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Abstract

In this report a new fast time domain approach for the identification of ATM-traffic is proposed.

The traffic is measured and characterised by its first and second order statistic moments. A Markov

Modulated Poisson Process (MMPP) is used to capture the information in these two statistic

moments.

Since the identification of a general MMPP is time consuming because of the large compu-

tational requirements, a circulant MMPP is used to reduce the computational cost. A circulant

MMPP is an MMPP with a circulant transition matrix.

The main advantages of this approach are the avoidance of inverse eigenvalue problem and the

decoupling of the two statistic moments. Since ATM-traffic is highly correlated one can expect

slowly decaying autocorrelations, which slows down the time domain identification. Therefore the

autocorrelation is rewritten as a sum of exponentials using subspace-identification for stochastic

linear time invariant systems. The identification of the second order statistics is decoupled from

the first order statistics and uses 0/1 knapsack solvers and unconstrained optimisation.

Keywords: Markov modulated Poisson process, mixture distributions, Asynchronous Transfer Mode,

broadband ISDN traffic identification
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1 Introduction

Asynchronous Transfer Mode (ATM) is a protocol for packet switched broadband ISDN networks. Its

main characteristic is the combination of the advantages of the classic circuit mode and packet mode

traffic. While circuit mode traffic offers high bit rates at the expense of working with fixed bandwidths

and packet mode traffic uses bandwidth when necessary at rather low transmission rates, ATM offers

both high bit rates and efficient use of available bandwidth. Therefore ATM uses the principle of

statistical multiplexing, which is very efficient for variable bit rate applications: it is assumed that not

every user uses his maximal assigned bit rate, so that more clients can be allocated to a channel than

can be processed when every user consumes his maximum bit rate [1].

Buffers are placed in the nodes of the ATM-network to absorb the largest part of the fluctuations

in the traffic. Figure 1 gives a schematic representation of a server with finite buffer length. The ag-

gregated arrival pattern {ak}∞
k=1 is the sum of the arrival patterns of the individual clients. Each client

demands a certain negotiated level of Quality of Service (QoS), e.g. Cell Loss Ratio, Cell Variation

Delay Tolerance, Peak Cell Rate, Minimum Cell Rate. The following question is important: given the

currently processed traffic, is it possible to allocate a new client to the channel so that the new client

obtains his level of QoS, without loss of the previously negotiated QoS of the other clients? The new

client will certainly increase the load on the server and the QoS will certainly decrease.

The amount of this decline is calculated with queueing theory. This could be done by simulation,

but this approach is rejected because of the computational requirements. To obtain a swift Connection

Admission Control (CAC), a better approach is to use a mathematical model of the compound arrival

pattern and use this model in queueing analysis. Figure 2 gives an overview how the identification

procedure fits in the general framework of CAC. In this report a new time domain approach is proposed

for the identification of such a mathematical model.

2 Mathematical background

The main purpose of the mathematical model is to increase the speed of the queueing analysis. Since

queueing analysis cannot be performed on arbitrary model structures, there are strong restrictions

on the model structure to use, so that recently developed and accurate identification algorithms in

traditional system identification cannot be used straightforwardly [2].

buffer queue
arrival
pattern

k

: cell

µ

  a{    }

Figure 1: Schematic representation of a server with finite buffer length. The traffic is composed of the

traffic of the individual clients. Most of the fluctuations are absorbed in the buffer. No cells are lost

as long as the buffer size exceeds the length of the queue. This length and the losses are calculated by

queueing analysis and depend on the traffic and the server rate µ .
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Figure 2: Representation of the identification procedure in the general framework of Connection Ad-

mission Control (CAC): first the ATM-traffic is measured, then the mathematical model is identified

to perform the queueing analysis, which is used for the CAC. This report focuses on the identification

of the mathematical model.

2.1 Model choice

In [3] it is illustrated that the most important features of the traffic are the second and first order

statistic moments (autocorrelation and probability distribution function). Markov Modulated Poisson

Processes (MMPP) have the sufficient flexibility to capture these two moments.

A general MMPP has two parameters: a transition matrix P and a Poisson parameter vector λ .

The element λi ≥ 0 of λ is the Poisson parameter of the Poisson process associated with state i of the

Markov chain. The transition matrix P belongs to P
N×N , the set of all stochastic matrices of dimension

N so that ∑N
i=1 pi j = 1. The element pi j of P stands for the conditional transition probability from state

i to state j. If si(k) denotes the probability that the Markov chain is in state i at time k, then:

[

s1(k+1) . . . si(k+1) . . . sN(k+1)
]

=
[

s1(k) . . . si(k) . . . sN(k)
]













p11 . . . p1i . . . p1n

p21
. . .

. . .
...

...
...

...

pn1 . . . pni . . . pnn













.

In steady state, the probabilities of the different states will not change any more. This state probability

is given by s(∞) ≡ π , such that π = π ·P. This means that the vector πT is the left eigenvector of P

associated with the eigenvalue 1.

Figure 3 represents an MMPP of order 4. It consists of a stochastic transition matrix P and a

vector λ with the Poisson parameters. P describes the transition probabilities between the 4 states.

The Poisson parameter λi of the Poisson process characterises the number of emitted cells when the

Markov chain is in that state i.

In addition to the first paragraph of this section, it is shown in [4] that the low frequencies of the

arrival pattern affect the queueing analysis the most, which is in fact easy to comprehend. Because

the identification of the MMPP is only necessary to speed up the CAC, only the information that

influences this queueing analysis needs to be captured by the MMPP. This implies that only the low

frequency part of the autocorrelation and the distribution function are important.

2.2 Properties of MMPP’s

An MMPP can also completely be described by its statistic moments. Since only the first two moments

are important for the identification, only these moments of the MMPP are given here. The probability

f (x) and cumulative F(x) distribution functions are (x ∈ N):

f (x) = Pr{ak = x}=
N

∑
i=1

πi fλi
(x) =

N

∑
i=1

πie
−λi

λ x
i

x!
(1)
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Figure 3: Markov chain of order 4: when the Markov chain is in e.g. state 3, the number of ATM-cells

is described by the probability or cumulative distribution function of the associated Poisson process

with λ3, i.e. fλ3
or Fλ3

.

F(x) = Pr{ak ≤ x}=
N

∑
i=1

πiFλi
(x) =

N

∑
i=1

πie
−λi

x

∑
j=0

λ
j

i

j!
. (2)

The autocorrelation of an MMPP is1:

R(0)≡ E(akak) = πλde+πλ 2
d e = λ 2 +λ (3)

R(n)≡ E(akak+n) = πλdPnλde (n > 0) (4)

R(∞)≡ ak
2 = λ

2
. (5)

These properties will be used to identify the MMPP.

2.3 The inverse eigenvalue problem

The transition matrix P is a stochastic matrix, which means that ∑N
i=1 pi j = 1, ∀ j and that each element

pi j ≥ 0. These restrictions implicate that there are sets of eigenvalues which cannot be of a stochastic

matrix. There are two theorems that give information on the existence of a solution:

1. The theorem of Karpelevic̆ [5, 6] formulates necessary conditions, saying that an eigenvalue of

a stochastic matrix cannot be in a region between a curve with points of contact on the unity

circle and the unity circle. This curve is represented in Figure 4 for a stochastic matrix of

dimension 4. However the theorem gives no information about combinations of eigenvalues.

2. Sufficient conditions are described in [7] for sets of real eigenvalues. This limits the applicabil-

ity of this test, together with the fact that the existence of a set is not excluded.

1x denotes the weighted average of x, while e is a column vector of length N, containing all 1’s and the index d in λd

stands for a diagonal matrix with the elements of λ on the main diagonal. E denotes the expectational operator.
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Figure 4: Theorem of Karpelevic̆ for a stochastic matrix of dimension 4. There cannot exist an

eigenvalue of a stochastic matrix between the curve and the unit circle. The first point of contact

anticlockwise on the unit circle starting from (1,0) is e
2π

√
−1

N . The curve between (1,0) and this point

of contact is a straight line.

Thinking of these two theorems, it is not straightforward to impose an eigenvalue set, which describes

the dynamics of the arrival pattern {ak}, on an MMPP.

To avoid the inverse eigenvalue problem, a good approach is to start from an MMPP with its

restrictions and adapt it so that it resembles the given autocorrelation and distribution function.

2.4 Circulant matrices

Analysis of the above equations (2)–(6) shows that the numerical complexity of the computations

is very high: the calculation of equation (4) requires O(N3) operations, while the computation of

the equations (1) and (2) requires large computational requirements because of the calculation of the

Poisson distributions, as shown in [8]2. Hence, this model class is inappropriate in an optimisation

procedure, which is chosen in this report to avoid the inverse eigenvalue problem.

A restricted model class can simplify the computations, at the expense of the flexibility of the

model class. Circulant stochastic matrices have a special structure which reduces the computations

[9]:

P =











p1 p2 . . . pn

pn p1 . . . pn−1

...
...

. . .
...

p2 p3 . . . p1











(6)

Because of this structure, their eigenvalue decomposition can be written as a Fast Fourier Transform3

2This report is available by anonymous ftp from ftp.esat.kuleuven.ac.be in the directory

pub/SISTA/decock/reports/97-90.ps.gz
3X∗ denotes the complex conjugate of X .
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Figure 5: Schematic representation of a circulant MMPP of order 4, where the transition probabilities

of Figure 3 are replaced by the appropriate transition probabilities of the circulant MMPP. Notice that

due to the symmetric structure, the numbers of the chain are only necessary for the corresponding λi.

(fft) ([9]): P ≡ F∗γdF , where F(i, j) = 1√
N

exp(− 1
N

2π
√
−1(i− 1)( j− 1)). This simplifies π into

(

1
N

. . .
1
N

)

, which one can also understand regarding the stochastic circulant transition matrices as

a subclass of doubly stochastic matrices [11]. The most important simplification occurs in equation

(4):

R(n)≡ E(akak+n) = πλPnλe

=
1

N
λ T F∗γ n

d Fλ

=
1

N
fft(λ )∗

1√
N

γ n
d fft(λ )

1√
N

=
1

N2
fft(λ )∗γ n

d fft(λ ) .

(7)

This makes that the autocorrelation of a circulant MMPP is much easier to calculate than the autocor-

relation of a (general) MMPP.

3 Identification procedure

The identified MMPP must approximate both the autocorrelation and the distribution function of the

data. In this report the cumulative distribution function is chosen for reason of compact and global

representation of the data.

A first possibility to solve the identification problem is to minimise a combined cost function,

which is a weighted sum of the difference between the distribution functions of the data Fd and the

model Fm and of the difference between the autocorrelations of the data Rd and of the model m, as

described in [10]. The distribution function however has to be calculated frequently, which delays the

iterative optimisation process. When dealing with ATM-traffic, which is highly correlated, “long” or

slowly decaying autocorrelations are to be expected, which also slows down the optimisation proce-

dure. Therefore two improvements are proposed in this report.
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λ1 λi

1
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x

Figure 6: Graphical representation of the identification procedure of the first order statistic moment.

The cumulative distribution function of the data Fd is approximated by a staircase function of Poisson

processes with weight 1
N

.

Since the identification of both stochastic moments can be decoupled, the first order statistics are

matched first. This determines the Poisson parameters λ . In a second step, the autocorrelation is

calculated as a sum of exponentials, of which both the amplitudes and the poles have to be matched.

This is done respectively by integer problem programming and by unconstrained optimisation.

3.1 First order statistics

Remember that because circulant matrices are a subclass of doubly stochastic matrices, the identifica-

tion of the distribution function no longer depends on the transition matrix P, since πi =
1
N

.

The cumulative distribution function can be approximated by a staircase function, which was also

used in [3]. One also notices in equations (3) and (5) that both R(0) and R(∞) are independent of P in

the case of circulant matrices. The MMPP must be consistent with both the distribution function and

the autocorrelation. Therefore two degrees of freedom are reserved in the identification procedure to

match R(0) and R(∞). This approach is illustrated in Figure 6. The two reserved λi’s are calculated by

solving a quadratic equation. Although it may seem that this approach is a rather rude approximation,

it is proved in [12] that it is impossible to analytically reconstruct a given Poisson distribution with

clustered Poisson parameters.

Besides the very fast identification procedure, one of the major advantages of this approach is that

R(∞) = ak
2 is correctly estimated and so is also the mean of the distribution function, which is a very

important feature in the queueing analysis.

3.2 Second order statistics

The autocorrelation is the second characteristic of the data that captures relevant information for the

queueing analysis. It describes the dynamics of the system. A slowly decaying autocorrelation means

highly correlated traffic and increases the load on the buffer. Slowly decaying autocorrelations are

highly probable in ATM-traffic, due to the high correlation. Despite the avoidance of eigenvalue
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calculation by using circulant matrices, long autocorrelations still mean too long calculations in an

iterative process.

Decomposition of the autocorrelation R(n) in a sum of exponentials is a very compact represen-

tation and therefore very well suited in an iterative identification process. The decomposition is done

by stochastic subspace identification [13, 14, 15] and results in:

R(n) = A0 +
Ns

∑
i=1

Aib
n
i , (8)

where A0 = R(∞), because of the stability of the system. Comparison of equation (7) with equation

(8) leads to the following identity:

1

N2
fft(λ )∗γ n

d fft(λ )≡ A0 +
Ns

∑
i=1

Aib
n
i . (9)

This equation means that both the (summated) amplitudes and the roots of both systems must be the

same. As a result of the model restriction the order N of the circulant MMPP is typically much larger

than the order of the power series Ns, since higher order models give better approximations of the first

order statistics.

In the case of circulant matrices, the amplitude of the exponentials depends only on λ , which

is already determined by the first order calculus. The matching is done in two consecutive steps.

The first problem can be reformulated as an integer programming problem to allocate the amplitudes
1

N2 |fft(λ )i|2 to the amplitudes Ai. Secondly, a circulant stochastic transition matrix is searched for,

so that the poles γi approximate the corresponding bi. In the next two paragraphs a detailed description

of each step is given. An overview of the total identification algorithm is given in Figure 7.

3.2.1 Integer problem

The first step consists of finding disjunct subsets Ci from a given set of numbers C = { 1
N
|fft(λ )i|2 :

i = 1, . . . ,N} so that the sum of the numbers in this subset is as close as possible to a given number

G = Ai. This step can be stated as an integer programming problem [16].

Let G be an amplitude Ai of the pole bi and C be the set { 1
N
|fft(λ )i|2 : i = 1, . . . ,N}, then the

problem can be formulated as two 0/1 integer knapsack problems. One (P1) for giving the closest

approximation which is lower than G and the other (P2) for finding the closest approximation which

is larger than G. Figure 8 gives a detailed description of both knapsack problems. The second problem

needs only to be solved if the first solution is not within a certain percentage of the given number G.

Otherwise the best of both solutions is chosen.

As the 0/1 knapsack problem is known to be NP-complete, no polynomial solution algorithm

exists. Therefore it is solved by an implicit enumeration approach called branch an bound. Using the

branch and bound implementation of Fayard and Plateau [17], the problem can be solved in about 1

second for a typical set of 64 numbers4.

This knapsack solver is used in an iterative process. First the problem for the largest given number

G = Ai is solved. Then the subset of the current solution C1 is removed from the initial set C =
{ 1

N
|fft(λ )i|2 : i = 1, . . . ,N}. Then the knapsack solver is applied to the second largest Ai, now with

the reduced set. Although it is obvious that one obtains a sub-optimal solution, this approach is much

faster than the optimal solution and also puts the largest weight on the most important exponentials.

4A Pentium 66 MHz was used to do the calculation.
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of first order

statistics

Measurement

ATM−traffic

Subspace 

identification

for stochas−

tic systems 

Integer pro−

gramming 

0/1 knapsack

solver

Unconstrained

optimisation

Circulant MMPP

{ak}

Ai

bi

bi

Ci

λ

λ

λ

P

Figure 7: Overview of the identification method: the identification of the first order statistics is de-

coupled from the identification of the second order statistics. Subspace-identification determines the

autocorrelation as a sum of exponentials (Ai,bi). The 0/1 knapsack problem calculates disjunct sub-

sets Ci from C, given λ and Ai. In the final step unconstrained optimisation is used to calculate a

circulant stochastic transition matrix with poles bi at the amplitudes of Ci in the diagonal form of

equation (7). The Poisson parameters λ and the transition matrix P describe completely the circulant

MMPP.
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G = a given number;

C = a given set of numbers;

ci ∈ C;

xi = decision variable for P1, = 1 if ci is in the subset, = 0 otherwise;

yi = decision variable for P2, = 0 if ci is in the subset, = 1 otherwise;

MAX ∑i(cixi) (P1) MAX ∑i(ciyi) (P2)

S.T. ∑i cixi ≤ G S.T. ∑i ciyi ≤ ∑i ci −G

xi ∈ {0,1} yi ∈ {0,1}

Figure 8: Interpretation of the integer programming problem as two 0/1 knapsack problems, see the

appendix for proof.

3.2.2 Optimisation problem

The second problem is to determine a circulant transition matrix so that the poles γi approximate the

corresponding poles bi of the selected amplitudes in the diagonal form of equation (7).

The problem can be reformulated as an unconstrained optimisation problem by using the parametri-

sation described in [10].

As cost function the sum of the squares of the differences between the given poles and real poles

is minimised. Therefore the function leastsq in the Matlab optimisation toolbox is used. The

Levenberg-Marquardt method was used [18], since one might expect ill conditioned problems, re-

membering the results of [2].

3.2.3 Example

As an example a third order (general) MMPP is identified with a (circulant) MMPP of order 64.

Data were produced by simulating the original MMPP. About 100,000 points {ak} were generated,

the latter half was used for the identification procedure to avoid the influence of the initial state. A

third order original model was used since it is illustrated in [2, 8, 10] that higher order models do not

necessarily have more complex dynamics, only the first order statistics are influenced. This is also the

reason for the apparently large order of the identified model.

Using an HP 9000 Model 712/80 workstation with 64 MB internal memory and clock speed 80

MHz, all computations (except the knapsack solver) took about 60 seconds, starting from raw data.

The cumulative distribution function and autocorrelation of the original model are given in Figures 9

and 10 (full line). The cumulative distribution function and autocorrelation of the identified circulant

MMPP are also shown on the same figures (dashed lines).

One notices that the autocorrelations match almost perfectly and that the distribution function

is quite well approximated. The main reason for the “difference” is that the original MMPP has

distinct, widely spread Poisson parameters, which results in a staircase distribution function. In such

cases, some Poisson parameters in the identified model are chosen in between the original Poisson

parameters.
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Figure 10: Comparison of the autocorrelation of the original MMPP (full line) and the identified

(circulant) MMPP (dashed line).
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4 Conclusion

In this report a time domain approach was presented to identify a circulant MMPP, based on the

autocorrelation and the cumulative distribution function. It was explained that these models are im-

portant in the queueing analysis used in the Connection Admission Control of (packet switched) ATM-

networks.

To avoid the inverse eigenvalue problem, optimisation algorithms must be used and models with

low computational cost were searched for. The use of circulant transition matrices reduces the com-

putational cost of the eigenvalue decomposition to the calculation of a Fast Fourier Transform and

decouples the matching of the first and second order statistic moment since the left eigenvector corre-

sponding to eigenvalue 1 of a circulant transition matrix only depends on the model order.

To further reduce the number of calculations, a quasi staircase approximation of the cumulative

distribution function was used, with attention to the beginning of the autocorrelation and the mean

of the distribution. The autocorrelation was approximated by subspace-identification as a sum of

exponentials, the amplitudes were allocated by integer programming and the poles were identified by

unconstrained optimisation.

Further research of the authors is focused on the queueing analysis and the comparison of circulant

MMPP’s with (general) MMPP’s.
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Appendix

A Derivation of the 0/1 knapsack problem (P1)

In (P1) the positive difference s1 between G and the sum of the numbers in the subset is minimised, or

in other words the closest approximation which is lower than G is looked for. The derivation is given

below in Figure 11.

MIN s1

S.T. ∑i cixi + s1 = G

s1 ≥ 0

xi ∈ {0,1}

Substitute s1, according to the equality.

MIN G−∑i cixi

S.T. G−∑i cixi ≥ 0

xi ∈ {0,1}

Since G is a constant, it can be deleted from the objective function and the min-

imisation problem is turned into a maximisation problem. This leads to a 0/1

knapsack problem.

MAX ∑i cixi (P1)

S.T. ∑i cixi ≤ G

xi ∈ {0,1}

This is a 0/1 knapsack problem.

Figure 11: Derivation of the first knapsack problem (P1).
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B Derivation of the 0/1 knapsack problem (P2)

In the second problem (P2) the positive difference s2 between the sum of the numbers in the subset

and G is minimised, in other words the closest approximation which is larger than G is looked for.

The derivation of this knapsack problem is given in Figure 12.

MIN s2

S.T. ∑i cixi − s2 = G

s2 ≥ 0

xi ∈ {0,1}

Substituting s2 and deleting the constant in the objective function gives:

MIN ∑i cixi

S.T. ∑i cixi ≥ G

xi ∈ {0,1}

Substitute (xi) by (1−yi).

MIN ∑i ci(1−yi)

S.T. ∑i ci(1−yi)≥ G

yi ∈ {0,1}

or,

MIN ∑i ci −∑i ciyi

S.T. ∑i ci −∑i ciyi ≥ G

yi ∈ {0,1}

or,

MAX ∑i ciyi (P2)

S.T. ∑i ciyi ≤ ci −G

yi ∈ {0,1}

This is again a 0/1 knapsack problem.

Figure 12: Derivation of the second knapsack problem (P2).
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