

Topics for future research are: further investigation of the properties of the max-
algebraic matrix decompositions that have been introduced in this paper, develop-
ment of efficient algorithms to compute these max-algebraic matrix decompositions,
investigation of the computational complexity of computing max-algebraic matrix de-
compositions (in general and for special classes of matrices) and application of the
max-algebraic singular value decomposition and other max-algebraic matrix decom-
positions in the system theory for max-linear discrete event systems.

Appendix A. Proof of Lemma 5.2.

In this section we show that functions that belong to the class Se are asymp-
totically equivalent to an exponential in the neighborhood of ∞. We shall use the
following lemma:

Lemma A.1. If f ∈ Se is a series with a nonpositive dominant exponent, i.e.,

if there exists a positive real number K such that f(x) =

∞
∑

i=0

αie
aix for all x ≥ K

with αi ∈ R, ai ∈ R
−, ai > ai+1 for all i, lim

i→∞
ai = ε and where the series converges
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absolutely for every x ≥ K, then the series

∞
∑

i=0

αie
aix converges uniformly in [K,∞).

Proof. If x ≥ K then we have eaix ≤ eaiK for all i ∈ N since ai ≤ 0 for all i.

Hence, |αie
aix| ≤ |αie

aiK | for all x ≥ K and for all i ∈ N. We already know that
∞
∑

i=0

|αie
aiK | converges. Now we can apply the Weierstrass M -test (see [19, 24]). As a

consequence, the series

∞
∑

i=0

αie
aix converges uniformly in [K,∞).

Proof (Proof of Lemma 5.2)

If f ∈ Se then there exists a positive real number K such that f(x) =

n
∑

i=0

αie
aix for

all x ≥ K with n ∈ N ∪ {∞}, αi ∈ R0 and ai ∈ Rε for all i. If n = ∞ then f is a
series that converges absolutely in [K,∞).
If a0 = ε then there exists a real number K such that f(x) = 0 for all x ≥ K and
then we have f(x) ∼ 0 = 1 · eεx , x → ∞ by Definition 2.2.

If n = 1 then f(x) = α0e
a0x and thus f(x) ∼ α0e

a0x, x → ∞ with α0 ∈ R0 and
a0 ∈ Rε.

From now on we assume that n > 1 and a0 6= ε. Then we can rewrite f(x) as

f(x) = α0e
a0x

(

1 +
n
∑

i=1

αi

α0
e(ai−a0)x

)

= α0e
a0x( 1 + p(x) )

with p(x) =

n
∑

i=1

γie
cix where γi =

αi

α0
∈ R0 and ci = ai − a0 < 0 for all i. Note that

p ∈ Se and that p has a negative dominant exponent. Since ci < 0 for all i, we have

lim
x→∞

p(x) = lim
x→∞

(

n
∑

i=1

γie
cix

)

=

n
∑

i=1

(

lim
x→∞

γie
cix

)

= 0 .(43)

If n = ∞ then the series
∞
∑

i=1

γie
cix converges uniformly in [K,∞) by Lemma A.1. As

a consequence, we may also interchange the summation and the limit in (43) if n = ∞
(cf. [19]).
Now we have

lim
x→∞

f(x)

α0ea0x
= lim

x→∞

α0e
a0x(1 + p(x))

α0ea0x
= lim

x→∞
(1 + p(x)) = 1

and thus f(x) ∼ α0e
a0x , x → ∞ where α0 ∈ R0 and a0 ∈ R.

Appendix B. Proof of Proposition 5.3.

In this section we show that Se is closed under elementary operations such as
additions, multiplications, subtractions, divisions, square roots and absolute values.

Proof (Proof of Proposition 5.3)
If f and g belong to Se then we may assume without loss of generality that the
domains of definition of f and g coincide, since we can always restrict the functions
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f and g to dom f ∩ dom g and since the restricted functions also belong to Se.
Since f and g belong to Se, there exists a positive real number K such that

f(x) =

n
∑

i=0

αie
aix and g(x) =

m
∑

j=0

βje
bjx for all x ≥ K

with m,n ∈ N ∪ {∞}, αi, βj ∈ R0 and ai, bj ∈ Rε for all i, j. If m or n is equal to ∞
then the corresponding series converges absolutely in [K,∞).
We may assume without loss of generality that both m and n are equal to ∞. If m or
n are finite then we can always add dummy terms of the form 0 · eεx to f(x) or g(x).
Afterwards we can remove terms of the form reεx with r ∈ R to obtain an expression
with nonzero coefficients and decreasing exponents. So from now on we assume that
both f and g are absolute convergent series of exponentials.

If a0 = ε then we have f(x) = 0 for all x ≥ K, which means that |f(x)| = 0 for all
x ≥ K. So if a0 = ε then |f | belongs to Se.
If a0 6= ε then there exists a real number L ≥ K such that either f(x) > 0 or f(x) < 0
for all x ≥ L since f(x) ∼ α0e

a0x , x → ∞ with α0 6= 0 by Lemma 5.2. Hence,
either |f(x)| = f(x) or |f(x)| = −f(x) for all x ≥ L. So in this case |f | also belongs
to Se.

Since f and g are analytic in [K,∞), the functions ρf , f + g, f − g, f · g and f l are
also analytic in [K,∞) for any ρ ∈ R and any l ∈ N.

Now we prove that these functions can be written as a sum of exponentials or as an
absolutely convergent series of exponentials.
Consider an arbitrary ρ ∈ R. If ρ = 0 then ρf(x) = 0 for all x ≥ K and thus ρf ∈ Se.

If ρ 6= 0 then we have ρf(x) =
∞
∑

i=0

(ραi)e
aix. The series

∞
∑

i=0

(ραi)e
aix also converges

absolutely in [K,∞) and has the same exponents as f(x). Hence, ρf ∈ Se.

The sum function f + g is a series of exponentials since

f(x) + g(x) =

∞
∑

i=0

αie
aix +

∞
∑

j=0

βje
bjx .

Furthermore, this series converges absolutely for every x ≥ K. Therefore, the sum
of the series does not change if we rearrange the terms [19]. So f(x) + g(x) can be
written in the form of Definition 5.1 by reordering the terms, adding up terms with
equal exponents and removing terms of the form reεx with r ∈ R, if there are any.
If the result is a series then the sequence of exponents is decreasing and unbounded
from below. So f + g ∈ Se.

Since f − g = f + (−1)g, the function f − g also belongs to Se.

The series corresponding to f and g converge absolutely for every x ≥ K. Therefore,
their Cauchy product will also converge absolutely for every x ≥ K and it will be
equal to fg [19]:

f(x)g(x) =
∞
∑

i=0

i
∑

j=0

αjβi−je
(aj+bi−j)x for all x ≥ K .

Using the same procedure as for f + g, we can also write this product in the form
(24) or (25). So fg ∈ Se.



THE MAX-ALGEBRAIC QRD AND THE MAX-ALGEBRAIC SVD 27

Let l ∈ N. If l = 0 then f l = 0 ∈ Se and if l = 1 then f l = f ∈ Se. If l > 1, we can
make repeated use of the fact that fg ∈ Se if f, g ∈ Se to prove that f l also belongs
to Se.

If there exists a real number P such that f(x) 6= 0 for all x ≥ P then
1

f
and

g

f
are

defined and analytic in [P,∞). Note that we may assume without loss of generality
that P ≥ K. Furthermore, since the function f restricted to the interval [P,∞) also
belongs to Se, we may assume without loss of generality that the domain of definition
of f is [P,∞).
If f(x) 6= 0 for all x ≥ P then we have a0 6= ε. As a consequence, we can rewrite f(x)
as

f(x) =

∞
∑

i=0

αie
aix = α0e

a0x

(

1 +

∞
∑

i=1

αi

α0
e(ai−a0)x

)

= α0e
a0x( 1 + p(x) )

with p(x) =
∞
∑

i=1

γie
cix where γi =

αi

α0
∈ R0 and ci = ai − a0 < 0 for all i. Note that

p is defined in [P,∞), that p ∈ Se and that p has a negative dominant exponent.

If c1 = ε then p(x) = 0 and
1

f(x)
=

1

α0
e−a0x for all x ≥ P . Hence,

1

f
∈ Se.

Now assume that c1 6= ε. Since {ci}∞i=1 is a non-increasing sequence of negative num-
bers with lim

i→∞
ci = ε = −∞ and since p converges uniformly in [P,∞) by Lemma A.1,

we have lim
x→∞

p(x) = 0 (cf. (43)). So | p(x) | will be less than 1 if x is large enough,

say if x ≥ M . If we use the Taylor series expansion of
1

1 + x
, we obtain

1

1 + p(x)
=

∞
∑

k=0

(−1)kpk(x) if |p(x)| < 1 .(44)

We already know that p ∈ Se. Hence, pk ∈ Se for all k ∈ N. We have |p(x)| < 1
for all x ≥ M . Moreover, for any k ∈ N the highest exponent in pk is equal to kc1,
which implies that the dominant exponent of pk tends to −∞ as k tends to ∞. As a
consequence, the coefficients and the exponents of more and more successive terms of

the partial sum function sn that is defined by sn(x) =

n
∑

k=0

(−1)kpk(x) for x ∈ [M,∞)

will not change any more as n becomes larger and larger. Therefore, the series on the
right-hand side of (44) also is a sum of exponentials:

1

1 + p(x)
=

∞
∑

k=0

(−1)k

(

∞
∑

i=1

γie
cix

)k

=

∞
∑

k=0

die
δix for all x ≥ M .

Note that the set of exponents of this series will have no finite accumulation point
since the highest exponent in pk is equal to kc1. Let us now prove that this series also

converges absolutely. Define p∗(x) =

∞
∑

i=1

|γi|ecix for all x ≥ P . Since the terms of

the series p∗ are the absolute values of the terms of the series p and since p converges
absolutely in [P,∞), p∗ also converges absolutely in [P,∞). By Lemma A.1 the series
p∗ also converges uniformly in [P,∞). Furthermore, {ci}∞i=1 is a non-increasing and
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unbounded sequence of negative numbers. As a consequence, we have lim
x→∞

p∗(x) = 0

(cf. (43)). So | p∗(x) | will be less than 1 if x is large enough, say if x ≥ N . Therefore,
we have

1

1 + p∗(x)
=

∞
∑

k=0

(−1)k (p∗(x))
k

for all x ≥ N .

This series converges absolutely in [N,∞). Since

∞
∑

k=0

|di|eδix ≤
∞
∑

k=0

(

∞
∑

i=1

|γi|ecix
)k

=
∞
∑

k=0

∣

∣

∣
(p∗(x))

k
∣

∣

∣
,

the series
∞
∑

k=0

die
δix also converges absolutely for any x ∈ [N,∞). Since this series

converges absolutely, we can reorder the terms. After reordering the terms, adding
up terms with the same exponents and removing terms of the form reεx with r ∈ R if
necessary, the sequence of exponents will be decreasing and unbounded from below.

This implies that
1

1 + p
∈ Se and thus also

1

f
∈ Se.

As a consequence,
g

f
= g

1

f
also belongs to Se.

If there exists a real number Q such that f(x) > 0 for all x ≥ Q then the function
√

f is defined and analytic in [Q,∞). We may assume without loss of generality that
Q ≥ K and that the domain of definition of f is [Q,∞).

If a0 = ε then we have
√

f(x) = 0 for all x ≥ Q and thus
√

f ∈ Se.

If a0 6= ε then α0 > 0 and then we can rewrite
√

f(x) as

√

f(x) =
√
α0 e

1

2
a0x
√

1 + p(x) .

Now we can use the Taylor series expansion of
√

1 + x . This leads to

√

1 + p(x) =

∞
∑

k=0

Γ
(

3
2

)

Γ
(

3
2 − k

)

k!
pk(x) if |p(x)| < 1 ,

where Γ is the gamma function. If we apply the same reasoning as for
1

1 + p
, we find

that
√

1 + p ∈ Se and thus also
√

f ∈ Se.
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