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Abstract

The max-plus algebra has maximization and addition as
basic operations, and can be used to model a certain class
of discrete event systems. In contrast to linear algebra and
linear system theory many fundamental problems in the
max-plus algebra and in max-plus-algebraic system theory
still need to be solved. In this paper we discuss max-plus-
algebraic analogues of some basic matrix decompositions
from linear algebra that play an important role in linear
system theory. We use algorithms from linear algebra to
prove the existence of max-plus-algebraic analogues of the
QR decomposition and the singular value decomposition.

1 Introduction

In the last decades both industry and the academic world
have become more and more interested in techniques to
model, analyze and control complex systems such as flexi-
ble manufacturing systems, telecommunication networks,
parallel processing systems, traffic control systems, logis-
tic systems and so on. This kind of systems are typical
examples of discrete event systems. Although in general
discrete event systems lead to a non-linear description in
conventional algebra, there exists a subclass of discrete
event systems for which this model becomes “linear” when
we formulate it in the max-plus algebra [1, 2]. Discrete
event systems that belong to this subclass are called max-
linear discrete event systems.
The basic operations of the max-plus algebra are max-

imization and addition. There exists a remarkable anal-
ogy between these operations and the basic operations of
conventional algebra (addition and multiplication). This
analogy allows us to translate many concepts, proper-
ties and techniques from linear algebra and linear sys-
tem theory to the max-plus algebra and system theory

for max-linear discrete event systems. However, there are
also some major differences that prevent a straightforward
translation of properties, concepts and algorithms from
linear algebra and linear system theory to the max-plus
algebra and max-plus-algebraic system theory. The max-
plus-algebraic system theory for discrete event systems is
at present far from fully developed and much research on
this topic is still needed in order to get a complete sys-
tem theory. The main goal of this paper is to fill one of
the gaps in the theory of the max-plus algebra by showing
that there exist max-plus-algebraic analogues of many fun-
damental matrix decompositions from linear algebra such
as, e.g., the QR decomposition and the singular value de-
composition. These matrix decompositions are important
tools in many linear algebra algorithms and in many con-
temporary algorithms for the identification of linear sys-
tems (see, e.g., [8, 10] and the references cited therein).

2 Notations and definitions

A matrix A ∈ R
n×n is called orthogonal if ATA = In,

where In is the n by n identity matrix. The Frobenius
norm of a matrix A ∈ R

m×n is defined by

‖A‖
F
=

√

√

√

√

m
∑

i=1

n
∑

j=1

a2ij .

If A ∈ R
m×n, then there exist an orthogonal matrix

Q ∈ R
m×m and an upper triangular matrix R ∈ R

m×n

such that A = QR. We say thatQR is aQR decomposition
(QRD) of A.
Let A ∈ R

m×n and let r = min(m,n). Then there exist
a diagonal matrix Σ ∈ R

m×n and two orthogonal matri-
ces U ∈ R

m×m and V ∈ R
n×n such that A = U ΣV T

with σ1 ≥ σ2 ≥ . . . ≥ σr ≥ 0 where σi = (Σ)ii for
i = 1, 2, . . . , r. This factorization is called a singular value
decomposition (SVD) of A.
For more information on the QRD and the SVD the

interested reader is referred to, e.g., [6].



Definition 2.1 (Asymptotic equivalence)
Let f and g be real functions such that ∞ is an accumu-
lation point of dom f and dom g.

If there does not exist a real number K such that g is
identically zero in [K,∞) then we say that f is asymptot-
ically equivalent to g in the neighborhood of ∞, denoted

by f(x) ∼ g(x), x → ∞, if lim
x→∞

f(x)

g(x)
= 1.

We say that f(x) ∼ 0, x → ∞ if there exists a real num-
ber L such that f(x) = 0 for all x > L.

Let F̃ and G̃ be real m by n matrix-valued functions such
that ∞ is an accumulation point of dom F̃ and dom G̃.
Then F̃ (x) ∼ G̃(x), x → ∞ if f̃ij(x) ∼ g̃ij(x), x → ∞
for all i, j.

3 The max-plus algebra and the

symmetrized max-plus algebra

In this section we give a short introduction to the max-
plus algebra and the symmetrized max-plus algebra. An
extensive treatment of the (symmetrized) max-plus alge-
bra can be found in [1, 2, 5].

3.1 The max-plus algebra

The basic max-plus-algebraic operations are defined as fol-
lows:

x⊕ y = max (x, y)

x⊗ y = x+ y

for x, y ∈ R ∪ {−∞}. There is a remarkable analogy be-
tween ⊕ and addition, and between ⊗ and multiplication:
many concepts and properties from conventional linear al-
gebra can be translated to the (symmetrized) max-plus
algebra by replacing + by ⊕ and × by ⊗. The algebraic
structure Rmax = (R ∪ {−∞},⊕,⊗) is called the max-plus
algebra. Define Rε = R ∪ {−∞}. The zero element for ⊕

in Rε is represented by ε
def
= −∞.

The matrix En is the n by nmax-plus-algebraic identity
matrix: (En)ii = 0 for all i and (En)ij = ε for all i, j with
i 6= j. The off-diagonal entries of a max-plus-algebraic
diagonal matrix D ∈ R

m×n
ε are equal to ε. A matrix R ∈

R
m×n
ε is a max-plus-algebraic upper triangular matrix if

rij = ε for all i, j with i > j.
If A,B ∈ R

m×n
ε then (A⊕B)ij = aij ⊕ bij for all i, j. If

A ∈ R
m×p
ε and B ∈ R

p×n
ε then (A⊗B)ij =

p
⊕

k=1

aik ⊗ bkj

for all i, j.

3.2 The symmetrized max-plus algebra

One of the major differences between conventional alge-
bra and the max-plus algebra is that there exist no in-

verse elements w.r.t. ⊕ in Rε. Therefore, we now intro-
duce Smax [1, 5], which is a kind of symmetrization of the
max-plus algebra. We shall restrict ourselves to a short
introduction to the most important features of Smax.
For each x ∈ Rε we introduce two new elements: ⊖x

and x•. This leads to an extension S of Rε that contains
three classes of elements:

• the max-positive or zero elements: S⊕ ≡ Rε ,

• the max-negative or zero elements:
S

⊖ = {⊖a | a ∈ Rε } ,

• the balanced elements: S• = { a• | a ∈ Rε } ,

with S = S
⊕∪S

⊖∪S
•. By definition we have ε = ⊖ε = ε•.

The elements of S⊕ and S
⊖ are called signed.

The ⊕ operation between an element of S⊕ and an ele-
ment of S⊖ is defined as follows:

a⊕ (⊖b) = a if a > b

a⊕ (⊖b) = ⊖b if a < b

a⊕ (⊖a) = a•

where a, b ∈ Rε. The ⊖ operator can be considered as
the analogue of the − operator of conventional algebra.
The structure Smax = (S,⊕,⊗) is called the symmetrized
max-plus algebra.
Let a ∈ S. The max-positive part a⊕ and the max-

negative part a⊖ of a are defined as follows:

• if a ∈ Rε then a⊕ = a and a⊖ = ε ,

• if a ∈ S
⊖ then a = ⊖b for some b ∈ Rε and then we

have a⊕ = ε and a⊖ = b ,

• if a ∈ S
• then a = c• for some c ∈ Rε and then we

have a⊕ = a⊖ = c .

So a⊕, a⊖ ∈ Rε and a = a⊕ ⊕ (⊖a⊖). The max-absolute
value of a ∈ S is defined by |a|

⊕
= a⊕ ⊕ a⊖.

Definition 3.1 (Balance relation) Consider a, b ∈ S.
We say that a balances b, denoted by a∇ b, if a⊕ ⊕ b⊖ =
b⊕ ⊕ a⊖ .

We could say that the balance relation is the Smax coun-
terpart of the equality relation. However, the balance re-
lation is not an equivalence relation, since it is not transi-
tive.
An element with an ⊖ sign in a balance can be moved

to the other side as follows:

Proposition 3.2 ∀a, b, c ∈ S : a⊕ (⊖b) ∇ c if and only if
a ∇ b⊕ c .

If both sides of a balance are signed, we can replace the
balance by an equality:

Proposition 3.3 ∀a, b ∈ S
⊕ ∪ S

⊖ : a ∇ b ⇒ a = b .



a⊕ b = c ⇒

{

∃µa, µb, µc ∈ R0 such that

F(a, µa, s) + F(b, µb, s) ∼ F(c, µc, s), s → ∞
(1)

∃µa, µb, µc ∈ R0 such that

F(a, µa, s) + F(b, µb, s) ∼ F(c, µc, s), s → ∞

}

⇒ a⊕ b ∇ c (2)

a⊗ b = c ⇒

{

∃µa, µb, µc ∈ R0 such that

F(a, µa, s) · F(b, µb, s) = F(c, µc, s) for all s ∈ R
+
0

(3)

∃µa, µb, µc ∈ R0 such that

F(a, µa, s) · F(b, µb, s) = F(c, µc, s) for all s ∈ R
+
0

}

⇒ a⊗ b ∇ c (4)

Table 1: A link between the operations + and × in Re and the operations ⊕ and ⊗ in Smax (with a, b, c ∈ S).

The balance relation is extended to matrices in the usual
way: if A,B ∈ S

m×n then A∇B if aij∇ bij for all i, j.

Definition 3.4 (Max-plus-algebraic norm)
The max-plus-algebraic norm of the matrix A ∈ S

m×n is

defined by ‖A‖
⊕

=

m
⊕

i=1

n
⊕

j=1

|aij |⊕ .

4 A link between conventional

algebra and the symmetrized

max-plus algebra

In [9] Olsder and Roos have used a kind of link between
conventional algebra and the max-plus algebra that was
based on asymptotic equivalences to prove a max-plus-
algebraic version of Cramer’s rule and of the Cayley-
Hamilton theorem. In [4] we have extended and formalized
this link. Now we recapitulate the reasoning of [4] but in
a slightly different form that is mathematically more rig-
orous.
Let R+

e be the set of functions f with dom f = R
+
0 and

with f(s) =

n
∑

i=0

µie
xis for some n ∈ N and with µi ∈ R

+
0

and xi ∈ Rε for all i. Let Re be defined in a similar way
but with µi ∈ R0 for all i.
For all x, y, z ∈ Rε we have

x⊕ y = z ⇔ exs + eys ∼ cezs , s → ∞

x⊗ y = z ⇔ exs · eys = ezs for all s ∈ R
+
0

where c = 1 if x 6= y and c = 2 if x = y. These relations
show that there exists a connection between the operations
⊕ and ⊗ performed on the real numbers and −∞, and the
operations + and × performed on exponentials. Now we
extend this link between (R+

e ,+,×) and Rmax to Smax.
We define a mapping F with domain of definition S ×

R0 × R
+
0 and with

F(a, µ, s) = |µ|eas if a ∈ S
⊕

F(a, µ, s) = −|µ|e|a|⊕s if a ∈ S
⊖

F(a, µ, s) = µe|a|⊕s if a ∈ S
•

where a ∈ S, µ ∈ R0 and s ∈ R
+
0 .

In the remainder of this paper the first two arguments of
F will most of the time be fixed and we shall only consider
F in function of the third argument, i.e., for a given a ∈ S

and µ ∈ R0 we consider the function F(a, µ, ·). Note that
if x ∈ Rε and µ ∈ R0 then we have

F(x, µ, s) = |µ|exs

F(⊖x, µ, s) = −|µ|exs

F(x•, µ, s) = µexs

for all s ∈ R
+
0 . By definition we have eεs = 0 for all

s ∈ R
+
0 . Hence, F(ε, µ, ·) = 0 for all µ ∈ R0.

For a given µ ∈ R0 the number a ∈ S will be mapped by
F to an exponential function s 7→ νe|a|⊕s where ν = |µ|,
ν = −|µ| or ν = µ depending on the max-plus-algebraic
sign of a. In order to reverse this process, we define the
mapping R, which we shall call the reverse mapping and
which will map a function that is asymptotically equiva-
lent to an exponential function s 7→ νe|a|⊕s in the neigh-
borhood of ∞ to the number |a|

⊕
or ⊖ |a|

⊕
depending on

the sign of ν. More specifically, if f is a real function, if
x ∈ Rε and if µ ∈ R0 then we have

f(s) ∼ |µ|exs , s → ∞ ⇒ R(f) = x

f(s) ∼ −|µ|exs , s → ∞ ⇒ R(f) = ⊖x .

Note that R will always map a function that is asymptot-
ically equivalent to exponential function in the neighbor-
hood of ∞ to a signed number and never to a balanced
number that is different from ε.
Consider the implications listed in Table 1. As a conse-

quence, we could say that the mapping F provides a link
between the structure (R+

e ,+,×) and Rmax = (Rε,⊕,⊗),
and a link between the structure (Re,+,×) and Smax =
(S,⊕,⊗).
The balance in (2) results from the fact that we can

have cancellation of equal terms with opposite sign in



A⊕B = C ⇒

{

∃MA,MB ,MC such that

F(A,MA, s) + F(B,MB , s) ∼ F(C,MC , s) , s → ∞
(5)

∃MA,MB ,MC such that

F(A,MA, s) + F(B,MB , s) ∼ F(C,MC , s) , s → ∞

}

⇒ A⊕B ∇ C (6)

A⊗B = C ⇒

{

∃MA,MB ,MC such that

F(A,MA, s) · F(B,MB , s) ∼ F(C,MC , s) , s → ∞
(7)

∃MA,MB ,MC such that

F(A,MA, s) · F(B,MB , s) ∼ F(C,MC , s) , s → ∞

}

⇒ A⊗B ∇ C (8)

Table 2: A link between the operations + and × for matrix-valued functions with entries in Re and the operations ⊕
and ⊗ for matrices with entries in S (A, B and C are matrices with entries in S).

(R+
e ,+,×) whereas this is in general not possible in Smax

since we have a⊕ (⊖a) 6= ε for all a ∈ S \ {ε}.
We extend the mapping F to matrices as follows. If

A ∈ S
m×n and if M ∈ R

m×n
0 then Ã = F(A,M, ·) is a real

m by n matrix-valued function with domain of definition
R

+
0 and with ãij(s) = F(aij ,mij , s) for all i, j. The reverse

mapping R is extended to matrices in a similar way. Note
that the mappings F andR are performed entrywise. This
leads to the implications listed in Table 2.

5 The QRD and the SVD in the

symmetrized max-plus algebra

In [4] we have used the mapping from Smax to (Re,+,×)
and the reverse mapping to prove the existence of a kind
of SVD in Smax. The proof of [4] made use of the concept
“analytic SVD”. In this paper we present an alternative
method to prove the existence of the max-plus-algebraic
SVD (and the max-plus-algebraic QRD). This proof tech-
nique consists in transforming a matrix with entries in S to
a matrix-valued function with exponential entries (using
the mapping F), applying an algorithm from linear alge-
bra and transforming the result back to the symmetrized
max-plus algebra (using the mapping R).

The entries of the matrices that appear in the existence
proofs for the max-plus-algebraic QRD and the max-plus-
algebraic SVD that will be presented in this section are
sums or series of exponentials.

Definition 5.1 Let Se be the set of real functions that
are analytic and that can be written as a (possibly infinite,
but absolutely convergent) sum of exponentials of the form
n
∑

i=0

αie
aix in some neighborhood of ∞ with αi ∈ R0 and

ai ∈ Rε for all i.

The behavior of the functions in Se in the neighborhood
of ∞ is given by the following property:

Lemma 5.2 If f ∈ Se then there exist numbers α0 ∈ R0

and a0 ∈ Rε such that f(x) ∼ α0e
a0x, x → ∞.

Proof : See [3]. ✷

The set Se is closed under elementary operations such as
additions, multiplications, subtractions, divisions, square
roots and absolute values:

Proposition 5.3 If f and g belong to Se then ρf , f + g,
f − g, fg, f l and |f | also belong to Se for any ρ ∈ R and
any l ∈ N.
Furthermore, if there exists a real number P such that

f(x) 6= 0 for all x > P then the functions
1

f
and

g

f
restricted to [P,∞) also belong to Se.
If there exists a real number Q such that f(x) > 0 for

all x > Q then the function
√

f restricted to [Q,∞) also
belongs to Se.

Proof : See [3]. ✷

Let Ã and R̃ be real m by n matrix-valued functions and
let Q̃ be a real m by m matrix-valued function. Suppose
that Ã, Q̃ and R̃ are defined in J ⊆ R. If Q̃(s) R̃(s) =
Ã(s), Q̃T (s) Q̃(s) = Im and R̃(s) is an upper triangular
matrix for all s ∈ J , then we say that Q̃R̃ is a path of
QRDs of Ã on J . A path of SVDs is defined in a similar
way.

Proposition 5.4 If Ã ∈ Sm×n
e then there exists a path of

QRDs Q̃R̃ of Ã for which the entries of Q̃ and R̃ belong
to Se.

Proof : To compute the QRD of a matrix with real en-
tries we can use the Givens QR algorithm (See, e.g., [6]).
The operations used in this algorithm are additions, mul-
tiplications, subtractions, divisions and square roots. Fur-
thermore, the number of operations used in this algorithm
is finite. So if we apply this algorithm to a matrix-valued
function Ã with entries in Se then the entries of the re-
sulting matrix-valued functions Q̃ and R̃ will also belong
to Se by Proposition 5.3. ✷



Theorem 5.5 (Max-plus-algebraic QRD)
If A ∈ S

m×n then there exist a matrix Q ∈ (S∨)m×m and a
max-plus-algebraic upper triangular matrix R ∈ (S∨)m×n

such that

A ∇ Q⊗R (9)

with QT ⊗Q ∇ Em and ‖R‖
⊕
= ‖A‖

⊕
.

Every decomposition of the form (9) that satisfies the
above conditions is called a max-plus-algebraic QRD of A.

Proof : If a, b ∈ S then a∇ b implies that a•∇ b. There-
fore, it is sufficient to prove this theorem for signed ma-
trices A. So from now on we assume that A is signed. We
construct Ã = F(A,M, ·) where M ∈ R

m×n with mij = 1

for all i, j. Note that the entries of Ã belong to Se. By
Proposition 5.4 there exists a path of QRDs Q̃R̃ of Ã for
which the entries of Q̃ and R̃ belong to Se. So there exist
a positive real number L and matrix-valued functions Q̃

and R̃ with entries in Se such that

Ã(s) = Q̃(s) R̃(s) for all s > L (10)

Q̃T (s) Q̃(s) = Im for all s > L (11)

‖R̃(s)‖
F
= ‖Ã(s)‖

F
for all s > L . (12)

Since the entries of Q̃ and R̃ belong to Se, they are asymp-
totically equivalent to an exponential in the neighbor-
hood of ∞ by Lemma 5.2. If we define Q = R(Q̃) and
R = R(R̃), then Q and R have signed entries. If we apply
the reverse mapping R to (10) – (12), we get A ∇ Q⊗ R,
QT ⊗Q ∇ Em and ‖R‖

⊕
= ‖A‖

⊕
. ✷

If QR is a QRD of a matrix A ∈ R
m×n then we always

have ‖R‖
F
= ‖A‖

F
since Q is an orthogonal matrix. How-

ever, in [3] we have shown thatA∇Q⊗R andQT⊗Q∇Em

do not always imply that ‖R‖
⊕

= ‖A‖
⊕
. Therefore we

have included the condition ‖R‖
⊕

= ‖A‖
⊕

explicitly in
the definition of the max-plus-algebraic QRD.

Theorem 5.6 (Max-plus-algebraic SVD)
Let A ∈ S

m×n and let r = min(m,n). Then there ex-
ist a max-plus-algebraic diagonal matrix Σ ∈ R

m×n
ε and

matrices U ∈ (S∨)m×m and V ∈ (S∨)n×n such that

A ∇ U ⊗ Σ⊗ V T (13)

with UT ⊗U ∇ Em, V T ⊗V ∇ En and ‖A‖
⊕
= σ1 > σ2 >

. . . > σr where σi = (Σ)ii for i = 1, 2, . . . , r.
Every decomposition of the form (13) that satisfies the
above conditions is called a max-plus-algebraic SVD of A.

Proof : This proof is similar to that of Theorem 5.5,
but now we use Kogbetliantz’s SVD algorithm [7] to con-
struct a path of SVDs of the matrix-valued function Ã.
Afterwards we apply the reverse mapping R to obtain a
max-plus-algebraic SVD of A. See [3] for the details of
this proof. ✷

Note that for the max-plus-algebraic SVD we also have an
extra condition (‖A‖

⊕
= σ1) that does not appear in the

definition of the SVD in conventional linear algebra. For
properties of the max-plus-algebraic SVD the interested
reader is referred to [3, 4].
In analogy with the definition of rank in linear alge-

bra we can also define a rank based on the max-plus-
algebraic SVD. In [3, 4] we have indicated how this max-
plus-algebraic SVD rank could be used to obtain an esti-
mate of the minimal system order of a max-linear discrete
event system.

The proof technique that has been used in this section
essentially consists in applying an algorithm from linear
algebra to a matrix with entries in Se. As a consequence,
this proof technique can also be used to prove the existence
of many other max-plus-algebraic matrix decompositions
such as a max-plus-algebraic eigenvalue decomposition for
symmetric matrices, a max-plus-algebraic LU decomposi-
tion, a max-plus-algebraic Schur decomposition, a max-
plus-algebraic Hessenberg decomposition and so on.

6 A worked example of the max-

plus-algebraic QRD

Let us compute a max-plus-algebraic QRD of

A =

[

1 ε ⊖(−5)
⊖2 3• 0

]

.

Define Ã = F(A,M, ·) with M =

[

1 1 1
1 1 1

]

. Hence,

Ã(s) =

[

es 0 −e−5s

−e2s e3s 1

]

for all s ∈ R
+
0 .

If we use the Givens QR algorithm, we get a path of QRDs
Q̃R̃ of Ã with

Q̃(s) ∼

[

e−s 1
−1 e−s

]

, s → ∞

R̃(s) ∼

[

e2s −e3s −1
0 e2s e−s

]

, s → ∞ .

If we define Q = R(Q̃) and R = R(R̃), we obtain

Q =

[

−1 0
⊖0 −1

]

and R =

[

2 ⊖3 ⊖0
ε 2 −1

]

.

We have

Q⊗R =

[

1 2• (−1)
•

⊖2 3 0

]

∇ A

QT ⊗Q =

[

0 (−1)
•

(−1)
•

0

]

∇ E2

and ‖R‖
⊕
= 3 = ‖A‖

⊕
.

An example of the computation of a max-plus-algebraic
SVD can be found in [3, 4].



7 Conclusions and future research

In this paper we have tried to fill one of the gaps in the
theory of the (symmetrized) max-plus algebra by showing
that there exist max-plus-algebraic analogues of funda-
mental matrix decompositions from linear algebra such as
the QR decomposition and the singular value decomposi-
tion. The proof technique that has been used to prove the
existence of these max-plus-algebraic matrix decomposi-
tions can also be used to prove the existence of max-plus-
algebraic analogues of other matrix decompositions from
linear algebra such as, e.g., the LU decomposition, the
Hessenberg decomposition, the eigenvalue decomposition
(for symmetric matrices), the Schur decomposition and so
on.

Topics for future research are: further investigation of
the properties of the max-plus-algebraic matrix decom-
positions that have been introduced in this paper, devel-
opment of efficient algorithms to compute these decom-
positions, and application of these decompositions in the
system theory for max-linear discrete event systems.

Acknowledgments

Bart De Schutter is a senior research assistant with the
F.W.O. (Fund for Scientific Research – Flanders). Bart
De Moor is a research associate with the F.W.O.
This research was sponsored by the Concerted Action
Project of the Flemish Community, entitled “Model-based
Information Processing Systems”, by the Belgian program
on interuniversity attraction poles (IUAP-02 and IUAP-
24) and by the ALAPEDES project of the European Com-
munity Training and Mobility of Researchers Program.

References

[1] F. Baccelli, G. Cohen, G.J. Olsder, and J.P. Quadrat,
Synchronization and Linearity. New York: John Wi-
ley & Sons, 1992.

[2] R.A. Cuninghame-Green, Minimax Algebra, vol. 166
of Lecture Notes in Economics and Mathematical Sys-
tems. Berlin, Germany: Springer-Verlag, 1979.

[3] B. De Schutter, Max-Algebraic System Theory for
Discrete Event Systems. PhD thesis, Faculty of Ap-
plied Sciences, K.U.Leuven, Leuven, Belgium, Feb.
1996.

[4] B. De Schutter and B. De Moor, “The singular value
decomposition in the extended max algebra,” Linear
Algebra and Its Applications, vol. 250, pp. 143–176,
Jan. 1997.
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