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Abstract

In this paper we consider an intersection of two two-way streets with controllable traffic

lights on each corner. We construct a model that describes the evolution of the queue

lengths (as continuous variables) in each lane as a function of time. We discuss how optimal

and suboptimal traffic light switching schemes (with possibly variable cycle lengths) for

this system can be determined. We show that for a special class of objective functions, an

optimal traffic light switching scheme can be computed very efficiently. The main difference

of the approach presented in this paper and most other existing methods is that we allow

the green-amber-red cycle time to vary from one cycle to another.

Keywords: traffic, optimal control, optimal traffic light switching scheme

1 Introduction

1.1 Overview

As the number of vehicles and the need for transportation grow, cities around the world
face serious road traffic congestion problems. On some major roads this can lead to speeds
below 10 km/h, slower than a bicycle. Costs include lost work and leisure time, increased fuel
consumption, air pollution, health problems, stress and discomfort. Furthermore, congestion
slows the movement of goods and services, thereby increasing the price of products and
reducing the competitiveness of business1. In general there exist different methods to tackle
the traffic congestion problem:

• construction of new roads (to eliminate the most important bottle-necks or to realize
missing links),

∗Senior research assistant with the F.W.O. (Fund for Scientific Research-Flanders)
†Research associate with the F.W.O.
1In Hong Kong, the Hang Seng Bank computed that a 10-minute delay each day for every worker in Hong

Kong would lead to a loss in output of about US$ 2.28 billion a year, or 2% of the Gross Domestic Product [10].
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• stimulating alternatives by promoting public transportation and greater vehicle occu-
pancy or by appropriate pricing and taxing,

• reducing demand by raising tolls or other taxes, or by developing a high-speed commu-
nication network, which for many purposes could replace the need for travel,

• better use of existing infrastructure by pricing (time-of-the-day dependent tolls), influ-
encing behavior (promoting car-pooling and measures to organize joint transportation
for the employees of a single company or of a set of neighboring companies) and by
better control of traffic in order to augment the capacity.

In the short term the most effective measures in the battle against traffic congestion seem
to be a selective construction of new roads and a better control of traffic through traffic
management.

One approach in traffic management is the use of an automated highway system in order
to maximize the throughput of the system by using a platooning approach (see, e.g., [8, 22]).
This approach has been studied extensively in the framework of the PATH2 project. In this
approach cars travel on the highway in platoons with small distances (e.g., 1m) between vehi-
cles within the platoon, and much larger distances (e.g., 30–60m) between different platoons.
Due to the very short intra-platoon distance this approach requires automated distance keep-
ing since a human driver cannot react fast enough to guarantee adequate safety. The vehicle
should contain an automatic system that can take over the driver’s responsibilities in steering,
braking and throttle control. As a consequence, this approach requires major investments to
be made both by the government or the traffic authority body (for the roadside control in-
frastructure that controls the composition and movements of platoons, and the interaction
between the different platoons) and by the constructors and owners of the vehicles (for the
hardware and software on-board: sensors (to measure the distance to the other vehicles),
telecommunication systems (to communicate with the other vehicles) and control systems (to
maintain the right distance to the other vehicles)).

Another approach in traffic management is based on a system where most of the intel-
ligence is not located in the individual cars but along the roads. As a consequence, this
approach is feasible in the short term and can be implemented by the local traffic authorities.
In this approach we try to regulate and redirect the traffic flow using measures such as variable
message signs or dynamic route information panels (that show appropriate speeds, preferred
directions or information on the length and the duration of traffic jams), ramp metering (i.e.,
putting traffic lights at highway access-roads to control the incoming traffic flow on the high-
way), etc. One of the methods that can be used in this traffic management approach is traffic
light control to augment the flow of traffic in urban environments by providing a smooth
circulation of the traffic or by using “green” waves, or to regulate the access to highways or
main roads.

In this paper we study the optimal traffic light control problem for an intersection of two
two-way streets. We shall derive a model that describes the evolution of the queue lengths
as a function of the time and the switching time instants. The input data for our model are
the arrival and departure rates of the vehicles at the intersection. These quantities can be
determined by electric induction loop detectors, ultrasonic sensors or vision systems. It is

2Partners for Advanced Transit and Highways (see http://www-path.eecs.berkeley.edu for more infor-
mation)
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obvious that in practice this sensor infrastructure should be low-cost, high-performance and
reliable.

In general, when we are making models of systems, a very important issue is the trade-off
between the accuracy of the model and the (computational) complexity of the analysis of
the given model. As a rule of thumb we could say that the more accurate the model is, the
less we can analytically say about its properties. There are already many possible models for
modeling traffic systems: some are mathematical (see, e.g., [9, 14] and the references therein),
others are computer models (such as, e.g., SATURN3 or RONETS4). In this paper we shall
derive a model that belongs to the former category. First we derive an exact model for the
evolution of the queue lengths, but in order to obtain a simplified model that will be the
basis of efficient methods to compute optimal traffic light schemes, we make some simplifying
assumptions. We shall explain why and when most of these assumptions are reasonable and
how deviations of these assumptions can be taken into account. Starting from our simplified
model we can then compute the traffic light switching scheme that minimizes a criterion
such as average queue length, worst case queue length, average waiting time, . . . , thereby
augmenting the flow of traffic and diminishing the effects of traffic congestion. The main
difference of the approach presented in this paper as compared to other approaches is the
use of an optimization over a fixed number of switch-overs instead of an optimization over
a fixed number of time steps. This allows to optimize not only the split but also the cycle
time with continuous optimization variables (usually the optimization of split and cycle time
is performed using boolean variables at each time step, each variable corresponding to the
decision of switching or not the traffic lights as in PRODYN, UTOPIA and OPAC).

This paper is organized as follows. In Section 2 we describe the set-up of the intersection
and we derive a model that describes the queue lengths, i.e., the number of cars that are
waiting, as a function of time, the average arrival and departure rates, and the traffic light
switching time instants. First we give the exact model. Next we make some assumptions in
order to obtain a model that is more amenable to mathematical analysis. In Section 3 we
discuss how an optimal traffic light switching scheme for this system can be determined. We
show that for a special class of objective functions (i.e., objective functions that depend strictly
monotonously on the queue lengths at the traffic light switching time instants), the optimal
traffic light switching scheme can be computed very efficiently. Moreover, if the objective
function is linear, the problem reduces to a linear programming problem. In Section 4 we
discuss some extensions of the basic model. We conclude with an illustrative example in
Section 5.

1.2 Notation

In this paper we use vector as a synonym for “column vector” or “matrix with one column”.
Vectors and matrices will be represented by boldface symbols. Let a and b vectors with
n components. We use ai or (a)i to denote the ith component of a. We use a > b to
indicate that ai > bi for all i. The maximum operator on vectors is defined as follows:
(

max(a, b)
)

i
= max(ai, bi) for all i. A zero column vector with n components is represented

by 0n. If the dimension of the zero vector is omitted, it should be clear from the context.
The set of the real numbers is denoted by R, the set of the nonnegative real numbers is

denoted by R
+, and the set of the positive real numbers is denoted by R

+
0 .

3Simulation and Assignment of Traffic to Urban Road Networks
4Road Network Simulator
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Figure 1: A traffic light controlled intersection of two two-way streets.

2 The set-up and the model of the system

2.1 The set-up

We consider an intersection of two two-way streets (see Figure 1). There are four lanes L1,
L2, L3 and L4, and on each corner of the intersection there is a traffic light (T1, T2, T3 and
T4). For each traffic light there are three subsequent phases: green, amber, and red. The
arrival rate of cars in lane Li at time t is λi(t) for i = 1, 2, 3, 4. So the function λi consists
of a series of Dirac impulses where a Dirac impulse at time ti corresponds to the arrival of
a car at time ti and where each Dirac impulse has area 1. When the traffic light is green
(respectively amber), the departure rate in lane Li at time t is µi(t) (respectively κi(t)) for
i = 1, 2, 3, 4. We assume that the duration of the amber phase is fixed5 and equal to δamb.

Let t0, t2, t4, . . . be the time instants at which the traffic lights T1 and T3 switch from
amber to red (and T2 and T4 switch from red to green). Let t1, t3, t5, . . . be the time instants at
which the traffic lights T1 and T3 switch from red to green (and T2 and T4 switch from amber
to red). The traffic light switching scheme is shown in Table 1. Let G1 = G3 = {1, 3, . . .} and
G2 = G4 = {0, 2, . . .}. So if k ∈ Gi then traffic light Ti switches from red to green at time tk
and is green in the period (tk, tk+1−δamb). Define δk = tk+1 − tk for k ∈ N. It is obvious that
we should have 0 6 δamb < δk for all k. Furthermore, λi(t), µi(t), κi(t) > 0 for all i and all t,
and tk < tk+1 for all k.

Let li(t) be the queue length (i.e., the number of cars waiting) in lane Li at time instant
t. Clearly, li(t) > 0 for all i and all t.

2.2 The exact model

Consider lane L1. When the traffic light T1 is red, there are arrivals at lane L1 (characterized
by the arrival rate function λ1) and no departures. When the traffic light T1 is green (or
amber), there are arrivals and departures at lane L1. In that case the net queue growth rate
at time t is λ1(t)−µ1(t) (respectively λ1(t)−κ1(t)). Hence, the evolution of the queue length

5In many countries the amber time is fixed by regulation (e.g., to 3 s in France). However, our model can
also accommodate varying amber durations (see Section 4).
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Period T1 T2 T3 T4

t0 – t1−δamb red green red green

t1−δamb – t1 red amber red amber

t1 – t2−δamb green red green red

t2−δamb – t2 amber red amber red

t2 – t3−δamb red green red green

t3−δamb – t3 red amber red amber
...

...
...

...
...

Table 1: The traffic light switching scheme.

in lane L1 is given by

dl1(t)

dt
=











λ1(t) if t ∈ (t2k, t2k+1)

λ1(t)− µ1(t) if t ∈ (t2k+1, t2k+2−δamb)

λ1(t)− κ1(t) if t ∈ (t2k+2−δamb, t2k+2)

(1)

for k = 0, 1, 2, . . . This implies that the relation between the queue lengths at the switching
time instants is given by:

l1(t2k+1) = l1(t2k) +

∫ t2k+1

t2k

λ1(t) dt (2)

l1(t2k+2) = l1(t2k+1) +

∫ t2k+2−δamb

t2k+1

(λ1(t)− µ1(t)) dt +

∫ t2k+2

t2k+2−δamb

(λ1(t)− κ1(t)) dt (3)

for k = 0, 1, 2, . . . We can write down similar equations for the evolution of the queue lengths
in the other lanes.
Note that since the functions λi, µi and κi are series of Dirac impulses, the functions li are
piecewise-constant functions.

2.3 A simplified model

The model derived above is not really amenable to mathematical analysis. Therefore, we shall
now introduce some assumptions that will result in a much simpler (approximate) model that
can be analyzed very easily and for which we can efficiently compute optimal traffic light
switching schemes (see Section 3).

From now on we make the following assumptions:

• the queue lengths are continuous variables,

• the average arrival and departure rates of the cars are constant (or slowly time-varying),

• for each lane the average departure rate during the green phase is greater than or equal
to the average departure rate during the amber phase.

The first two assumptions deserve a few remarks:
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• The main purpose of the model we shall derive is to compute optimal traffic light control
schemes. Designing optimal traffic light switching schemes is only useful if the arrival
and departure rates of vehicles at the intersection are high. In that case, approximating
the queue lengths by continuous variables only introduces small errors. Furthermore,
there is also some uncertainty and variation in time of the arrival and departure rates,
which makes that in general computing the exact optimal traffic light switching scheme
is utopian. Moreover, in practice we are more interested in quickly obtaining a good
approximation of the optimal traffic light switching scheme than in spending a large
amount of time to obtain the exact optimal traffic light switching scheme.

• If we keep in mind that one of the main purposes of the model that we shall derive, is
the design of optimal traffic light switching schemes, then assuming that the average
arrival and departure rates are constant is not a serious restriction, provided that we use
a moving horizon strategy : we compute the optimal traffic light switching scheme for,
say, the next 10 cycles, based on a prediction of the average arrival and departure rates
(using data measured during the previous cycles) and we apply this scheme during the
first of the 10 cycles, meanwhile we update our estimates of the arrival and departure
rates and compute a new optimal scheme for the next 10 cycles, and so on. This will
be discussed more extensively in Section 3.

Let λ̄i be the average arrival rate of vehicles in lane Li. Let µ̄i (respectively κ̄i) be the average
departure rate in lane Li when the traffic light is green (respectively amber) and the queue
length is larger than 0 (i.e., when there are cars waiting or arriving at lane Li). So from now
on we assume that

λi(t) = λ̄i for all t,

µi(t) =







µ̄i if t ∈
⋃

k∈Gi

(tk, tk+1 − δamb) and li(t) > 0,

0 otherwise,

κi(t) =







κ̄i if t ∈
⋃

k∈Gi

(tk+1 − δamb, tk+1) and li(t) > 0,

0 otherwise.

Note that λ̄i, µ̄i and κ̄i are constants (possibly over a limited period of time if we apply a
moving horizon strategy (see Section 3)). We have λ̄i, µ̄i, κ̄i > 0 and κ̄i 6 µ̄i.

Note that if we consider (1) and (2) – (3), then the queue length can never become negative.
However, if we use average arrival and departure rates in the description of the evolution of
the queue lengths then we have to include the nonnegativity condition explicitly when writing
down the (approximate) evolution equations for the queue lengths. As a consequence, we have

l1(t2k+1) = l1(t2k) + λ̄1δ2k

l1(t2k+2 − δamb) = max
(

l1(t2k+1) + (λ̄1 − µ̄1) (δ2k+1 − δamb), 0
)

(4)

l1(t2k+2) = max
(

l1(t2k+2 − δamb) + (λ̄1 − κ̄1) δamb, 0
)

(5)

= max
(

l1(t2k+1) + (λ̄1 − µ̄1) δ2k+1 + (µ̄1 − κ̄1) δamb, (λ̄1 − κ̄1) δamb, 0
)

for k = 0, 1, 2, . . . Note that we also have

l1(t2k+1) = max
(

l1(t2k) + λ̄1δ2k, 0
)

for k = 0, 1, 2, . . . ,

6



since l1(t) > 0 for all t.
We can write down similar equations for l2(tk), l3(tk) and l4(tk). So if we define

xk =









l1(tk)
l2(tk)
l3(tk)
l4(tk)









, b1 =









λ̄1

λ̄2 − µ̄2

λ̄3

λ̄4 − µ̄4









, b2 =









λ̄1 − µ̄1

λ̄2

λ̄3 − µ̄3

λ̄4









,

b3 =









0
(µ̄2 − κ̄2)δamb

0
(µ̄4 − κ̄4)δamb









, b4 =









(µ̄1 − κ̄1)δamb

0
(µ̄3 − κ̄3)δamb

0









,

b5 =









0
max

(

(λ̄2 − κ̄2) δamb, 0
)

0
max

(

(λ̄4 − κ̄4) δamb, 0
)









, b6 =









max
(

(λ̄1 − κ̄1) δamb, 0
)

0
max

(

(λ̄3 − κ̄3) δamb, 0
)

0









,

then we have

x2k+1 = max(x2k + b1δ2k + b3, b5) (6)

x2k+2 = max(x2k+1 + b2δ2k+1 + b4, b6) (7)

for k = 0, 1, 2, . . . We say that the sequences {xk}
N
k=0 and {δk}

N−1
k=0 are compatible (for given

δamb, λ̄i’s, µ̄i’s and κ̄i’s) if they satisfy the recurrence equations (6) – (7) for all k.

Remark 2.1 The model we have derived above is different from the models used by most
other researchers due to the fact that we consider green-amber-red cycle lengths that may vary
from cycle to cycle. Furthermore, we consider non-saturated intersections, i.e., we allow queue
lengths to become equal to 0 during the green phase. Some authors (see, e.g., [12, 19]) consider
models for oversaturated intersections, i.e., they do not allow queue lengths to become equal
to 0 during the green phase. In that case the maximum operator that appears in (4) and (5)
— and in (6) – (7) — is not necessary any more, which leads to a simpler description of the
behavior of the system. However, it can be shown that applying a model for oversaturated
intersections to a non-saturated intersection in general does not lead to an optimal traffic
light switching scheme (see [4]). Furthermore, in Section 3 we shall show that by considering
some approximate objective functions we can find suboptimal traffic light switching schemes
using a simplified description of the system in which the maximum operator does not appear.
Nevertheless, the suboptimal solutions obtained in this way will satisfy the model (6) – (7).
Furthermore, for a non-saturated intersection their performance will be considerably better
than the performance of the solutions obtained from a model for an oversaturated intersection
(see [4]). ✸

3 Optimal control

3.1 Problem statement

From now on we assume that the arrival and departure rates are known. For a given integer
N we want to compute an optimal sequence t0, t1, . . . tN of switching time instants that
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minimizes a given criterion J . Define Gi(N) = Gi ∩ {0, 1, 2, . . . , N − 1}. Possible objective
functions are:

• (weighted) average queue length over all queues:

J1 =
4
∑

i=1

wi

∫ tN

t0

li(t) dt

tN − t0
, (8)

• (weighted) average queue length over the worst queue:

J2 = max
i











wi

∫ tN

t0

li(t) dt

tN − t0











, (9)

• (weighted) worst case queue length:

J3 = max
i, t

(

wi li(t)
)

, (10)

• (weighted) average waiting time6 over all queues:

J4 =
4
∑

i=1

wi

∫ tN

t0

li(t) dt

λ̄i(tN − t0)
, (11)

• (weighted) average waiting time over the worst queue:

J5 = max
i











wi

∫ tN

t0

li(t) dt

λ̄i(tN − t0)











, (12)

where wi > 0 for all i. The weight factors wi can be used to give a higher importance or
weight to some lanes: we could, e.g., choose w1 = w3 = 2 and w2 = w4 = 1 to give a 100%
higher importance to cars on the street consisting of lanes L1 and L3.
The factor tN − t0 in J1, J2, J4 and J5 seems to be original with respect to the literature.
The reason for introducing this factor is that in our approach the time horizon is not fixed.
Using criteria based on time averaged values has the advantage that we maintain finite values
for the objective functions even if N or tN go to ∞ (provided that the queue lengths remain
finite). Note that J1 and J4 are in fact equivalent in the sense that for any weight vector w
for J1 there exists a weight vector w̃ for J4 such that J1 and J4 are equal. This also holds for
J2 and J5.

6The average waiting time is equal to the average queue length divided by the average arrival rate.
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We can impose some extra conditions such as minimum and maximum durations for the
red and green times7, maximum queue lengths8, and so on. This leads to the following
problem:

minimize J (13)

subject to

δmin,green,1 6 δ2k+1 − δamb 6 δmax,green,1 for k = 0, 1, . . . ,

⌊

N

2

⌋

− 1, (14)

δmin,green,2 6 δ2k − δamb 6 δmax,green,2 for k = 0, 1, . . . ,

⌊

N − 1

2

⌋

, (15)

xk 6 xmax for k = 1, 2, . . . , N, (16)

x2k+1 = max(x2k + b1δ2k + b3, b5) for k = 0, 1, . . . ,

⌊

N − 1

2

⌋

, (17)

x2k+2 = max(x2k+1 + b2δ2k+1 + b4, b6) for k = 0, 1, . . . ,

⌊

N

2

⌋

− 1 , (18)

where δmin,green,i (respectively δmax,green,i) is the minimum (respectively maximum) green time
in lane Li, and (xmax)i is the maximum queue length in lane Li. Note that we could also
let δmin,green,i, δmax,green,i, and xmax depend on k. In the remainder of this paper, we shall
assume that x0 6 xmax.

Now we discuss some methods to solve problem (13) – (18).
First consider (17) for an arbitrary index k. This equation can be rewritten as follows:

x2k+1 > x2k + b1δ2k + b3 (19)

x2k+1 > b5 (20)

(x2k+1)i = (x2k + b1δ2k + b3)i or (x2k+1)i = (b5)i for i = 1, 2, 3, 4 , (21)

or equivalently

x2k+1 − x2k − b1δ2k − b3 > 0

x2k+1 − b5 > 0

(x2k+1 − x2k − b1δ2k − b3)i (x2k+1 − b5)i = 0 for i = 1, 2, 3, 4 .

Since a sum of nonnegative numbers is equal to 0 if and only if all the numbers are equal to
0, this system of equations is equivalent to:

x2k+1 − x2k − b1δ2k − b3 > 0 (22)

x2k+1 − b5 > 0 (23)

7A green time that is too short is wasteful. If the red time is too long, drivers tend to believe that the
signals have broken down.

8This could correspond to an upper bound on the available storage space due to the distance to the preceding
junction or to the layout of the intersection.
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4
∑

i=1

(x2k+1 − x2k − b1δ2k − b3)i (x2k+1 − b5)i = 0 . (24)

We can repeat this reasoning for (18) and for each k.
So if we define

x∗ =











x1

x2
...

xN











and δ∗ =











δ0
δ1
...

δN−1











,

it is easy to verify that we finally get a problem of the form

minimize J (25)

subject to

Ax∗ +Bδ∗ + c > 0 (26)

x∗ + d > 0 (27)

Ex∗ + Fδ∗ + g > 0 (28)

(Ax∗ +Bδ∗ + c)T (x∗ + d) = 0 , (29)

with appropriately defined matrices A, B, E, F and vectors c, d, g. Equations (26), (27)
and (29) correspond to (22), (23) and (24) respectively, and the system of linear inequalities
(28) contains the conditions (14) – (16).

We say that the vectors x∗ and δ∗ are compatible for a given x0 if the corresponding
sequences {xk}

N
k=0 and {δk}

N−1
k=0 are compatible. In the remainder of this paper a vector x∗ ∈

(R+)4N will always correspond to a sequence {xk}
N
k=1 and vice versa, with (x∗)4(k−1)+j =

(xk)j for k = 1, 2, . . . , N and j = 1, 2, 3, 4. A vector δ∗ ∈ (R+
0 )

N will always correspond to a
sequence {δk}

N−1
k=0 and vice versa, with (δ∗)k = δk−1 for k = 1, 2, . . . , N .

The system (26) – (29) is (a special case of) an Extended Linear Complementarity Problem
(ELCP) [2, 3]. In [2, 3] we have developed an algorithm to compute a parametric description
of the complete solution set of an ELCP. If we assume that x∗ and δ∗ are bounded from
above (i.e., δmax,green,i, δmax,red,i and the components of xmax are defined and different from
+∞), then the solution set of the system (26) – (29) is characterized by a set of vectors

V =

{[

x∗

i

δ∗i

] ∣

∣

∣

∣

∣

i = 1, 2, . . . , r

}

and a set of index sets Λ = {φj | j = 1, 2, . . . , p} with φj ⊆ {1, 2, . . . , r} for all j, such that for
any j any convex combination of the form

∑

i∈φj

νi

[

x∗

i

δ∗i

]
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with νi > 0 and
∑

i∈φj

νi = 1, is a solution of (26) – (29). The vectors of V correspond to vertices

of the polyhedron P defined by the system of linear equations and inequalities (26) – (28), and
each index set φj corresponds to a face of this polyhedron.

We could for each index set φj determine for which combination of the νi’s the objec-
tive function J reaches a global minimum and afterwards select the overall minimum. Our
computational experiments have shown that in most cases the determination of the minimum
value of the objective functions J1, J2, J4 and J5 over a face of P is a well-behaved problem
in the sense that using a local minimization routine (that uses, e.g., sequential quadratic
programming) starting from different initial points almost always yields the same numerical
result (within a certain tolerance). Furthermore, it can be shown that J3 is a convex function
of the νi’s (see [4]).

However, the general ELCP is an NP-hard problem [2, 3]. Furthermore, the vectors of V
correspond to vertices of the polyhedron defined by (26) – (28) and it can be shown that in the
worst case the number of vertices of a polyhedron defined by p (non-redundant) inequality

constraints in an n-dimensional space is O
(

p⌊
n
2 ⌋
)

if p ≫ n ≫ 1. This implies that the

approach sketched above is not feasible if the number of switching cycles N is large (see also
Example 5.1).

If N is large, we could consider a small number Ns of switching cycles, compute the
optimal switching strategy with the method given above, implement the first step(s) of this
strategy, and recompute the optimal switching strategy for the next Ns switching cycles. Note
that although the latter approach is feasible, it will only give a suboptimal solution! In the
remainder of this paper we shall call this approach the suboptimal multi-ELCP approach.
We could also apply this moving horizon strategy if the average arrival rates λ̄i and the
average departure rates µ̄i and κ̄i are slowly time-varying: we estimate the average arrival
and departure rates over a certain period (using measurements obtained from cameras or
loop detectors), compute the optimal control strategy and apply it for a certain number of
switching cycles. Meanwhile, we update our estimates of the λ̄i’s, µ̄i’s and the κ̄i’s, and then
we compute a new optimal control strategy for the updated values of the average arrival
and departure rates, and so on. This approach is called Model-Based Predictive Control or
Generalized Predictive Control (see, e.g., [1, 6]).

The objective functions J1, J2, J3, J4 and J5 do not explicitly depend on x∗ since for given
x0, λ̄i’s, µ̄i’s, κ̄i’s and δamb, the components of x∗ (i.e., the xk’s) are uniquely determined by
δ∗. So if there is no upper bound on xk, then problem (13) – (18) reduces to a constrained
optimization problem in δ∗, which could be solved using a constrained minimization proce-
dure. If xmax is finite we could still use this approach by adding an extra penalty term to J if
xk > xmax (see Example 5.1). The major disadvantage of this approach is that in general9 the
resulting objective function is neither convex nor concave so that the minimization routine
will only return a local minimum. Our computational experiments have shown that several
initial starting points are necessary to obtain the global minimum.

3.2 The relaxed problem and suboptimal solutions

In this section we shall make some extra approximations that will result in suboptimal traffic
light switching schemes that can be computed very efficiently but that approximate the exact

9Except for the objective function J3 with a convex penalty term.
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l̃il̃i

tktk tk+1

−δamb

tk+1

−δamb

tk+1tk+1 tk+2tk+2

(xk)i(xk)i
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(xk+1)i
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Figure 2: The functions li (full line) and l̃i (dashed line). During the red phase the functions
li and l̃i coincide. The left plot shows a situation in which the queue length does not become
0 during the green phase, whereas the right plot shows a situation where the queue length
becomes 0 during the green phase.

optimum rather well. We use the notation li(·, δ
∗) to indicate that the queue length function

li(·) corresponds to the switching interval vector δ∗.
Now we define some objective functions that can be considered as approximations to the

objective functions J1, J2, J3, J4 and J5. Although these approximations will lead to subopti-
mal solutions with respect to J1, J2, J3, J4 or J5, the corresponding optimization problems can
be solved much more efficiently. As has already been mentioned, we have already introduced
an extra approximation by considering continuous queue lengths. Furthermore, in practice
there is also some uncertainty and variation in time of the arrival and departure rates, which
makes that in general computing the exact optimal traffic light switching scheme is utopian.
Moreover, in practice we are more interested in quickly obtaining a good approximation of
the optimal traffic light switching scheme than in spending a large amount of time to obtain
the exact optimal switching scheme.

Recall that the objective functions J1, J2, J3, J4 and J5 do not explicitly depend on
x∗ since the components of x∗ are uniquely determined by δ∗. The approximate objective
functions that we introduce now will depend explicitly on x∗ and δ∗. For a given x0 and t0,
we define the function l̃i(·,x

∗, δ∗) — or l̃i(·) for short — as the piecewise-linear function that
interpolates in the points (tk, li(tk)) for k = 0, 1, . . . , N .
The approximate objective functions J̃l for l = 1, 2, 3, 4, 5, are defined as in (8) – (12) but with
li replaced by l̃i.
We shall show that the values of J3 and J̃3 coincide. Now let l ∈ {1, 2, 4, 5}. Note that the
value of the objective functions Jl and J̃l is determined by the surface under the functions li
and l̃i respectively. If the duration of the amber phase is zero and if the queue lengths never
become zero during the green phases, then the functions li and l̃i and the values of Jl and
J̃l coincide (cf. Figure 2). In practice, the length of the amber phase will be small compared
to the length of the green or the red phase. Furthermore, an optimal traffic light switching
scheme implies the absence of long periods in which no cars wait in one lane while in the other
lanes the queue lengths increase. So if we have an optimal traffic light switching scheme, then
the periods during which the queue length in some lane is equal to 0 are in general short. As
a consequence, for traffic light switching schemes in the neighborhood of the optimal scheme
J̃l will be a good approximation of Jl.

Proposition 3.1 Let x0 ∈ (R+)4, x∗ ∈ (R+)4N and δ∗ ∈ (R+
0 )

N . If x∗ and δ∗ are compat-
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(xk+1)i

(xk+1)i
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Figure 3: The evolution of the queue length li (full line) during a green phase and a subsequent
amber phase with λ̄i − κ̄i < 0 and λ̄i − µ̄i > 0 (on the left), and λ̄i − κ̄i < λ̄i − µ̄i < 0 (on
the right). Note that the assumption κ̄i 6 µ̄i implies that these situations cannot occur. The
function l̃i is represented by the dashed line.

ible for x0 then we have J3(δ
∗) = J̃3(x

∗, δ∗), and Jl(δ
∗) 6 J̃l(x

∗, δ∗) for l = 1, 2, 4, 5.

Proof : Let x∗ and δ∗ be compatible for x0.
We have assumed that κ̄i 6 µ̄i. Hence, λ̄i − κ̄i > λ̄i − µ̄i for all i. This implies that a

situation such as in the left plot of Figure 3 where λ̄i−µ̄i > 0 and λ̄i−κ̄i < 0 is not possible. As
a consequence, the maxima of the piecewise-linear functions li(·, δ

∗) and l̃i(·,x
∗, δ∗) coincide.

This implies that J3(δ
∗) = J̃3(x

∗, δ∗).
Let k ∈ Gi(N). So Ti is green in the interval (tk, tk+1 − δamb) and amber in (tk+1 −

δamb, tk+1). It is easy to verify that li(t, δ
∗) 6 l̃i(t,x

∗, δ∗) for all t ∈ (tk, tk+1) since κ̄i 6 µ̄i

(cf. Figures 2 and 3).
If k 6 N − 2 then Ti is red in the interval (tk+1, tk+2) and in this interval li and l̃i coincide.
This implies that li(t, δ

∗) 6 l̃i(t,x
∗, δ∗) for all t ∈ [t0, tN ]. Hence,

∫ tN

t0

li(t, δ
∗) dt 6

∫ tN

t0

l̃i(t,x
∗, δ∗) dt .

As a consequence, we have Jl(δ
∗) 6 J̃l(x

∗, δ∗) for l = 1, 2, 4, 5. ✷

Now we show that the use of the approximate objective function J̃1 or J̃4 leads to an opti-
mization problem that can be solved more efficiently than the original problem in which J1
or J4 is used.

Let P be the problem (13) – (18). We define the “relaxed” problem P̃ corresponding to
the original problem P as:

minimize J (30)

subject to

δmin,green,1 6 δ2k+1 − δamb 6 δmax,green,1 for k = 0, 1, . . . ,

⌊

N

2

⌋

− 1, (31)
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δmin,green,2 6 δ2k − δamb 6 δmax,green,2 for k = 0, 1, . . . ,

⌊

N − 1

2

⌋

, (32)

xk 6 xmax for k = 1, 2, . . . , N, (33)

x2k+1 > x2k + b1δ2k + b3 for k = 0, 1, . . . ,

⌊

N − 1

2

⌋

, (34)

x2k+1 > b5 for k = 0, 1, . . . ,

⌊

N − 1

2

⌋

, (35)

x2k+2 > x2k+1 + b2δ2k+1 + b4 for k = 0, 1, . . . ,

⌊

N

2

⌋

− 1, (36)

x2k+2 > b6 for k = 0, 1, . . . ,

⌊

N

2

⌋

− 1. (37)

Note that compared to the original problem we have replaced (17) – (18) by relaxed equations
of the form (19) – (20) without taking (21) into account.

Proposition 3.2 If J is a strictly monotonous function of x∗ — i.e., if for any δ∗ with
positive components and for all x̃∗, x̂∗ with 0 6 x̃∗ 6 x̂∗ and with x̃∗j < x̂∗j for at least one

index j, we have J(x̃∗, δ∗) < J(x̂∗, δ∗) — then any solution of the relaxed problem P̃ is also
a solution of the original problem P.

Proof : Let x̃∗, δ̃∗ be an optimal solution of P̃. Now we show by contradiction that if J
depends strictly monotonously on x∗, then x̃∗ also satisfies (17) – (18).
Assume that x̃∗ does not satisfy (17) – (18).

• First we assume that for some index k the vector x̃2k+1 does not satisfy (17). Let l be
the smallest index such that

x̃2l+1 > max(x̃2l + b1δ̃2l + b3, b5) and (x̃2l+1)i 6= max
(

(x̃2l + b1δ̃2l + b3)i, (b5)i
)

for some index i.
Now define δ̂∗ = δ̃∗ and

x̂∗ =











x̂1

x̂2
...

x̂N











with

x̂k = x̃k for k = 0, 1, . . . , 2l,

x̂2k+1 = max(x̂2k + b1δ̂2k + b3, b5) for k = l, l + 1, . . . ,

⌊

N − 1

2

⌋

,

x̂2k+2 = max(x̂2k+1 + b2δ̂2k+1 + b4, b6) for k = l, l + 1, . . . ,

⌊

N

2

⌋

− 1 .

Note that x̂2l+1 6 x̃2l+1. Let us now show that x̂2l+2 6 x̃2l+2. We have

x̂2l+2 = max(x̂2l+1 + b2δ̂2l+1 + b4, b6)

14



= max(x̂2l+1 + b2δ̃2l+1 + b4, b6) (since δ̂∗ = δ̃∗)

6 max(x̃2l+1 + b2δ̃2l+1 + b4, b6) (since x̂2l+1 6 x̃2l+1)

6 x̃2l+2 (by (36) and (37)).

In a similar way we can prove that x̂k 6 x̃k for k = 2l + 3, 2l + 4, . . . , N . Hence,
x̂∗ 6 x̃∗. Since x̃k 6 xmax for all k, this implies that x̂k also satisfies (33) for all k.
Furthermore, since δ̂∗ = δ̃∗, this implies that x̂k and δ̂k satisfy the inequalities of the
system (31) – (37) for all k.

• If x̃2k+1 satisfies (17) for all k, then there has to exist an index l such that (18) does
not hold for x̃2l+2 since we have assumed that x̃∗ does not satisfy (17) – (18). Now we
can use a reasoning that is similar to the one given above to construct x̂∗ and δ̂∗ such
that x̂∗ 6 x̃∗, x̂∗j < x̃∗j for some j and such that x̂k and δ̂k satisfy the inequalities of
the system (31) – (37) for all k.

Since x̂∗ 6 x̃∗ and x̂∗j < x̃∗j for at least one index j, we have J(x̂∗, δ̂∗) < J(x̃∗, δ̃∗) which

would imply that x̃∗, δ̃∗ is not an optimal solution of problem P̃. Since this is a contradiction,
our initial assumption that x̃∗ does not satisfy (17) – (18) is wrong. The solution set of (14) –
(18) is a subset of the solution set of (31) – (37). This implies that x̃∗, δ̃∗ also is an optimal
solution of the original problem P. So now we have proved that every optimal solution of the
relaxed problem P̃ is also an optimal solution of the original problem P. ✷

Note that in general it is easier to solve the relaxed problem P̃ since the set of feasible solutions
of P̃ is a convex set, whereas the set of feasible solutions of P is in general not convex since it
consists of a union of faces of the polyhedron defined by the system of inequalities (31) – (37).

Let us now show that J̃1 and J̃4 are strictly monotonous functions of x∗, i.e., that they
satisfy the conditions of Proposition 3.2.

Proposition 3.3 For given x0, δamb, λ̄i’s, µ̄i’s, κ̄i’s and a given δ∗ the functions J̃1 and J̃4
are strictly monotonous functions of x∗.

Proof : Let δ∗ ∈ (R+
0 )

N and let x̃∗, x̂∗ ∈ (R+)4N . If x̃∗ 6 x̂∗ and x̃∗j < x̂∗j for at least

one index j = 4(k − 1) + i then we have l̃i(t, x̃
∗, δ∗) 6 l̃i(t, x̂

∗, δ∗) for all t ∈ [t0, tN ], and
l̃i(t, x̃

∗, δ∗) < l̃i(t, x̂
∗, δ∗) in some non-empty interval (tk − η, tk + η) ∩ [t0, tN ] with η > 0.

Hence,
∫ tN

t0

l̃i(t, x̃
∗, δ∗) dt <

∫ tN

t0

l̃i(t, x̂
∗, δ∗) dt ,

which implies that J̃1(x̃
∗, δ∗) < J̃1(x̂

∗, δ∗) and J̃4(x̃
∗, δ∗) < J̃4(x̂

∗, δ∗). ✷

Consider δ∗ and x̃∗, x̂∗ with x̃∗ 6 x̂∗ and x̃∗j < x̂∗j for at least one index j. Note that although

J̃l(x̃
∗, δ∗) 6 J̃l(x̂

∗, δ∗) for l = 2, 3, 5, in general we do not have J̃l(x̃
∗, δ∗) < J̃l(x̂

∗, δ∗) for
l = 2, 3, 5. So J̃2, J̃3 and J̃5 are not strictly monotonous functions of x∗ for a given δ∗.

In general J̃1 and J̃4 are not convex functions of x∗ and δ∗ [4]. However, computational
experiments have shown that the objective functions J̃1 and J̃4 are smooth enough, so that
selecting different starting points for the optimization routine almost always leads to more or
less the same numerical result (cf. Example 5.1).
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Figure 4: The function l̃i in the interval (tk, tk+1).

We shall now discuss a further approximation of J̃1 (and J̃4) that will lead to a problem
that can be solved very efficiently. Let us first derive a formula to compute J̃1(x

∗, δ∗). The

value of

∫ tk+1

tk

l̃i(t,x
∗, δ∗) dt is equal to the surface of the trapezium determined by the points

(tk, 0), (tk, (xk)i), (tk+1, (xk+1)i) and (tk+1, 0) in the t– l̃i plane (see Figure 4). Hence,
∫ tk+1

tk

l̃i(t,x
∗, δ∗) dt =

δk

2

(

(xk)i + (xk+1)i
)

,

and thus

J̃1(x
∗, δ∗) =

4
∑

i=1

wi

N−1
∑

k=0

δk
(

(xk)i + (xk+1)i
)

2(δ0 + δ1 + . . .+ δN−1)
. (38)

If we assume that δk ≈
tN − t0

N
for all k then (38) leads to:

J̃1(x
∗, δ∗) ≈

4
∑

i=1

wi

(

1

2N
(x0)i +

N−1
∑

k=1

1

N
(xk)i +

1

2N
(xN )i

)

def
= Ĵ1(x

∗) .

Note that the right-hand side of this expression is a linear function of the components of x∗.

Since scaling of a linear objective function and subtracting a constant term

(

4
∑

i=1

1

2N
(x0)i

)

does not change the location of the minimum, this implies that we can minimize Jlin = ωTx∗

with

ω =
[

w1 w2 w3 w4 w1 . . . w4
w1

2

w2

2

w3

2

w4

2

]T

in order to find a minimum of Ĵ1. Since wi > 0 for all i, Jlin is a strictly monotonous function
of x∗. As a consequence, Proposition 3.2 implies that for J = Jlin problem (13) – (18) reduces
to a linear programming problem, which can be solved efficiently using (variants of) the
simplex method or using an interior point method (see, e.g., [15]). Note that the solution of
this linear programming problem could be used as a good initial starting point for an iterative
algorithm to compute a minimum of J1 or J̃1 using constrained optimization.
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Figure 5: Two neighboring intersections I1 and I2. The distance between the two intersections
is equal to ∆12.

4 Extensions of the basic model

Let us now discuss some extensions of the basic model that has been introduced in Section 2.
In the previous sections we have assumed that δamb was a known constant. However, it is

easy to verify that if δamb is a variable (or even if it depends on k) the model of the system can
still be recast as an ELCP and all the techniques developed in Section 3 can still be applied.

The simplified model of Section 2 can easily be adapted to a situation in which some
streets consist of more than 2 lanes. Furthermore, our model can also be adapted to a
situation in which there is a difference in the departure rates for vehicles that turn left, right
or go straight ahead (provided that the ratios between these three types of traffic are constant
or slowly time-varying). This ratios can be measured using cameras or can be predicted using
estimation techniques for intersection origin-destination matrices (see, e.g., [16, 18]).

If we want to extend our approach to intersections of networks, then the main difficulty for
a centralized solution is the fact that the cycle time may vary from one cycle to another. One
possible solution is to add an extra equation of the form δ2k + δ2k+1 = T where T is the fixed
cycle time for the main road. To determine T we can use the conventional approaches. Note
that in order to obtain synchronization the travel time between two neighboring intersections
on the main road should be an integer multiple of T . It is easy to verify that once T has been
determined, we still have an ELCP.
Note that if we use a moving horizon strategy in combination with a decentralized control
solution, we can apply the approach given in this paper and use measurements from one
intersection to better predict the arrival rates at the other intersections as follows. Consider
a two neighboring intersections I1 and I2 on a main road (see Figure 5). Suppose that the
distance between intersection I1 and intersection I2 is ∆12 and that the average speed on
the trajectory from I1 to I2 is v12. The travel time from I1 to I2 is then approximately

t12 =
∆12

v12
. Now assume that t12 is larger than the average cycle time at I2. Let rij be the

ratio of vehicles that enter intersection I1 at lane Li and leave it via the lane next to lane Lj

(see, e.g., [16, 18] for methods to estimate these ratios). If we measure the number of cars
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that leave intersection I1 in the direction of I2 at time t, or if we measure the arrival rates
in lanes L1, L2 and L4 at time t and if we have an accurate estimation of the ratios r13, r23,
and r43 at time t, we can get a good estimate or prediction of the arrival rate of cars arriving
at intersection I2 from the direction of I1 at time t+ t12. These predictions can then be used
by a local controller to determine (sub)optimal traffic light switching schemes for I2 using a
moving horizon strategy. A similar approach can be used for the traffic arriving at I1 and
coming from I2.

For more information on other models that describe the evolution of the queue lengths at a
traffic-light-controlled intersection and on optimal traffic light control the interested reader is
referred to [5, 7, 11, 12, 13, 14, 17, 19, 23] and the references given therein.

5 Example

With this example we want to illustrate that using the approximations introduced in the Sec-
tion 3.2 for the objective functions J1 (or equivalently J4) leads to good suboptimal solutions
that can be computed very efficiently. All times will be expressed in seconds and all rates in
vehicles per second.

Example 5.1 Consider the intersection of Figure 1 with the following data: λ̄1 = 0.25,
λ̄2 = 0.12, λ̄3 = 0.20, λ̄4 = 0.1, µ̄1 = µ̄3 = 0.5, µ̄2 = µ̄4 = 0.4, κ̄1 = κ̄3 = 0.05, κ̄2 = κ̄4 = 0.03,
x0 = [ 20 19 14 12 ]T , δamb = 3, δmin,green,1 = δmin,green,2 = 6, δmax,green,1 = δmax,green,2 = 60,
xmax = [ 25 20 25 20 ]T . Let w = [ 2 1 2 1 ]T . Suppose that we want to compute a traffic
light switching sequence t0, t1, . . . , t7 that minimizes J1 — the weighted average queue length
over all queues10.
First we compute the solution set of the ELCP defined by (26) – (29) using the ELCP algo-
rithm of [2, 3]. This yields a set V consisting of 818 vertices and a set Λ consisting of 21 index
sets. Optimizing J1 over the solution set of the ELCP yields the following optimal switching
interval vector11:

δ∗ELCP = [ 20.000 45.750 30.964 63.000 30.964 63.000 58.980 ]T

(see Table 2 for the values of the objective functions and Figure 6 for the evolution of the
queue lengths).
Next we use the e04ucf routine12 of the NAG library [21] to compute a solution δ∗pen that
minimizes the objective function

F (δ) = J1(δ) + αmin

(

5000N
∑

(i,k)∈Γ

(

(xk(δ))i − (xmax)i
)

,
∑

(i,k)∈Γ

eβ
(

(xk(δ))i−(xmax)i

)

)

10We limit ourselves to a traffic light switching sequence with N = 7, since for higher values of N the ELCP
approach is not feasible any longer since it takes too much CPU time. Nevertheless, in this example we also use
the ELCP approach since we want to compare the approximate suboptimal solutions with the exact optimal
solution, which is obtained using the ELCP approach.

11In this example we give all numerical results up to 3 decimal places.
12This function uses a Sequential Quadratic Programming method to find a local minimum of a constrained

multivariable function. We have listed the best solution over 20 runs with random initial points. The mean
of the objective values of the local minima returned by the minimization routine was 65.905 with a standard
deviation of 3.437.
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δ∗,x∗ J1(δ
∗) J̃1(x

∗, δ∗) Ĵ1(x
∗, δ∗) Jlin(x

∗) CPU time

δ∗ELCP,x
∗

ELCP 60.657 64.267 69.190 434.827 404.83

δ∗pen,x
∗

pen 61.150 64.740 69.916 439.909 78.69

δ∗mul,x
∗

mul 61.613 65.118 67.881 425.664 13.83

δ̃∗, x̃∗ 60.659 64.264 69.117 434.319 2.49

δ∗lin,x
∗

lin 64.551 67.905 67.199 420.895 0.94

δ∗con,x
∗

con 63.101 66.363 67.565 423.455 96.40

Table 2: The values of the objective functions J1, J̃1, Ĵ1 and Jlin (up to 3 decimal places) and
the CPU time (up to 2 decimal places) needed to compute respectively an optimal solution
of the ELCP problem (δ∗ELCP), the original switching problem P using a penalty function

(δ∗pen), the suboptimal multi-ELCP problem (δ∗mul), the relaxed problem P̃ (δ̃∗), the linear
programming problem (δ∗lin) and the constant cycle length problem (δ∗con) of Example 5.1.
The queue length vectors x∗ are compatible with the switching interval vectors δ∗ for x0.

with
α = 10, β = 5 and Γ = {(i, k) | (xk(δ))i > (xmax)i},

where {xk(δ)}
N
k=1 is the sequence of 4-component queue length vectors that is compatible

with δ. The second term in the function F is a penalty term that is used to force the xk’s to
satisfy the condition xk 6 xmax. This leads to

δ∗pen = [ 19.388 44.323 31.029 63.000 36.044 63.000 57.835 ]T .

Now we compute a suboptimal multi-ELCP solution δ∗mul by solving a number of smaller
ELCPs with Ns = 3 and each time (except for the last) selecting the first switching interval.
This results in

δ∗mul = [ 20.000 45.750 30.964 63.000 30.964 63.000 29.421 ]T .

Next we use the e04ucf routine to compute a solution x̃∗, δ̃∗ that minimizes the approximate
objective function J̃1 (using the relaxed problem P̃). This yields13:

δ̃∗ = [ 20.000 45.750 30.964 63.000 30.964 63.000 57.342 ]T .

Then we use the e04mbf function14 of the NAG library to compute a solution x∗

lin, δ
∗

lin to

minimize the linear objective function Jlin(x
∗) = [ 2 1 2 1 . . . 1 1

1

2
1

1

2
]x∗ using the

relaxed problem P̃. We obtain:

δ∗lin = [ 20.000 45.750 40.350 63.000 21.579 63.000 9.000 ]T .

13In this case using different starting points always leads to more or less the same numerical value of the
optimal objective function: in an experiment with 20 random starting points the first 10 decimal places of
the final objective function always had the same value. Therefore, we have only performed one run with an
arbitrary random initial point here.

14This function solves linear programming problems.

19



0 50 100 150 200 250 300 350
0

5

10

15

20

25

 

 

q
u
eu
e
le
n
gt
h

time

δ∗ELCP

l1
l2
l3
l4

0 50 100 150 200 250 300 350
0

5

10

15

20

25

 

 

q
u
eu
e
le
n
gt
h

time

δ∗pen

l1
l2
l3
l4

0 50 100 150 200 250 300 350
0

5

10

15

20

25

 

 

q
u
eu
e
le
n
gt
h

time

δ∗mul

l1
l2
l3
l4

0 50 100 150 200 250 300 350
0

5

10

15

20

25

 

 

q
u
eu
e
le
n
gt
h

time

δ̃∗

l1
l2
l3
l4

0 50 100 150 200 250 300 350
0

5

10

15

20

25

 

 

q
u
eu
e
le
n
gt
h

time

δ∗lin

l1
l2
l3
l4

0 50 100 150 200 250 300 350
0

5

10

15

20

25

 

 

q
u
eu
e
le
n
gt
h

time

δ∗con

l1
l2
l3
l4

Figure 6: The queue lengths in the various lanes as a function of time for the traffic light
switching sequences that correspond to the switching interval vectors of Example 5.1. The *
signs on the time axis correspond to the switching time instants.
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In order to compare our approach with a fixed cycle length approach we compute an optimal
switching interval vector δ∗con that also satisfies the following extra constraints: δ1 + δ2 =
δ3 + δ4 = δ5 + δ6 (i.e., the length of the green-amber-red cycle for the main lanes L1 and L3

is constant). Using the ELCP approach15 we obtain:

δ∗con = [ 20.000 45.750 40.350 63.000 21.300 63.000 21.300 ]T .

Many conventional methods for determining optimal traffic light switching schemes use a two
level approach: first the cycle length is determined and then the lengths of the green and red
phases in each cycle are determined. Note that we can use a one level approach to determine
δ∗con since we optimize both the cycle length and the phase lengths in one step.
The evolution of the queue lengths for the various control strategies is represented in Figure 6.
In Table 2 we have listed the values of the various objective functions for the various switching
interval vectors and the CPU time16 needed to compute the switching interval vectors. Note
that in this example the ELCP solution is only given as a reference since the CPU time
needed to compute the optimal switching interval vector using the ELCP algorithm of [2, 3]
increases exponentially as N increases, which implies that the ELCP approach should never
be used in practice, but one of the approximate objective functions should be used instead. If
we look at Table 2 then we see that the δ̃∗ solution outperforms all other solutions except for
the ELCP solution. Although this will in general not always be the case, we have noticed in
our experiments that the objective value for this solution will always be close to the optimal
value. Moreover, if we take the trade-off between optimality and efficiency into account, then
the δ̃∗ solution is clearly the most interesting.

Let us now use the optimal switching interval vector δ∗ELCP in an integer queue length
simulation. In Figure 7 we have plotted the results of this simulation. The effective average
queue length over all lanes J1,sim for this simulation is 61.77017. ✷

6 Conclusions and further research

We have derived a model that describes the evolution of the queue lengths at an intersection
of two two-way streets with controllable traffic lights on each corner. We have shown how an
optimal traffic light switching scheme for the given system can be determined. In general this
leads to a minimization problem over the solution set of an Extended Linear Complementarity
Problem. We have shown that for objective functions that depend strictly monotonously on
the queue lengths at the traffic light switching time instants, the optimal traffic light switch-
ing scheme can be computed very efficiently. We have derived some approximate objective
functions for which this property holds. Moreover, if the objective function is linear, the
problem reduces to a linear programming problem.

15It easy to verify that in this case we can also use the approximations introduced in Section 3.2 to obtain
suboptimal solutions.

16CPU time on a SUN Ultra 2 Creator 2200 workstation with 128 M RAM and with the optimization
routines called from MATLAB. The ELCP algorithm of [2, 3] has been implemented in C and for the NAG
optimization routines (implemented in Fortran) the NAG Foundation Toolbox [20] of MATLAB has been used.
The CPU time values listed in this table are average values over 10 experiments. For δ

∗

pen
we have given the

total CPU time for 20 runs, each with a different random starting point.
17For 20 different simulation experiments, all with the switching interval vector δ

∗

ELCP
, the mean value of

J1,sim was 61.178 with a standard deviation of 2.209.
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Figure 7: The queue lengths in the various lanes as a function of time for an integer queue
length simulation for the traffic light switching sequence that corresponds to the switching
interval vector δ∗ELCP. The integer queue length functions are plotted in full lines and their
continuous approximations in dotted lines.

Topics for further research include: extension to models with integer queue lengths, further
extension or modification of our approach to switching schemes with a fixed cycle time (such
that it might also be used for networks of intersections); development of efficient algorithms
to compute optimal traffic light switching schemes for the objective functions discussed in
this paper; for other objective functions (such as intersection output or number of stops), and
for more general (combined) objective functions; and development and design of neural and
fuzzy traffic light controllers for single intersections and for networks of intersections.
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Optimal traffic light control for a single intersection:

Addendum

Bart De Schutter and Bart De Moor

In this addendum we give some extra propositions, proofs and examples in connection
with the model for the evolution of the queue lengths at the switching time instants that we
have derived in Section 2, and in connection with the design of optimal traffic light switching
schemes for this model.

In Section A we derive necessary and sufficient conditions for stability of this system
under a periodic traffic light switching policy. In Section B we consider an oversaturated
intersection, i.e., an intersection for which the queue lengths never become equal to 0 (except
possibly at the end of a green or an amber phase). In Section C we derive expressions that
give the value of the objective functions J1, J2, J3, J4, J5 as a function of the switching
time instants and the queue lengths at the switching time instants. In Section D we discuss
the convexity and the concavity of the objective functions J1, J2, J3, J4 and J5. Finally, in
Section E we discuss another approximation of J1 and J4 that is also strictly monotonous as
a function of the queue length vector.

A Stability

Now we discuss the conditions under which the system is “stable”, i.e., has queue lengths
that remain bounded as k goes to infinity. We assume that after a finite number, say 2K, of
switching cycles the switching scheme reaches a periodic regime, i.e., δ2k = δe and δ2k+1 = δo
for all k > K.
If we consider lane L1, then there arrive λ̄1(δe+δo) vehicles during one complete green-amber-
red cycle and (at most) µ̄1(δo − δamb) + κ̄1δamb vehicles leave lane L1. So in order to prevent
an unlimited growth of the queue length the following condition should hold:

µ̄1(δo − δamb) + κ̄1δamb > λ̄1(δe + δo) .

If we write down similar conditions for the other lanes, we obtain the following necessary and
sufficient conditions for stability:

(µ̄1 − λ̄1)δo − λ̄1δe > (µ̄1 − κ̄1)δamb (39)

−λ̄2δo + (µ̄2 − λ̄2)δe > (µ̄2 − κ̄2)δamb (40)

(µ̄3 − λ̄3)δo − λ̄3δe > (µ̄3 − κ̄3)δamb (41)

−λ̄4δo + (µ̄4 − λ̄4)δe > (µ̄4 − κ̄4)δamb . (42)

Together with the conditions δmin,green,1 6 δo−δamb 6 δmax,green,1 and δmin,green,2 6 δe−δamb 6

δmax,green,2, the conditions (39) – (42) define a convex region in the δo–δe plane. Note that
adding conditions of this form to the conditions (14) - (18) of the optimal traffic light control
problem still leads to an ELCP.
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B Non-saturated versus oversaturated intersections

If we consider an oversaturated network then the queue lengths never become 0 during the
green cycle (except possibly at the end of a green or an amber phase). In that case the
maximum operator in (4) and (5), and thus also in (6) – (7) is not needed any more, and then
we get the following model:

x2k+1 = x2k + b1δ2k + b3 (43)

x2k+2 = x2k+1 + b2δ2k+1 + b4 (44)

for k = 0, 1, 2, . . . with the extra constraints

x2k+1 > b5

x2k+2 > b6

for k = 0, 1, 2, . . . to ensure that the queue lengths are nonnegative at the end of the green
and the amber phase. It is easy to verify that (43) and (44) lead to

x2k+1 = x0 +

k
∑

j=0

b1δ2j +

k−1
∑

j=0

b2δ2j+1 + (k + 1)b3 + kb4

x2k+2 = x0 +
k
∑

j=0

b1δ2j +
k
∑

j=0

b2δ2j+1 + (k + 1)b3 + (k + 1)b4 .

As a consequence, the optimal traffic light control problem now becomes

minimize J

subject to

δmin,green,1 6 δ2k+1 − δamb 6 δmax,green,1 for k = 0, 1, . . . ,

⌊

N

2

⌋

− 1,

δmin,green,2 6 δ2k − δamb 6 δmax,green,2 for k = 0, 1, . . . ,

⌊

N − 1

2

⌋

,

b5 6 x0 +
k
∑

j=0

b1δ2j +
k−1
∑

j=0

b2δ2j+1+

(k + 1)b3 + kb4 6 xmax for k = 0, 1, . . . ,

⌊

N − 1

2

⌋

,

b6 6 x0 +
k
∑

j=0

b1δ2j +
k
∑

j=0

b2δ2j+1+

(k + 1)b3 + (k + 1)b4 6 xmax for k = 0, 1, . . . ,

⌊

N

2

⌋

− 1.
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δ̃∗, x̃∗ J1(δ̃
∗) J̃1(x̃

∗, δ̃∗)

δ∗ELCP,x
∗

ELCP 60.657 64.267

δ̃∗, x̃∗ 60.659 64.264

δ∗lin,x
∗

lin 64.551 67.905

δ∗os,x
∗

os 72.658 74.452

Table 3: The values of the objective functions J1 and J̃1 (up to 3 decimal places) for the
traffic light switching sequences defined by the switching interval vectors δ∗ELCP, δ̃

∗, δ∗lin of
Example 5.1 and the switching interval vector δ∗os of Example B.1. The queue length vectors
x∗ are compatible with the switching interval vectors δ∗ for x0.

The feasible region of this optimization problem is convex, which implies that it can be
solved more efficiently than the optimization problem (13) – (18). However, the following
example shows that in general applying the oversaturated model (43) – (44) to non-saturated
intersections does not lead to an optimal solution. Therefore we could say that the use of
the maximum operator will in the first instance lead to complex optimization problems —
but for which some approximations lead to good suboptimal solutions that can be computed
very efficiently as has been shown in Section 3.2 — whereas omitting the maximum operator
initially leads to simpler models but finally results in control schemes that for non-saturated
intersections have an inferior performance.

Example B.1 Consider the intersection of Figure 1 with the same data as in Example 5.1:
λ̄1 = 0.25, λ̄2 = 0.12, λ̄3 = 0.20, λ̄4 = 0.1, µ̄1 = µ̄3 = 0.5, µ̄2 = µ̄4 = 0.4, κ̄1 = κ̄3 = 0.05,
κ̄2 = κ̄4 = 0.03, x0 = [ 20 19 14 12 ]T , δamb = 3, δmin,green,1 = δmin,green,2 = 6, δmax,green,1 =
δmax,green,2 = 60, xmax = [ 25 20 25 20 ]T and w = [ 2 1 2 1 ]T . Suppose that we want to
compute a traffic light switching sequence t0, t1, . . . , t7 that minimizes J1.
In Example 5.1 we have computed several suboptimal switching interval vectors based on the
model (6) – (7). Let us now compute a minimum δ∗os of the objective function J1 based on the
model (43) – (44) for oversaturated intersections using the e04ucf routine of the NAG library.
This results in18

δ∗os = [ 20.000 45.750 18.600 34.150 38.433 30.122 13.741 ]T .

In Table 3 we have listed the values of the objective functions for the switching interval
vectors δ∗ELCP (the optimal solution of the original problem using the ELCP approach), δ̃∗ (the
optimal solution of the relaxed problem), δ∗lin (the optimal solution of the linear programming
problem) and δ∗os. The evolution of the queue lengths for the various control strategies is
represented in Figures 6 and 8.
Clearly, the suboptimal solutions based on the model (6) – (7) correspond to much lower
values of the objective function J1 than the optimal solution based on the model (43) – (44)
for oversaturated intersections. ✷

18We have listed the best solution over 20 runs with random initial points. The mean of the objective values
of the local minima returned by the minimization routine was 73.717 with a standard deviation of 1.336.
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Figure 8: The queue lengths in the various lanes as a function of time for the traffic light
switching sequence that corresponds to the switching interval vector δ∗os of Example B.1. The
* signs on the time axis correspond to the switching time instants.

C Evaluation of the objective functions

Let x0 ∈ (R+)4, δ∗ ∈ (R+
0 )

4N and let {δk}
N−1
k=0 be the sequence of switching time intervals

that corresponds to δ∗. First we derive a formula that expresses J3(δ
∗) as a function of the

sequence of queue length vectors {xk}
N
k=0 that is compatible with {δk}

N−1
k=0 for a given x0.

We have assumed that κ̄i 6 µ̄i for all i. Recall that this implies that a situation such as in the
left plot of Figure 3 where λ̄i− µ̄i > 0 and λ̄− i− κ̄i < 0 is not possible. So if k ∈ Gi, then the
maximum value of li in the interval (tk, tk+1) where Ti is first green and then amber will be
reached in tk or in tk+1. Furthermore, in an interval (tk+1, tk+2) where Ti is red the maximum
value of li will be reached in tk+1 or in tk+2. Since li(·, δ

∗) is a piecewise-linear function,
this implies that li reaches its maximum over the interval [t0, tN ] in one of the switching time
instants tk. As a consequence, we have

J3(δ
∗) = max

i, k

(

wi(xk)i
)

.

Now we derive a formula for the evaluation of
∫ tN

t0

l1(t) dt =
N−1
∑

k=0

∫ tk+1

tk

l1(t) dt .

Define yk = (xk)1 = l1(tk) for k = 0, 1, . . . , N and ỹ2k+2 = l1(t2k+2 − δamb) for k =

0, 1, . . . ,

⌊

N

2

⌋

− 1. Note that

ỹ2k+2 = max(y2k+1 + (λ̄1 − µ̄1)(δ2k+1 − δamb), 0) .
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Figure 9: Three possible basic cases for the evolution of the queue length l1 as a function of
time t in an interval (t2k, t2k+1) where the traffic light is red, or in an interval (t2k+1, t2k+2 −
δamb) where the traffic light is green.

If we want to evaluate

∫ te

tb

l1(t) dt where tb and te are respectively the beginning and the end

of a red or a green phase, there are three possible basic cases (see Figure 9).

• In an interval of the form (t2k, t2k+1) the light is red, which means that l1 is a nonde-

creasing function. In this case

∫ t2k+1

t2k

l1(t) dt is equal to the surface of the trapezium

defined by the points (t2k, 0), (t2k, y2k), (t2k+1, y2k+1) and (t2k+1, 0). Hence,

∫ t2k+1

t2k

l1(t) dt =
y2k + y2k+1

2
δ2k . (45)

• In an interval of the form (t2k+1, t2k+2 − δamb) the light is green. If the queue length l1
is identically 0 in (t2k+1, t2k+2 − δamb) or if l1 never becomes 0 in (t2k+1, t2k+2 − δamb),
∫ t2k+2−δamb

t2k+1

l1(t) dt is equal the surface of the trapezium defined by the points (t2k+1, 0),

(t2k+1, y2k+1), (t2k+2 − δamb, ỹ2k+2) and (t2k+2 − δamb, 0). So,

∫ t2k+2−δamb

t2k+1

l1(t) dt =
y2k+1 + ỹ2k+2

2
(δ2k+1 − δamb) if ỹ2k+2 6= 0 . (46)

• If the queue length l1 becomes 0 in the interval (t2k+1, t2k+2−δamb),

∫ t2k+2−δamb

t2k+1

l1(t) dt

is equal to the surface of the triangle defined by the points (t2k+1, 0), (t2k+1, y2k+1),
(t̂2k+1, 0) where t̂2k+1 is the smallest value of t ∈ (t2k+1, t2k+2−δamb) for which l1(t) = 0
(see Figure 9(c)). Since in this case the absolute value of the slope of l1(t) is equal to
µ̄1 − λ̄1 in (t2k+1, t2k+2 − δamb), we have y2k+1 = (µ̄1 − λ̄1)(t̂2k+1 − t2k+1) and thus

t̂2k+1 − t2k+1 =
y2k+1

µ̄1 − λ̄1

. As consequence, we have

∫ t2k+2−δamb

t2k+1

l1(t) dt =
y22k+1

2(µ̄1 − λ̄1)
if ỹ2k+2 = 0 . (47)
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Before we consider the amber phase, we shall show that the expressions (46) and (47) for the
green phase also cover expression (45) for the red phase if the appropriate changes of variables
are made, i.e., we shall prove that

∫ t2k+1

t2k

l1(t) dt =











y2k + y2k+1

2
δ2k if y2k+1 6= 0 ,

y22k+1

2λ̄1

if y2k+1 = 0 .
(48)

If the queue length y2k+1 at the end of the red phase is different from 0, then (45) corresponds
to the first case of (48). On the other hand, if y2k+1 is equal to 0, then y2k will also be zero
since l1 is nondecreasing in (t2k, t2k+1). So then both (45) and the second case of (48) yield
0.

When the traffic light is amber (i.e., in an interval of the form (t2k+1 − δamb, t2k+2)), we
either have the situation of case (a) if the queue length is nondecreasing in the given interval
(i.e., if λ̄i−κ̄i > 0), or case (b) or (c) if the queue length is decreasing in the given interval (i.e.,
if λ̄i − κ̄i < 0). Since expressions (46) and (47) also cover expression (45) if the appropriate
changes of variables are made, this implies that

∫ t2k+2

t2k+2−δamb

l1(t) dt =















ỹ2k+2 + y2k+2

2
δamb if y2k+2 6= 0 ,

ỹ22k+2

2(κ̄1 − λ̄1)
if y2k+2 = 0 .

So

∫ tN

t0

l1(t) dt =

⌊N−1
2 ⌋
∑

k=0

y2k + y2k+1

2
δ2k +

⌊N
2 ⌋−1
∑

k=0
ỹ2k+2 6=0

y2k+1 + ỹ2k+2

2
(δ2k+1 − δamb) +

⌊N
2 ⌋−1
∑

k=0
ỹ2k+2=0

y22k+1

2(µ̄1 − λ̄1)
+

⌊N
2 ⌋−1
∑

k=0
y2k+2 6=0

ỹ2k+2 + y2k+2

2
δamb +

⌊N
2 ⌋−1
∑

k=0
y2k+2=0

ỹ22k+2

2(κ̄1 − λ̄1)
.

We can write down similar expressions for

∫ tN

t0

li(t) dt for i = 2, 3, 4.

D Convexity or concavity of the objective functions

First we show that J3 is convex as a function of δ∗, which implies that problem (13) – (18)
with J = J3 can be solved efficiently (if there is no upper bound on the queue lengths or if
we introduce a convex penalty term if one or more components of xmax are finite).

Proposition D.1 For given x0, δamb, λ̄i’s, µ̄i’s and κ̄i’s the function J3 is convex as a
function of δ∗.
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Proof : In Section C we have already shown that

J3(δ
∗) = max

i, k

(

wi(xk)i
)

(49)

if x∗ and δ∗ are compatible for a given x0.
Let x0 ∈ (R+)4 and consider δ∗,η∗ ∈ (R+

0 )
N . Let {δk}

N−1
k=0 and {ηk}

N−1
k=0 be the sequences of

switching time intervals that correspond to δ∗ and η∗ respectively. Define y0 = z0 = x0. Let
the sequences {xk}

N
k=0 and {yk}

N
k=0 be compatible with {δk}

N−1
k=0 and {ηk}

N−1
k=0 respectively.

Consider an arbitrary number u ∈ [0, 1] and let the sequence {zk}
N
k=0 be compatible with the

sequence {uδk + (1− u)ηk}
N−1
k=0 .

Note that the sequences {xk}
N
k=0, {yk}

N
k=0 and {zk}

N
k=0 all satisfy recurrence equations of the

form (6) – (7).
Let us now show by induction that

zk 6 uxk + (1− u)yk for k = 0, 1, . . . , N . (50)

We have z0 = ux0 + (1− u)y0 = ux0 + (1− u)x0 = x0.
Now we assume that zk 6 uxk +(1−u)yk for k = 0, 1, . . . ,K with K < N and we show that
zK+1 6 uxK+1 + (1− u)yK+1.
Suppose that K is even. Hence, K = 2l for some integer l. Now we have

ux2l+1 + (1− u)y2l+1

= u max(x2l + b1δ2l + b3, b5)+

(1− u) max(y2l + b1η2l + b3, b5) (by (6))

= max
(

u(x2l + b1δ2l + b3) + (1− u)(y2l + b1η2l + b3),

u(x2l + b1δ2l + b3) + (1− u)b5,

ub5 + (1− u)(y2l + b1η2l + b3), ub5 + (1− u)b5
)

> max
(

u(x2l + b1δ2l + b3) + (1− u)(y2l + b1η2l + b3), b5
)

> max
(

ux2l + (1− u)y2l+

b1
(

uδ2l + (1− u)η2l
)

+ b3, b5

)

> max
(

z2l + b1
(

uδ2l + (1− u)η2l
)

+ b3, b5

)

(by the induction hypothesis)

> z2l+1 .

If K = 2l + 1 is odd, then we can show in a similar way that ux2l+2 + (1− u)y2l+2 > z2l+2.
As a consequence, we have

J3(uδ
∗ + (1− u)η∗) = max

i, k

(

wi(zk)i
)

(by (49))

6 max
i, k

(

wi(uxk + (1− u)yk)i
)

(by (50))

6 umax
i, k

(

wi(xk)i
)

+ (1− u)max
i, k

(

wi(yk)i
)

6 uJ3(δ
∗) + (1− u)J3(η

∗) (by (49)) ,

which implies that J3 is convex as a function of δ∗. ✷
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Proposition D.2 Let the set of feasible solutions of the ELCP that corresponds to a given

optimal traffic light switching problem be characterized by the set of vertices V =

{

[

x∗

i

δ∗i

]

∣

∣

∣

∣

i =

1, 2, . . . , r

}

and the set of index sets Λ. Let φj = {i1, i2, . . . , is} ∈ Λ. Then the function

J3

(

s
∑

j=1

νjδ
∗

ij

)

with νj > 0 for all j and
s
∑

j=1

νj = 1 is a convex function of the νj’s.

Proof : Note that we may assume without loss of generality that φj = {1, 2, . . . , s}. Let

ν =
[

ν1 ν2 . . . νs
]T

with νj > 0 for all j and
s
∑

j=1

νj = 1. Let δ∗(ν) =
s
∑

j=1

νjδ
∗

j and

x∗(ν) =
s
∑

j=1

νjx
∗

j . Let {xj,k}
N
k=1 be the sequence of 4-component queue length vectors that

corresponds to the 4N -component queue length vector x∗

j for j = 1, 2, . . . , s.

Define I3(ν) = J3(δ
∗(ν)) = J3

(

s
∑

j=1

νjδ
∗

j

)

. Now we prove that I3 is a convex function.

Since

[

x∗(ν)

δ∗(ν)

]

is a convex combination of

[

x∗

1

δ∗1

]

,

[

x∗

2

δ∗2

]

, . . . ,

[

x∗

s

δ∗s

]

, it is also a solution

of the ELCP that corresponds to the given optimal traffic light switching problem. As a
consequence, x∗(ν) and δ∗(ν) are compatible for the given x0. This implies that

I3(ν) = max
i, k



wi

(

s
∑

j=1

νj(xj,k)i

)

, wi(x0)i



 (by (49)).

Let η =
[

η1 η2 . . . ηs
]T

with ηj > 0 for all j and
s
∑

j=1

ηj = 1. Let u ∈ [0, 1]. Note that

uνj +(1−u)ηj > 0 for all j and that
s
∑

j=1

uνj +(1−u)ηj = u+(1−u) = 1. As a consequence,

we have

I3(uν + (1− u)η) = max
i, k



wi

(

s
∑

j=1

(uνj + (1− u)ηj)(xj,k)i

)

, wi(x0)i





= max
i, k



u

(

wi

s
∑

j=1

νj(xj,k)i

)

+ (1− u)

(

wi

s
∑

j=1

ηj(xj,k)i

)

,

uwi(x0)i + (1− u)wi(x0)i





6 u max
i, k

(

wi

s
∑

j=1

νj(xj,k)i, wi(x0)i

)

+
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(1− u)max
i, k

(

wi

s
∑

j=1

ηj(xj,k)i, wi(x0)i

)

6 uI3(ν) + (1− u)I3(η) .

So I3 is convex. Hence, J3 is a convex function of the νi’s. ✷

Note that the objective functions J1, J2, J4 and J5 do not depend directly on x∗ since for
given λ̄i’s, µ̄i’s, κ̄i’s, x0 and δamb the switching interval vector δ∗ uniquely determines x∗.
The following example shows that J1, J2, J4 and J5 are in general neither convex nor concave
as a function of δ∗. Recall that we use the notation li(·, δ

∗) to indicate that the queue length
function li(·) corresponds to the switching interval vector δ∗.

Example D.3 Let δamb = 3 and λ̄i = 0.25, µ̄i = 0.5, κ̄i = 0 for i, 1, 2, 3, 4. Let

x0 =









2
0
2
0









, w =









1
1
1
1









, δ∗1 =

[

10
10

]

, δ∗2 =

[

10
30

]

and δ∗3 =

[

10
20

]

.

In Figure 10 we have plotted the evolution of l1 as a function of time for the switching

sequences defined by δ∗1, δ
∗

2, δ
∗

3 =
δ∗1 + δ∗2

2
and δ∗4 =

δ∗1 + δ∗3
2

.

Define

f(δ∗) =

∫ tN

t0

l1(t, δ
∗) dt

tN − t0
.

We have f(δ∗1) ≈ 3.363, f(δ∗2) ≈ 1.853,

f
( δ∗1 + δ∗2

2

)

≈ 2.492 and
f(δ∗1) + f(δ∗2)

2
≈ 2.608 .

So

f
( δ∗1 + δ∗2

2

)

<
f(δ∗1) + f(δ∗2)

2
,

which implies that f is not concave.
On the other hand, we have f(δ∗1) ≈ 3.363, f(δ∗3) ≈ 2.492,

f
( δ∗1 + δ∗3

2

)

= 2.965 and
f(δ∗1) + f(δ∗3)

2
≈ 2.927 .

So

f
( δ∗1 + δ∗3

2

)

>
f(δ∗1) + f(δ∗3)

2
,

which implies that f is not convex.
As a consequence, the objective functions J1, J2, J4 and J5 are in general neither convex

nor concave.
Indeed, we have

Jl

( δ∗1 + δ∗2
2

)

<
Jl(δ

∗

1) + Jl(δ
∗

2)

2
and

Jl

( δ∗1 + δ∗3
2

)

>
Jl(δ

∗

1) + Jl(δ
∗

3)

2
for l = 1, 2, 4, 5 (see Table 4). ✷
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Figure 10: The evolution of the queue length in lane L1 as a function of time for the switching

interval vectors δ∗1, δ
∗

2, δ
∗

3 =
δ∗1 + δ∗2

2
and δ∗4 =

δ∗1 + δ∗3
2

of Example D.3. The * signs on the

time axis correspond to the switching time instants.

Let us now look at the convexity or concavity of the objective functions over the faces that
constitute the solution set of the ELCP defined by (26) – (29).

In the next proposition we shall make the following extra assumption:

• in each lane, the average departure rate when the light is amber is less than the average
arrival rate of vehicles, i.e., κ̄i < λ̄i.

Note that this is again a reasonable assumption if we take into account that designing optimal
traffic light switching schemes is only useful if the arrival rates λ̄i are high and that under
normal circumstances κ̄i is very small. This assumption implies that the net queue growth
rate during the amber phase λ̄i − κ̄i is positive. Therefore, the queue length at the end of a
green phase is given by: li(tk+1 − δamb) = li(tk+1)− (λ̄i − κ̄i)δamb where k ∈ Gi(N).

Proposition D.4 Consider an optimal traffic light switching problem with κ̄i < λ̄i for all
i. Let the set of feasible solutions of the ELCP that corresponds to the given problem be

characterized by the set of vertices V =

{[

x∗

i

δ∗i

] ∣

∣

∣

∣

i = 1, 2, . . . , r

}

and the set of index sets Λ.
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l Jl(δ
∗

1) Jl(δ
∗

2) Jl

( δ∗1 + δ∗2
2

) Jl(δ
∗

1) + Jl(δ
∗

2)

2

1 8.838 10.513 9.392 9.675

2 3.363 3.403 2.492 3.383

4 35.350 42.050 37.567 38.700

5 13.450 13.613 9.967 13.531

l Jl(δ
∗

1) Jl(δ
∗

3) Jl

( δ∗1 + δ∗3
2

) Jl(δ
∗

1) + Jl(δ
∗

3)

2

1 8.838 9.392 9.170 9.115

2 3.363 2.492 2.965 2.927

4 35.350 37.567 36.680 36.458

5 13.450 9.967 11.860 11.708

Table 4: The values of the objective functions J1, J2, J4 and J5 (up to 3 decimal places) for

the switching time vectors δ∗1, δ
∗

2, δ
∗

3 =
δ∗1 + δ∗2

2
and δ∗4 =

δ∗1 + δ∗3
2

of Example D.3.

Let φj = {i1, i2, . . . , is} ∈ Λ. Consider a vector ν ∈ R
s with νj > 0 for all j and

s
∑

j=1

νj = 1.

Define δ∗(ν) =

s
∑

j=1

νjδ
∗

ij
. Then the function Ii defined by Ii(ν) =

∫ tN

t0

li
(

t, δ∗(ν)
)

dt is a

convex function of ν.

Proof : We may assume without loss of generality that i = 1 and φj = {1, 2, . . . , s}. Define

x∗(ν) =
s
∑

j=1

νjx
∗

j . Since

[

x∗(ν)
δ∗(ν)

]

is a convex combination of the vertices of V that are

indexed by φj , it is a solution of the ELCP that corresponds to the given optimal traffic
light switching problem. So x∗(ν) and δ∗(ν) are compatible for the given x0. For each x∗

i

with i ∈ φj we define a sequence yi,0, yi,1, . . . , yi,N that contains the components of x0 and
x∗

i that correspond to the queue length in lane L1: yi,0 = (x0)1 and yi,j = (x∗

i )4(j−1)+1 for
j = 1, 2, . . . , N . Let y0 = (x0)1 and yj = (x∗)1 for j = 1, 2, . . . , N . Define δi,k = (δ∗i )k+1 for

i = 1, 2, . . . , s and k = 0, 1, . . . , N − 1. Note that
s
∑

j=1

νjyj,0 = y0 = (x0)1.

Since κ̄1 < λ̄1 we have

ỹ2k+2
def
= l1(t2k+2 − δamb) = y2k+2 − (λ̄1 − κ̄1)δamb .

If we define
ỹj,2k+2 = yj,2k+2 − (λ̄1 − κ̄1)δamb

xi



for all j, k, then we have

s
∑

j=1

νj ỹj,2k+2 =
s
∑

j=1

νj
(

yj,2k+2 − (λ̄1 − κ̄1)δamb

)

=
s
∑

j=1

νjyj,2k+2 −
(

s
∑

j=1

νj

)

(λ̄1 − κ̄1)δamb

= y2k+2 − (λ̄1 − κ̄1)δamb

= ỹ2k+2 .

Furthermore, the assumption κ̄1 < λ̄1 also implies that y2k+2 6= 0 and yi,2k+2 6= 0 for all i, k.
Recall that x∗(ν) and δ∗(ν) are compatible for x0. As a consequence, we have (cf. Section C)

I1(ν) = S1(ν) + S2,1(ν)− S2,2(ν) + S3(ν) + S4(ν)

with

S1(ν) =

⌊N−1
2 ⌋
∑

k=0





s
∑

j=1

νj yj,2k



+





s
∑

j=1

νj yj,2k+1





2





s
∑

j=1

νj δj,2k





S2,1(ν) =

⌊N
2 ⌋−1
∑

k=0
∑s

j=1 νj ỹj,2k+2 6=0





s
∑

j=1

νj yj,2k+1



+





s
∑

j=1

νj ỹj,2k+2





2





s
∑

j=1

νj δj,2k+1





S2,2(ν) =

⌊N
2 ⌋−1
∑

k=0
∑s

j=1 νj ỹj,2k+2 6=0





s
∑

j=1

νj yj,2k+1



+





s
∑

j=1

νj ỹj,2k+2





2
δamb

S3(ν) =

⌊N
2 ⌋−1
∑

k=0
∑s

j=1 νj ỹj,2k+2=0





s
∑

j=1

νj yj,2k+1





2

2 (µ̄1 − λ̄1)

S4(ν) =

⌊N
2 ⌋−1
∑

k=0





s
∑

j=1

νj ỹj,2k+2



+





s
∑

j=1

νj yj,2k+2





2
δamb .
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It easy to verify that S3 is a convex, quadratic function of ν. Furthermore, S2,2 and S4 are
linear functions of ν, which implies that they are also convex. So from now on, we only
consider S1 and S2,1. Since S1 and S2,1 are continuous functions of the νj ’s, it is sufficient
to prove that S1 and S2,1 are convex functions in the relative interior of the feasible region,

i.e., for positive νj ’s. As a consequence, we have
s
∑

j=1

νj ỹj,2k+2 6= 0 if and only if there exists

an index i ∈ {1, 2, , . . . , s} such that ỹi,2k+2 6= 0. Note that is condition is independent of the
values of the νj ’s (provided that they are positive). If we define

zj,2k = yj,2k + yj,2k+1

zj,2k+1 =

{

yj,2k+1 + ỹj,2k+2 if ∃i ∈ {1, 2, , . . . , s} such that ỹi,2k+2 6= 0 ,

0 otherwise ,

for all j, k, then we have

S1(ν) + S2,1(ν) =
N
∑

k=0





s
∑

j=1

νjzj,k









s
∑

j=1

νjδj,k





2

=
N
∑

k=0

1

2
νT Qk ν .

with

Qk =











z1,k
z2,k
...

zs,k











[

δ1,k δ2,k . . . δs,k

]

.

So Qk is a matrix of rank 1 with nonnegative entries. This implies that Qk is a positive
semi-definite matrix and that S1 + S2,1 is a convex, quadratic function.
Hence, I1 = S1 + S2,1 − S2,2 + S3 + S4 is a convex, quadratic function of ν. ✷

Note that in order to obtain J1, J2, J4 or J5 we have to divide

∫ tN

t0

l1(t, δ
∗(ν)) dt by tN−t0 =

N−1
∑

k=0

s
∑

j=1

νjδij ,k which is a linear function of ν. As a consequence, J1, J2, J4 and J5 are in

general not convex functions of ν. However, computational experiments have shown that in
most cases J1, J2, J4 and J5 are very smooth functions of ν (for many faces they are even
almost linear or almost convex). This means that finding the combination ν1, ν2, . . . , νs for

which Jl

( s
∑

j=1

νjδ
∗

ij

)

with l = 1, 2, 4 or 5 reaches a global minimum is a well-behaved problem

in the sense that for almost all initial starting points the same numerical solution (within a
certain tolerance) will be obtained.

Since there exist very efficient algorithms to minimize convex objective functions over a
convex feasible sets, we now examine whether the approximate objective functions J̃1 and
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J̃4 are convex over the feasible set of the relaxed problem P̃. Note that it makes only sense
to determine convexity (or concavity) for objective functions that are strictly monotonous
functions of x∗, since only for these objective functions we can use Proposition 3.2 to minimize
over the convex feasible set of the relaxed problem P̃ instead of over the feasible set of the
original problem P.

The following example shows that the approximate objective functions J̃1 and J̃4 are in
general neither convex nor concave as a function of x∗ and δ∗.

Example D.5 Let δamb = 4 and λ̄i = 0.25, µ̄i = 0.5, κ̄i = 0 for i = 1, 2, 3, 4. Let

x0 =









4
0
4
0









, w =









1
1
1
1









, δ∗1 =

[

12
12

]

, δ∗2 =

[

12
32

]

, δ∗3 =

[

12
40

]

,

y∗

1 =

[

7
6

]

and y∗

2 = y∗

3 =

[

7
1

]

.

Note that the queue length sequence that corresponds to y∗

1 is compatible with δ∗1 for l1(0) =

y0
def
= (x0)1. This also holds for y∗

2 and δ∗2, and for y∗

3 and δ∗3. In Figure 11 we have plotted
the evolution of l1 as a function of time for the switching sequences defined by δ∗1, δ

∗

2, δ
∗

3,

δ∗4 =
δ∗1 + δ∗2

2
and δ∗5 =

δ∗2 + δ∗3
2

.

If y0 ∈ R
+, y∗ ∈ (R+)N and δ∗ ∈ (R+

0 )
N , then l̃1(·,y

∗, δ∗) is the piecewise-linear function
that interpolates in the points (t0, y0), (t1, y

∗
1), . . . , (tN , y∗N ). Define

f̃(y∗, δ∗) =

∫ tN

t0

l̃1(t,y
∗, δ∗) dt

tN − t0
.

We have f̃(y∗

1, δ
∗

1) = 6, f̃(y∗

2, δ
∗

2) ≈ 4.409,

f̃
( y∗

1 + y∗

2

2
,
δ∗1 + δ∗2

2

)

≈ 5.338 and
f̃(y∗

1, δ
∗

1) + f̃(y∗

2, δ
∗

2)

2
≈ 5.205 .

So

f̃
( y∗

1 + y∗

2

2
,
δ∗1 + δ∗2

2

)

>
f̃(y∗

1, δ
∗

1) + f̃(y∗

2, δ
∗

2)

2
,

which implies that f̃ is not convex.
On the other hand, we have f̃(y∗

2, δ
∗

2) ≈ 4.409, f̃(y∗

3, δ
∗

3) ≈ 4.346,

f̃
( y∗

2 + y∗3

2
,
δ∗2 + δ∗3

2

)

= 4.375 and
f̃(y∗

2, δ
∗

2) + f̃(y∗

3, δ
∗

3)

2
≈ 4.378 .

So

f̃
( y∗

2 + y∗

3

2
,
δ∗2 + δ∗3

2

)

<
f̃(y∗

2, δ
∗

2) + f̃(y∗

3, δ
∗

3)

2
,

which implies that f̃ is not concave.
As a consequence, the objective functions J̃1 and J̃4 are in general neither convex nor

concave.
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Figure 11: The evolution of the queue length in lane L1 as a function of time t for the

switching interval vectors δ∗1, δ
∗

2, δ
∗

3, δ
∗

4 =
δ∗1 + δ∗2

2
and δ∗5 =

δ∗2 + δ∗3
2

of Example D.5. The

* signs on the time axis correspond to the switching time instants.

Indeed, for the queue length vectors x∗

1, x
∗

2 and x∗

3 that are compatible with respectively
δ∗1, δ

∗

2 and δ∗3 for x0, we have

J̃l

( x∗

1 + x∗

2

2
,
δ∗1 + δ∗2

2

)

>
J̃l(x

∗

1, δ
∗

1) + J̃l(x
∗

2, δ
∗

2)

2

and

J̃l

( x∗

2 + x∗

3

2
,
δ∗2 + δ∗3

2

)

<
J̃l(x

∗

2, δ
∗

2) + J̃l(x
∗

3, δ
∗

3)

2

for l = 1 and 4 (see Table 5). ✷

E Another approximation for the objective functions J1, J2,

J3, J4 and J5

In this section we make again the following extra assumption:
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l J̃l(x
∗

1, δ
∗

1) J̃l(x
∗

2, δ
∗

2) J̃l

( x∗

1 + x∗

2

2
,
δ∗1 + δ∗2

2

) J̃l(x
∗

1, δ
∗

1) + J̃l(x
∗

2, δ
∗

2)

2

1 15.000 16.364 15.882 15.682

4 60.000 65.455 63.529 62.727

l J̃l(x
∗

2, δ
∗

2) J̃l(x
∗

3, δ
∗

3) J̃l

( x∗

2 + x∗

3

2
,
δ∗2 + δ∗3

2

) J̃l(x
∗

2, δ
∗

2) + J̃l(x
∗

3, δ
∗

3)

2

1 16.364 18.154 17.250 17.259

4 65.455 72.615 69.000 69.035

Table 5: The values of the objective functions J̃1 and J̃4 (up to 3 decimal places) for the
queue length vectors x∗

1, x∗

2 and x∗

3 that are compatible with respectively the switching
interval vectors δ∗1, δ

∗

2 and δ∗3 of Example D.5.

• in each lane, the average departure rate when the light is amber is less than the average
arrival rate of vehicles, i.e., κ̄i < λ̄i.

Recall that this assumption implies that the net queue growth rate during the amber phase
λ̄i−κ̄i is positive. As a consequence, the queue length at the end of the green phase (tk, tk+1−
δamb) with k ∈ Gi(N) is given by: li(tk+1 − δamb) = li(tk+1) − (λ̄i − κ̄i)δamb and the queue
length at the end of the subsequent amber phase li(tk+1) is positive.

For a given x0 and t0, we define the function ľi(·,x
∗, δ∗) — or ľi(·) for short — as the

piecewise-linear function that interpolates in the points (t0, li(t0)), (tk+1−δamb, li(tk+1−δamb))
for k ∈ Gi(N) — i.e., the points at the beginning and the end of the green phase for Ti — and
the point (tN , li(tN )). The approximate objective functions J̌l for l = 1, 2, 3, 4, 5, are defined
as in (8) – (12) but with li replaced by ľi.
The values of J3 and J̌3 always coincide. Now let l ∈ {1, 2, 4, 5}. Recall that the value of Jl
and J̌l is determined by the surface under the functions li and ľi respectively. If the queue
lengths never become zero during the green phases and if no vehicles depart when the traffic
light is amber (i.e., κ̄i = 0 for all i), then the functions li and ľi and the values of Jl and J̌l
coincide (cf. Figure 12). In practice, the departure rate during the amber phase will be small.
Moreover, the length of the amber phase will also be small compared to the length of the green
or the red phase. Furthermore, if we have an optimal traffic light switching scheme, then the
periods during which the queue length in some lane is equal to 0 are in general short. As a
consequence, for traffic light switching schemes in the neighborhood of the optimal scheme J̌l
will be a good approximation of Jl. It is easy to verify that under normal circumstances J̌l
will be a better approximation of Jl than J̃l (cf. Figures 2 and 12). However, in general (i.e.,
if we allow large values for δamb) we cannot impose a relative order on J̃l and J̌l.

Using proofs that are similar to those of Propositions 3.1 and 3.3 it can be shown that
the following two propositions hold:

Proposition E.1 Let x0 ∈ (R+)4, x∗ ∈ (R+)4N and δ∗ ∈ (R+
0 )

N . If x∗ and δ∗ are compat-
ible for x0 then we have J3(δ

∗) = J̌3(x
∗, δ∗), and Jl(δ

∗) 6 J̌l(x
∗, δ∗) for l = 1, 2, 4, 5.
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Figure 12: The functions li (full line) and ľi (dashed line). The left plot shows a situation in
which the queue length does not become 0 during the green phase and then li and ľi coincide
during the green phase. The right plot shows a situation where the queue length becomes 0
during the green phase.

Proposition E.2 For given x0, δamb, λ̄i’s, µ̄i’s, κ̄i’s and a given δ∗ the functions J̌1 and J̌4
are strictly monotonous functions of x∗.

So for J̌1 and J̌4 we can compute optimal traffic light switching schemes using the relaxed
problem P̃ instead of the original problem P.
Let us now derive a formula for the evaluation of

∫ tN

t0

ľ1(t,x
∗, δ∗) dt =

N−1
∑

k=0

∫ tk+1

tk

ľ1(t,x
∗, δ∗) dt .

Define yk = (xk)1 = l1(tk) for k = 0, 1, . . . , N and ỹ2k+2 = l1(t2k+2 − δamb) for k =

0, 1, . . . ,

⌊

N

2

⌋

− 1. Let the function even be defined by

even(n) =

{

1 if n is an even integer,

0 otherwise.

Now it is easy to verify that

∫ tN

t0

ľ1(t,x
∗, δ∗) dt =

y0 + y1

2
δ0 +

⌊ N
2 ⌋−1
∑

k=0

y2k+1 + ỹ2k+2

2
(δ2k+1 − δamb) +

⌊ N−3
2 ⌋
∑

k=0

ỹ2k+2 + y2k+3

2
(δ2k+2 + δamb) + even(n)

ỹN + yN

2
δamb .

Note that in contrast to J̃1 and J̃4 making the assumption δk ≈
tN − t0

N
does not lead a

linear objective function for J̌1 and J̌4.
Let us now compute a suboptimal traffic light switching scheme based on the objective

function J̌1 for the set-up of Example 5.1.

Example E.3 Consider the intersection of Figure 1 with the same data as in Example 5.1.
Suppose that we want to compute a traffic light switching sequence t0, t1, . . . , t7 that min-
imizes J1. We use the e04ucf routine of the NAG library to compute a solution x̌∗, δ̌∗
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δ∗,x∗ J1(δ
∗) J̌1(x

∗, δ∗) J̃1(x
∗, δ∗) Ĵ1(x

∗, δ∗) Jlin(x
∗) CPU time

δ̌∗, x̌∗ 60.669 62.768 64.268 69.036 433.751 4.01

δ∗ELCP,x
∗

ELCP 60.657 62.780 64.267 69.190 434.827 404.83

δ∗pen,x
∗

pen 61.150 63.258 64.740 69.916 439.909 78.69

δ∗mul,x
∗

mul 61.613 63.513 65.118 67.881 425.664 13.83

δ̃∗, x̃∗ 60.659 62.772 64.264 69.117 434.319 2.49

δ∗lin,x
∗

lin 64.551 66.239 67.905 67.199 420.895 0.94

δ∗con,x
∗

con 63.101 64.741 66.363 67.565 423.455 96.40

Table 6: The values of the objective functions J1, J̌1, J̃1, Ĵ1 and Jlin (up to 3 decimal places)
and the CPU time (up to 2 decimal places) needed to compute the suboptimal switching
interval vector δ̌∗ of Example E.3 and the (sub)optimal switching interval vectors δ∗ELCP,

δ∗pen, δ
∗

mul, δ̃
∗, δ∗lin and δ∗con of Example 5.1. The queue length vectors x∗ are compatible with

the switching interval vectors δ∗ for x0.

that minimizes the approximate objective function J̌1 (using the relaxed problem P̃). This
yields19:

δ̌∗ = [ 20.000 45.750 30.964 63.000 30.964 63.000 55.509 ]T .

In Table 6 we have listed the values of the various objective functions for the switching interval
vector δ̌∗ and for the switching interval vectors of Example 5.1. The evolution of the queue
lengths for the traffic light control strategy that corresponds to δ̌∗ is represented in Figure 13.
Clearly, the δ̃∗ solution also offers a good trade-off between optimality and efficiency. Note
that for all the switching interval vectors of Table 6 the value of the objective function J̌1 is
lower than the value of the objective function J̃1. ✷

19In this case using different starting points always leads to more or less the same numerical value of the
optimal objective function: in an experiment with 20 random starting points the first 12 decimal places of
the final objective function always had the same value. Therefore, we have only performed one run with an
arbitrary random initial point here.
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Figure 13: The queue lengths in the various lanes as a function of time for the traffic light
switching sequence that corresponds to the switching interval vector δ̌∗ of Example E.3. The
* signs on the time axis correspond to the switching time instants.
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