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Abstract— In this paper a new approach to the mod-

elling of ATM-traffic is proposed. The traffic is mea-

sured and characterised by its first and second order

statistic moments. A Markov Modulated Poisson Process

(MMPP) is used to capture the information in these

two stochastic moments. Instead of a general MMPP,

a circulant MMPP is used to reduce the computational

cost. A circulant MMPP (CMMPP) is an MMPP with a

circulant transition matrix. The main advantages of this

approach are that the eigenvalue decomposition is a Fast

Fourier Transform and that the optimisation towards the

two stochastic moments is decoupled. Based on these

properties, a fast time domain identification algorithm

is developed.

I. INTRODUCTION

Asynchronous Transfer Mode (ATM) is a protocol

for packet switched broadband ISDN networks. Its main

characteristic is that it combines the advantages of the

classic circuit mode and packet mode traffic. Therefore

ATM uses the principle of statistical multiplexing,

which is very efficient for variable bit rate applications:

it is assumed that not every user uses his maximal

assigned bit rate, so that more clients can be allocated

to a channel than can be processed when every user

consumes his maximum bit rate, see e.g. [1] for details.

Buffers are placed in the nodes of the ATM-network

to absorb the largest part of the fluctuations in the

buffer queue
arrival
pattern

k
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µ

  a{    }

Fig. 1. Schematic representation of a server with finite buffer

length. The aggregated traffic {ak} is composed of the traffic of

the individual clients. Most of the fluctuations are absorbed in the

buffer. No cells are lost as long as the buffer size exceeds the length

of the queue. This length and the losses are calculated by queueing

analysis and depend on the traffic and the server rate µ .

traffic. Figure 1 gives a schematic representation of a

server with finite buffer length. The aggregated arrival

pattern {ak}∞
k=1 is the sum of the arrival patterns of the

individual clients. Each client demands a certain nego-

tiated level of Quality of Service (QoS). The following

question is important: given the currently processed

traffic, is it possible to allocate a new client to the

channel so that the new client obtains his level of QoS,

without loss of the previously negotiated QoS of the

other clients? The new client will certainly increase

the load on the server and the QoS will certainly

decrease. The amount of this decline is calculated with
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queueing theory. This could be done by simulation, but

this approach is rejected because of the computational

requirements. To obtain a swift Connection Admission

Control, a better approach is to use a mathematical

model of the aggregated arrival pattern and use this

model in queueing analysis. In this paper a new time

domain approach is proposed for the identification of

such a mathematical model.

II. MATHEMATICAL BACKGROUND

A. Model choice

The main purpose of the mathematical model is to

increase the speed of the queueing analysis. Therefore

the model only needs to capture the properties impor-

tant for the queueing analysis. In [2], [3] it is illustrated

that the most important features of the traffic are the

first and second order statistic moments (probability

distribution function and autocorrelation). Moreover

the lower frequencies of the arrival pattern affect the

queueing analysis the most, which is in fact easy to

comprehend.

Therefore Markov Modulated Poisson Processes

(MMPP) are chosen as model class, since they are

easily used in queueing analysis and since it has the

flexibility to capture both statistic moments.

A general MMPP is characterised by its transition

matrix P ∈ P
N×N and its Poisson parameter vector λ ,

where P
N×N is the set of all stochastic matrices of

dimension N and λi ≥ 0 is the Poisson parameter of the

Poisson process associated with state i of the Markov

chain. Let si(k) denote the probability that the Markov

chain is in state i at time k, then s(k+1) = s(k) ·P. In

steady state, the probabilities of the different state will

not change any more. This state probability is given by

s(∞)≡ π , such that π = π ·P. The vector π is the left

eigenvector of P associated with the eigenvalue 1.

Figure 2 represents an MMPP of order 4. It consists

of a stochastic transition matrix P and a vector π with

the Poisson parameters. P describes the transition prob-

abilities between the 4 states. The Poisson parameter

λi of the Poisson process characterises the number of

emitted cells when the Markov chain is in that state i.

B. Properties

An MMPP can also be completely described by its

statistic moments. Since only the first two moments are

important, only these moments of the Markov chain are

given here. The probability ( f (x) = Pr{ak = x})) and

cumulative (F(x) = Pr{ak ≤ x}) distribution functions

1 2
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λ3 λ4
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Fig. 2. MMPP of order 4: when the Markov chain is in e.g.

state 3, the number of ATM-cells is described by the probability or

cumulative distribution function of the associated Poisson process

of λ3, i.e. fλ3
or Fλ3

.

are (x ∈ N):

f (x) =
N

∑
i=1

πi fλi
(x) =

N

∑
i=1

πie
−λi

λ x
i

x!
(1)

F(x) =
N

∑
i=1

πiFλi
(x) =

N

∑
i=1

πie
−λi

x

∑
j=0

λ
j

i

j!
. (2)

The autocorrelation of an MMPP is1:

R(0) = πΛde+πΛ2
de = λ 2 +λ (3)

R(n) = πΛdPnΛde (n > 0) (4)

R(∞) = λ
2
. (5)

C. The inverse eigenvalue problem

The transition matrix P is a stochastic matrix, which

means that ∑N
i=1 pi j = 1, ∀ j and that each element

pi j ≥ 0. These restrictions implicate that there are sets

of eigenvalues which cannot belong to a stochastic ma-

trix. The theorem of Karpelevic̆ formulates necessary

conditions, while sufficient conditions are described in

[4] for sets of real eigenvalues. Therefore it is not

straightforward to impose an eigenvalue set, which

describes the dynamics of the arrival pattern {ak}, on

an MMPP.

To avoid the inverse eigenvalue problem, a good

approach is to start from an MMPP with its restrictions

and adapt it such that it resembles the given autocorre-

lation and distribution function, cf. [5].

1x denotes the weighted average of x, while e is a column vector

of length N, containing all 1’s and the index d in Λd stands for a

diagonal matrix with the elements of λ on the main diagonal.
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Fig. 3. Graphical representation of the identification procedure of

the first order statistics. The cumulative distribution function of the

data Fd is approximated by a staircase function of Poisson processes

with weight 1
N .

D. Circulant matrices

Analysis of the above equations shows that the

numerical complexity of the computations is very high:

the calculation of equation (4) requires O(N3) opera-

tions, while the computation of the equations (1) and

(2) requires large computation times because of the

calculation of the Poisson distributions, see [6]2 for a

comprehensive discussion. Hence, this scheme is not

appropriate in an optimisation procedure.

The more restricted model class of circulant stochas-

tic matrices [7] is chosen to simplify the computational

load. Their eigenvalue decomposition can be written

as a Fast Fourier Transform3 (fft): P ≡ F∗ΓdF , where

(F)i j =
1√
N

exp(− 1
N

2π
√
−1(i−1)( j−1)). This simpli-

fies equation (4) into:

R(n) =
1

N2
fft(λ )∗ Γn

d fft(λ ) . (6)

III. IDENTIFICATION PROCEDURE

The identification procedure consists of two consec-

utive steps: 1. Identification of the first order statistics:

identification of the Poisson parameters; 2. Identifi-

cation of the second order statistics: firstly the au-

tocorrelation is identified by a linear time-invariant

stochastic system, secondly the poles are allocated to

the amplitudes of the poles of the linear time-invariant

stochastic process and thirdly the poles of the CMMPP

are identified.

2This report is available by anonymous ftp from

ftp.esat.kuleuven.ac.be in the directory

pub/SISTA/decock/reports/97-90.ps.gz
3X∗ denotes the complex conjugate of X .

A. First order statistics

Circulant stochastic matrices are a subclass of double

stochastic matrices and as a consequence the distribu-

tion function only depends on the size of the transition

matrix (πi =
1
N

) and the Poisson parameters λi. The

Poisson parameters {λi}N−2
i=1 are identified by approxi-

mating the cumulative distribution function by a (quasi)

staircase function, as pointed out in figure 3. The order

N is chosen in the range 64 to 128.

Two λi’s are left over since from equations (3) and

(5) also R(0) and R(∞) depend only on the model order

N and the Poisson parameter vector λ . This quadratic

equation guarantees that the CMMPP is still consistent

with both beginning and end of the autocorrelation and

has the additional advantage that also the mean of the

distribution function is correctly estimated, which is a

very important feature in the queueing analysis.

B. Second order statistics

The autocorrelation describes the dynamics of the

system. A slowly decaying autocorrelation means

highly correlated traffic and increases the load on the

buffer.

1) Stochastic system identification: Decomposition

of the autocorrelation R(n) in a sum of exponentials is

a very compact representation and therefore very well

suited in an iterative identification process. The decom-

position is done by stochastic subspace identification

[8], [9] and results in (Ns ≪ N):

R(n) = A0 +
Ns

∑
i=1

Aib
n
i , (7)

where A0 =R(∞), because of the stability of the system.

Comparison of equation (4) with equation (7) leads

to the following identity:

1

N2
fft(λ )∗ Γn

d fft(λ )≡ A0 +
Ns

∑
i=1

Aib
n
i . (8)

This means that both the (aggregated) amplitudes and

the roots of both systems must be the same. The

matching is done by solving two problems: an integer

programming problem and an optimisation problem.

A short description of these problems is given in the

following two paragraphs, see [10]4 for a more detailed

description.

4This report is available by anonymous ftp from

ftp.esat.kuleuven.ac.be in the directory

pub/SISTA/vangestel/reports/97-108.ps.gz
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2) Integer programming problem: The first problem

consists of finding disjunct subsets from the set C =
{ 1

N2 |fft(λ )i|2 : i = 1 . . .N} so that their sums equal

{Ai}.

The problem of finding a subset from a given set of

numbers C with the sum of the numbers in this subset

as close as possible to a given number G = Ai can be

stated as an integer programming problem. In fact the

problem can be formulated as two 0/1 integer knapsack

problems: one (P1) for giving the closest approximation

which is lower than G and the other (P2) for finding

the closest approximation which is larger than G. Using

the branch and bound algorithm of Fayard and Plateau

[11], the problem can be solved in about 1 second for

a typical set of 64 numbers5.

The knapsack solver is used in an iterative process.

First the problem for the largest given number G = Ai

is solved. The subset of the current solution is removed

from the initial set C = { 1
N2 |fft(λ )i|2 : i = 1 . . .N}.

Then the knapsack solver is applied to the second

largest Ai, now with the reduced set. Although it is

obvious that one obtains a sub-optimal solution, this

approach is much faster than the optimal solution and

also puts the largest weight on the most important

exponentials.

3) Optimisation problem: The problem of finding

a circulant transition matrix such that the poles γi

approximate the corresponding poles bi of the selected

amplitudes in the diagonal form of equation (6), is

reformulated as a unconstrained optimisation problem

by using the parametrisation described in [5]. The sum

of the squares of the differences between the given

poles and real poles is minimised, using the function

leastsq in the Matlab® optimisation toolbox, with

the Levenberg-Marquardt option.

C. Example

As an example a third order (general) MMPP is iden-

tified with a CMMPP of order 64. Data were produced

by simulating the original MMPP. A set {ak} of 100 000

points was generated, the latter half was used for the

identification procedure to avoid the influence of the

choice of the initial state. A third order original model

was used since it is illustrated in [5], [6] that higher

order models do not necessarily have more complex

dynamics, only the first order statistics are influenced.

This is also the reason for the apparently large order of

the identified model.

Using an HP 9000 Model 712/80 workstation with

64 MB internal memory and clock speed 80 MHz, all

5A Pentium 66 MHz was used to do the calculation.
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Fig. 4. Comparison of the cumulative distribution function of

the original MMPP (full line) and the identified (circulant) MMPP

(dashed line).
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Fig. 5. Comparison of the autocorrelation of the original MMPP

(full line) and the identified (circulant) MMPP (dashed line).

computations (except the knapsack solver) took about

60 seconds, starting from raw data. The cumulative

distribution function and autocorrelation of the original

model (full line) and of the identified CMMPP (dashed

line) are given in figures 4 and 5.

One notices that the autocorrelations match very

well and that the distribution function is quite well

approximated. The error is mainly due to identified

Poisson parameters in between the distinct Poisson

parameters of the original MMPP.

IV. CONCLUSIONS

In this paper a fast time domain approach was

presented to identify a circulant Markov Modulated
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Poisson Process (MMPP), based on the autocorrelation

and the cumulative distribution function. To avoid the

inverse eigenvalue problem, optimisation was used.

Models with low computational cost were searched for.

The use of a circulant MMPP reduces the computational

cost and decouples the matching of the first and second

order statistic moment.

To further reduce the number of calculations, a quasi

staircase approximation of the cumulative distribution

function was used, with attention to the beginning

and end of the autocorrelation and also the mean of

the distribution. The autocorrelation was approximated

by subspace-identification as a sum of exponentials,

the poles were allocated by 0/1 knapsack solvers and

identified by unconstrained optimisation.

V. REFERENCES

[1] M. De Prycker. Asynchronous Transfer Mode:

Solution for Broadband ISDN. Prentice Hall, UK,

1995.

[2] W.C. Lau and S.Q. Li. Statistical multiplexing

and buffer sharing in multimedia high-speed net-

works: A frequency domain perspective. Proc.

IEEE Globecom’95, Dec. 1995.

[3] S.Q. Li and C.L. Hwang. Queue response to

input correlation functions: Discrete spectral anal-

ysis. IEEE/ACM Transactions on Networking,

1(5):522–533, Oct. 1993.

[4] A. Borobia. On the nonnegative eigenvalue

problem. Linear Algebra and Its Applications,

223/224:131–140, July 1995.

[5] C. Yi and B. De Moor. Traffic identification

of ATM networks with optimisation algorithms.

Proc. IEEE CDC, Kobe, Japan, pages 277–282,

Dec. 1996.

[6] K. De Cock, T. Van Gestel and B. De Moor.

Stochastic System Identification for ATM Net-

work Traffic Models: A Time Domain Approach.

Internal report ESAT-SISTA/97-90, K.U.Leuven,

Belgium, 1997.

[7] P.J. Davis. Circulant Matrices. John Wiley &

Sons, Inc., 1979.

[8] P. Van Overschee and B. De Moor. Subspace Iden-

tification for Linear Systems. Theory, Implementa-

tion, Applications. Kluwer Academic Publishers,

1996.

[9] P. Van Overschee. Subspace Identification for

Linear Systems. Theory, Implementation, Applica-

tions. PhD Thesis, Faculty of Applied Sciences,

K.U.Leuven, Belgium, Feb. 1995.

[10] T. Van Gestel, K. De Cock, R. Jans, B. De

Schutter, Z. Degraeve and B. De Moor. Dis-

crete Stochastic Modelling of ATM-Traffic with

Circulant Transition Matrices: A Time Domain

Approach. Internal report ESAT-SISTA/97-108,

K.U.Leuven, Belgium, Nov. 1997.

[11] D. Fayard and G. Plateau. An algorithm for the

solution of the 0-1 knapsack problem. Computing,

(28):269–287, 1982.

Acknowledgements

This research was done at the K.U.Leuven, Dept. of

Electrical Engineering (ESAT), SISTA, Kard. Mercier-

laan 94, B-3001 Leuven, Belgium, tel. 32/16/321709, fax.

32/16/321970. T. Van Gestel is a Research Assistant with the

Fund for Scientific Research-Flanders (FWO-Vlaanderen), K.

De Cock is a Research Assistant with the IWT (Flemish

Institute for Scientific and Technological Research in Indus-

try), R. Jans is a Research Assistant with the K.U.Leuven

at the Dept. of Applied Economics, B. De Schutter is a

Senior Research Assistant with the FWO-Vlaanderen, Z. De-

graeve is Associate Professor of management science at the

K.U.Leuven Dept. of Applied Economics and B. De Moor

is a Senior Research Associate with the FWO-Vlaanderen.

This work was supported by the Flemish Government (BOF

(GOA-MIPS), AWI (Bil. Int. Coll.), FWO (projects, grants,

res. comm. (ICCoS)), IWT (IWT-V CST (CVT), ITA (ISIS),

EUREKA (Sinopsys))), the Belgian Federal Government

(IUAP IV-02, IUAP IMechS), the European Commission

(HCM (Simonet), TMR (Alapedes), ACTS (Aspect), SCI-

ENCE (ERNSI)).

5


