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Abstract

In this paper we consider some extensions of the Linear Complementarity Problem,
which is one of the fundamental problems in mathematical programming. More
specifically we consider the Linear Dynamic Complementarity Problem (LDCP),
the Generalized Linear Complementarity Problem (GLCP) and the Extended Linear
Complementarity Problem (ELCP). We show that the LDCP is a special case of
the ELCP and of the GLCP.

Key words: linear complementarity problem, extended linear complementarity
problem, generalized linear complementarity problem, discrete event system,
hybrid system

1 Introduction

In this paper we consider three extensions of the Linear Complementarity
Problem, which is one of the fundamental problems in mathematical pro-
gramming.

The Linear Dynamic Complementarity Problem (LDCP) has been introduced
by J.M. Schumacher in [14] where it has been used to determine the unique-
ness of smooth continuations and the associated mode selection problem for
a class of systems with discontinuous dynamics. In [4,5] De Moor introduced
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the Generalized Linear Complementarity Problem, which can be used to deter-
mine operating points and transfer characteristics of piecewise-linear resistive
electrical circuits. In [6,7] we have presented another extension of the LCP, the
Extended Linear Complementarity Problem (ELCP). The ELCP can be used
to solve some fundamental problems in the max-plus algebra, which is one of
the frameworks that can be used to model a class of discrete event systems.
Furthermore, in [10,11] we have used the ELCP to compute optimal traffic
light control schemes for a single intersection.

In this paper we show that the LDCP is a special case of the ELCP and of
the GLCP.

All the systems mentioned above (systems with discontinuous dynamics, piece-
wise-linear resistive electrical circuits, discrete event systems and traffic sys-
tems) can be considered as special cases of hybrid systems. Since the ELCP
appears in one form or another in the analysis of these systems, this seems to
indicate that the ELCP may play an important role as a kind of generalized
framework in the analysis of many classes of hybrid systems.

2 Notations

All the vectors that appear in this paper are assumed to be column vectors,
i.e., matrices with one column. If a is a vector then ai represents the ith
component of a. The n by n identity matrix is represented by In and the m by
n zero matrix by Om×n. If the dimensions of the identity matrix or the zero
matrix are clear from the context they will be omitted.

If a is a vector with n components then a ≥ 0 means that ai ≥ 0 for i =
1, 2, . . . , n. Likewise a = 0 means that ai = 0 for i = 1, 2, . . . , n.

A vector a ∈ R
n is lexicographically nonnegative, denoted by a � 0, if either

ai = 0 for all i or the first nonzero component of a is positive.

If a ∈ R
n then the sign decomposition a+, a− of a is defined as follows: a+, a− ∈

R
n, a = a+ − a− with a+, a− ≥ 0 and (a+)Ta− = 0.

If A is a set then #A is the cardinality of A.
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3 The Linear Complementarity Problem and some of its extensions

3.1 The Linear Complementarity Problem

One of the possible formulations of the Linear Complementarity Problem
(LCP) is the following [2]:

Given M ∈ R
n×n and q ∈ R

n, find w, z ∈ R
n such that

w, z≥ 0 (1)

w= q +Mz (2)

zTw=0 , (3)

or show that no such w and z exist.

Note that if w and z are solutions of the LCP then it follows from (1) and (3)
that ziwi = 0 for i = 1, 2, . . . , n. So for each index i ∈ {1, 2, . . . , n} at least
one of the following conditions should hold:

zi = 0 and wi ≥ 0 (4)

zi ≥ 0 and wi = 0 . (5)

Hence, we have

wi > 0 ⇒ zi = 0 and zi > 0 ⇒ wi = 0 for i = 1, 2, . . . , n ,

i.e., the zero patterns of w and z are complementary. Therefore, condition (3)
is called the complementarity condition of the LCP.
The LCP has numerous applications such as quadratic programming prob-
lems, determination of the Nash equilibrium of a bimatrix game problem, the
market equilibrium problem, the optimal invariant capital stock problem, the
optimal stopping problem, etc. [2]. This makes the LCP one of the funda-
mental problems of mathematical programming. For more information on the
LCP and its applications the interested reader is referred to [2,12].

3.2 The Linear Dynamic Complementarity Problem

The Linear Dynamic Complementarity Problem (LDCP) is defined as follows
[14–16]:

Given matrices A ∈ R
n×n, B ∈ R

n×k, C ∈ R
k×n and D ∈ R

k×k, find for a
given x0 ∈ R

n sequences {yl}
n−1
l=0 , {ul}

n−1
l=0 with yl, ul ∈ R

k for all l such that
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y0 =Cx0 +Du0 (6)

y1 =CAx0 + CBu0 +Du1 (7)
...

yn−1 =CAn−1x0 + CAn−2Bu0 + . . .+ CBun−2 +Dun−1 (8)

and such that for each index i ∈ {1, 2, . . . , k} at least one of the following
statements is true:

[

(y0)i . . . (yn−1)i

]T

= 0 and
[

(u0)i . . . (un−1)i

]T

� 0 (9)

[

(y0)i . . . (yn−1)i

]T

� 0 and
[

(u0)i . . . (un−1)i

]T

= 0 . (10)

Conditions (9) – (10) are called the complementarity conditions of the LDCP
since they resemble the complementarity conditions (4) – (5) of the LCP.
In [14–16] the LDCP has been used to determine the uniqueness of smooth
continuations and the associated mode selection problem for a class of systems
with discontinuous dynamics — the “complementary-slackness systems”, —
typical examples of which are electrical networks with diodes and mechanical
systems subject to geometric inequality constraints.
In [14,15] it has been shown that under fairly mild assumptions 3 the LDCP
can be reduced to a series of LCPs.

3.3 The Generalized Linear Complementarity Problem

In [4,5] De Moor introduced the following extension of the LCP:

Given Z ∈ R
p×n and m subsets φ1, φ2, . . . , φm of {1, 2, . . . , n}, find a non-

trivial u ∈ R
n such that

m
∑

j=1

∏

i∈φj

ui = 0 (11)

subject to u ≥ 0 and Zu = 0 .

In [4,5] this problem is called the Generalized Linear Complementarity Prob-
lem (GLCP). It is easy to verify that the LCP is a special case of the GLCP.
Condition (11) is called the complementarity condition of the GLCP.
In [4,17] it has been shown that the GLCP can be used to determine oper-
ating points and transfer characteristics of piecewise-linear resistive electrical
circuits.

3 I.e., if for some j ∈ N we have D = CB = . . . = CAj−1B = O and the principal
minors of CAjB are positive.
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3.4 The Extended Linear Complementarity Problem

3.4.1 Definition

Another extension of the LCP, the Extended Linear Complementarity Problem
(ELCP), is defined as follows [6,7]:

Given A ∈ R
p×n, B ∈ R

q×n, c ∈ R
p, d ∈ R

q and m subsets φ1, φ2, . . . , φm
of {1, 2, . . . , p}, find x ∈ R

n such that

m
∑

j=1

∏

i∈φj

(Ax− c)i = 0 (12)

subject to Ax ≥ c and Bx = d.

Condition (12) is the complementarity condition of the ELCP. Note that this
condition is equivalent to

∀j ∈ {1, 2, . . . ,m} , ∃i ∈ φj such that (Ax− c)i = 0 .

So we could say that each set φj corresponds to a group of inequalities of
Ax ≥ c and that in each group at least one inequality should hold with
equality.

In [6,8,9] we have shown that the ELCP can be used to solve many problems
that arise in the system theory for max-linear time-invariant discrete event
systems, i.e., discrete event systems that can be described by a time-invariant
model that is linear in the max-plus algebra [1,3], which has maximization
and addition as its basic operations.

3.4.2 Homogenization

Suppose that we want to solve the system Bx = d. This system can be made
homogeneous as follows. We introduce a parameter α and solve the equivalent

homogeneous system Cy = 0, α 6= 0 with C = [B − d ] and y =
[

xT α
]T
.

It is easy to verify that every solution of Bx = d corresponds to a solution
[

xT 1
]T

of Cy = 0. Moreover, every solution of Cy = 0 with a nonzero α
component can be divided by the α component, which leads to a solution of

the form
[

xT 1
]T

of Cy = 0, and clearly x is a solution of Bx = d. Note that
we may assume without loss of generality that α is nonnegative.

Using homogenization the general ELCP defined in Section 3.4.1 can be trans-
formed into an homogeneous ELCP. In general the homogeneous ELCP is
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defined as follows:

Given P ∈ R
p×n, Q ∈ R

q×n and m subsets φ1, φ2, . . . , φm of {1, 2, . . . , p},
find a non-trivial vector u ∈ R

n such that

m
∑

j=1

∏

i∈φj

(Pu)i = 0 (13)

subject to Pu ≥ 0 and Qu = 0, or show that no such u exists.

It can be shown that the ELCP is a generalization of the GLCP and that
the homogeneous ELCP and the GLCP are equivalent [6,7]. In [4] De Moor
has developed an algorithm to compute the complete solution set of a GLCP.
In [6,7] we have extended this algorithm in order to compute the complete
solution set of an ELCP.

3.4.3 Complexity issues

Although the general ELCP can be transformed into an homogeneous ELCP
and although the homogeneous ELCP and the GLCP are equivalent, it is not
recommended to use the GLCP algorithm of [4] to solve an ELCP since this
approach has a few drawbacks:

• To convert the homogeneous ELCP into a GLCP we have to introduce some
additional variables [6,7], which increases the complexity of the problem.
Since the execution time of the algorithm of [4] increases rapidly as the
number of unknowns increases, it is certainly not advantageous to have a
large number of variables.

• Moreover, using the algorithm of [4] to compute the solution set of an ELCP
will in general result in a redundant description of the solution set of the
ELCP.

The ELCP algorithm of [6,7] will yield a concise description of the solution
set of an ELCP and it will also be much faster than the algorithm that uses
the transformation into a GLCP.

In [6,7] we have shown that the general ELCP with rational data is an NP-
hard problem. Moreover, the execution time of the ELCP algorithm of [6,7],
which computes a description of the complete solution set of an ELCP, depends
polynomially on the number of (in)equalities and exponentially on the number
of variables.
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4 The LDCP is a special case of the ELCP and the GLCP

4.1 Composing complementarity conditions of GLCPs and ELCPs

In this section we show that composing complementarity conditions of a GLCP
by logical operators such as logical “and” (∧), logical “or” (∨), negation (¬),
implication (⇒), equivalence (⇔) again leads to a complementarity condition
of a GLCP.

First we introduce the so-called “augmented GLCP”. Consider a GLCP de-
fined by

u≥ 0 (14)

Zu=0 (15)
m
∑

j=1

∏

i∈φj

ui=0 (16)

with Z ∈ R
p×n and φ1, φ2, . . . , φm ⊆ {1, 2, . . . , n}. We call the ui’s the basic

variables. Now we introduce some extra variables that will be called mirror
variables : we define a vector v ∈ R

n such that vi is equal to 0 if and only if ui
is different from zero. It is easy to verify that this condition is equivalent to
the following equations for each i ∈ {1, 2, . . . , n}:

vi≥ 0 (17)

ui + vi≥ 1 (18)

uivi=0 . (19)

Since ui and vi are nonnegative for each i, the conditions uivi = 0 for i =
1, 2, . . . , n are equivalent to the condition

n
∑

i=1

uivi = 0 , (20)

which is a condition of the form (16). Since ui and vi are nonnegative for all

i,
m
∑

j=1

∏

i∈φj

ui and
n
∑

i=1

uivi are also nonnegative. Since a sum of two nonnegative

numbers is equal to 0 if and only if each term is equal to 0, conditions (16)
and (20) lead to

m
∑

j=1

∏

i∈φj

ui +
n
∑

i=1

uivi = 0 .
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This is again a condition of the form (16).

Clearly, equations of the form (18) fit in the ELCP framework. They can
also be transformed into GLCP equations by introducing nonnegative slack
variables s1, s2, . . . , sn with si = ui+vi−1 and a nonnegative homogenization
parameter α. Then we get

ui + vi − si − α = 0

for i = 1, 2, . . . , n.
So now we have again a GLCP with basic variables ui, mirror variables vi, slack
variables si and a homogenization parameter α. This GLCP will be called the
augmented GLCP that corresponds to the GLCP defined by (14) – (16).

Let k, l ∈ N and let φ1, φ2, . . . , φk, ψ1, ψ2, . . . , ψl ⊆ {1, 2, . . . , n}. Consider
the following expressions:

c1 =
k
∑

j=1

∏

i∈φj

ui (21)

c2 =
l

∑

j=1

∏

i∈ψj

ui . (22)

Since ui ≥ 0 for all i we have c1, c2 ≥ 0. Note that the expressions c1 = 0 and
c2 = 0 can be considered as complementarity conditions of the form (16).

Lemma 1 The logical “and” of two complementarity conditions of a GLCP
leads to a complementarity condition of the given GLCP.

PROOF. Consider a GLCP defined by (14) – (15) and consider two comple-
mentarity conditions that are given by c1 = 0 and c2 = 0 with c1 and c2
defined by (21) – (22).
Since c1, c2 ≥ 0, we have

( c1 = 0 ) ∧ ( c2 = 0 )

if and only if

c1 + c2 = 0
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or equivalently

c1 + c2 =
m
∑

j=1

∏

i∈γj

ui = 0

with m = k + l and

γj =











φj for j = 1, 2, . . . , k,

ψj−k for j = k + 1, k + 2, . . . , k + l .

Hence, the logical “and” of two complementarity conditions of the form (16)
leads again to a complementarity condition of the form (16). ✷

Lemma 2 The logical “or” of two complementarity conditions of a GLCP
leads to a complementarity condition of the given GLCP.

PROOF. Consider a GLCP defined by (14) – (15) and consider two comple-
mentarity conditions that are given by c1 = 0 and c2 = 0 with c1 and c2
defined by (21) – (22).
We have

( c1 = 0 ) ∨ ( c2 = 0 )

if and only if

c1 c2 = 0 .

If we define p = kl and sets δ1, δ2, . . . , δp, such that

δi+k(j−1) = φi ∪ ψj for i = 1, 2, . . . , k and j = 1, 2, . . . , l ,

we obtain

c1 c2 =
p

∑

j=1

∏

i∈δj

ui = 0 .

Hence, the logical “or” of two complementarity conditions of the form (16)
leads again to a complementarity condition of the form (16). ✷
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Lemma 3 The negation of a complementarity condition of a GLCP leads to
a complementarity condition of the augmented GLCP that corresponds to the
given GLCP.

PROOF. Consider a GLCP defined by (14) – (15) and the complementarity
condition c1 = 0 with c1 defined by (21). Now consider the negation of this
complementarity condition. Since ui ≥ 0 for all i, we have ¬( c1 = 0 ) or

m
∑

j=1

∏

i∈φj

ui 6= 0

if and only if

∃j ∈ {1, 2, . . . ,m} such that
∏

i∈φj

ui 6= 0

or

∃j ∈ {1, 2, . . . ,m} such that ∀i ∈ φj : ui 6= 0 .

If we use the mirror variables vi, this condition leads to

∃j ∈ {1, 2, . . . ,m} such that ∀i ∈ φj : vi = 0

or

∃j ∈ {1, 2, . . . ,m} such that
∑

i∈φj

vi = 0

since vi ≥ 0 for all i. Hence, we have ¬( c1 = 0 ) if and only if

m
∏

j=1

∑

i∈φj

vi = 0 .

If we write out the multiplications and additions in this condition we obtain

q
∑

j=1

∏

i∈ηj

vi = 0 , (23)

with q = (#φ1) (#φ2) . . . (#φm) and

{ ηj | j = 1, 2, . . . , q } = {{i1, i2, . . . , im} | i1 ∈ φ1, . . . , im ∈ φm } .
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Clearly, (23) is a complementarity condition of the form (16) of the augmented
GLCP that corresponds to the given GLCP. ✷

Lemma 4 Combining two complementarity conditions of a GLCP by impli-
cation or equivalence leads to a complementarity condition of the augmented
GLCP that corresponds to the given GLCP.

PROOF. This is a direct consequence of Lemmas 1, 2 and 3, and the fact
that if P and Q are logical expressions, we have

P ⇒ Q if and only if (¬P ) ∨ Q

P ⇔ Q if and only if (P ∧Q) ∨ ((¬P ) ∧ (¬Q)) . ✷

In a similar way we can prove that more complex nested logical combinations of
complementarity conditions of the form (16) lead again to a complementarity
condition of the form (16). As a consequence, we have:

Proposition 5 Composing complementarity conditions of a GLCP by nested
combinations of logical operators such as logical “and”, logical “or”, negation,
implication or equivalence leads to a complementarity condition of the aug-
mented GLCP that corresponds to the given GLCP.

It is easy to verify that we can also apply a similar reasoning for complemen-
tarity conditions of ELCPs:

Proposition 6 Composing complementarity conditions of an ELCP by nested
combinations of logical operators such as logical “and”, logical “or”, negation,
implication or equivalence leads again to a complementarity condition of the
form (12).

4.2 The LDCP is a special case of the ELCP and the GLCP

Now we come to the main result of this paper:

Theorem 7 The LDCP is a special case of the GLCP.
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PROOF. Consider the LDCP defined by (6) – (10). If we define

y =





















y0

y1
...

yn−1





















, u =





















u0

u1
...

un−1





















, q =





















Cx0

CAx0
...

CAn−1x0





















and

P =





















D O O . . . O

CB D O . . . O
...

...
...

. . .
...

CAn−2B CAn−3B CAn−4B . . . D





















,

then we have y = Pu+ q.
Consider the sign decomposition of y and u:

y = y+ − y−

u = u+ − u−

y+, y−, u+, u− ≥ 0

(y+)Ty− = 0 and (u+)Tu− = 0 .

The last condition is equivalent to (y+)Ty− + (u+)Tu− = 0 by Lemma 1. Now
we define

x =





















y+

u+

y−

u−





















and we introduce a nonnegative real number α that will be used to homogenize
the problem (cf. 3.4.2). If we define

Z =
[

I −P −I P

]

,

then we have
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[

Z −q

]







x

α





=0 (24)







x

α





≥ 0 (25)

2nk
∑

i=1

xixi+2nk =0 . (26)

Now we show that combining condition (26) with the complementarity con-
ditions (9) – (10) of the LDCP results in a complementarity condition of the
form (11). We shall do this for the case with n = 2 and k = 1. The general
case can be dealt with in a similar way.

Consider condition (9) for i = 1. For ease of notation we shall drop the index
i. Now we show that the condition

[

y0 y1

]T

= 0 and
[

u0 u1

]T

� 0 (27)

leads to a logical combination of a number of complementarity conditions.
Clearly, the first part of this condition is equivalent to y+0 = y−0 = y+1 = y−1 = 0.
Since y+0 , y

−

0 , y
+
1 , y

−

1 ≥ 0, this condition is equivalent to

y+0 + y−0 + y+1 + y−1 = 0 . (28)

Note that we could also consider (28) as the logical “and” of the elementary
complementarity conditions y+0 = 0, y−0 = 0, y+1 = 0, y−1 = 0.
The second part of condition (27) is equivalent to

( u0 ≥ 0 ) ∧ ( ( u0 = 0 ) ⇒ ( u1 ≥ 0 ) ) ,

which can be rewritten as

( u−0 = 0 ) ∧
(

( (u+0 = 0) ∧ (u−0 = 0) ) ⇒ ( u−1 = 0 )
)

.

This condition is a logical combination of elementary complementarity condi-
tions and can be rewritten as one complementarity condition of the form (11)
by Proposition 5.

This implies that the complementarity conditions of the LDCP together with
condition (26) lead to one large complementarity condition of the form (11).
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So we finally get a GLCP. Any solution of this GLCP that has a nonzero α
component will — after normalization of the α component to 1 and extraction
of the vectors y0, y1, . . . , yn−1, u0, u1, . . . , un−1 — yield a solution of the LDCP.
So we can say that the LDCP is a special case of the GLCP. ✷

Remark 8 It is easy to verify that we shall always have (y−0 )i = (u−0 )i = 0
for all i.

Corollary 9 The LDCP is a special case of the ELCP.

PROOF. This is a direct consequence of Theorem 7 and the fact that the
GLCP is a special case of the ELCP. ✷

Remark 10 Consider the GLCP that corresponds to the LDCP of the proof of
Theorem 7. Assume that the vector x̃ ∈ R

4nk contains the mirror variables that
correspond to the basic variables of this GLCP and that the vector s ∈ R

4nk

contains the slack variables of this GLCP. If we remove the slack variables s,
we get an ELCP of the following form:

I w≥ 0

[

I I

]

w≥





















1

1
...

1





















[

Z O

]

w= q

∑ ∏

(I w)i=0

where w =
[

xT x̃T
]T
. Note that the ELCP defined above has 4kn variables

less than the GLCP. This is important since in general the execution time of
the ELCP/GLCP algorithms of [4,6,7] increases exponentially as the number
of variables increases (see also Section 3.4.3).
In the particular case of an ELCP that corresponds to an LDCP, the effect of
exponentially increasing execution times is counteracted by the fact that in that
case the complementarity condition will contain many terms, which will result
in a large reduction of intermediate solutions and thus also in a reduction of
the execution time of the algorithm (see [6]).
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5 An example

Let

A =







−2 −3

5 −5






, B =







5 5

−2 −3






, C =







2 −2

3 −4






,

D =







−1 3

−1 −1





 , x0 =







4

0







and consider the following LDCP:

Find y0, y1, u0, u1 ∈ R
2 such that

y0 =Cx0 +Du0

y1 =CAx0 + CBu0 +Du1

and such that at least one of the following statements is true for each index
i ∈ {1, 2}:

[

(y0)i (y1)i

]T

= 0 and
[

(u0)i (u1)i

]T

� 0

[

(y0)i (y1)i

]T

� 0 and
[

(u0)i (u1)i

]T

= 0 .

If we use the reasoning of Section 4.2 then we find that this LDCP is equivalent
to the following ELCP:

Find x, x̃ ∈ R
16 such that

x, x̃≥ 0

xi + x̃i≥ 1 for i = 1, 2, . . . , 16





















1 0 0 0 1 −3 0 0 −1 0 0 0 −1 3 0 0

0 1 0 0 1 1 0 0 0 −1 0 0 −1 −1 0 0

0 0 1 0 −14 −16 1 −3 0 0 −1 0 14 16 −1 3

0 0 0 1 −23 −27 1 1 0 0 0 −1 23 27 −1 −1





















x =





















8

12

−56

−104





















x1 x5 + x1 x7 + x1 x15 + x1 x̃1 + x2 x6 + x2 x8 +

x2 x16 + x2 x̃2 + x3 x5 + x3 x7 + x3 x11 + x3 x15 +

x3 x̃1 x̃9 + x3 x̃3 + x4 x6 + x4 x8 + x4 x12 + x4 x16 +

15



x4 x̃2 x̃10 + x4 x̃4 + x5 x11 + x5 x̃5 + x6 x12 + x6 x̃6 +

x7 x11 + x7 x15 + x7 x̃7 + x8 x12 + x8 x16 + x8 x̃8 + x9 +

x10 + x11 x15 + x11 x̃1 x̃9 + x11 x̃11 + x12 x16 + x12 x̃2 x̃10 +

x12 x̃12 + x13 + x14 + x15 x̃5 x̃13 + x15 x̃15 +

x16 x̃6 x̃14 + x16 x̃16 = 0 .

If we solve this ELCP using the algorithm of [6,7] we find that there are 4
different possible solutions:

y0 =







8

12





 , y1 =







−56

−104





 , u0 =







0

0





 , u1 =







0

0





 ,

y0 =







44

0





 , y1 =







796

0





 , u0 =







0

12





 , u1 =







0

220





 ,

y0 =







0

0






, y1 =







0

0






, u0 =







11

1






, u1 =







160.5

15.5







and

y0 =







0

4





 , y1 =







0

24





 , u0 =







8

0





 , u1 =
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Since the LDCP considered here has more than one solution, the associated
mode selection problem will not have a unique solution either. For more in-
formation on the connection between the mode selection problem for comple-
mentary-slackness systems and the LDCP and for some worked examples the
interested reader is referred to [13–15,17].

6 The ELCP and hybrid systems

Hybrid systems arise from the interaction between discrete event systems and
continuous variable systems (these are systems that can be modeled using dif-
ference or differential equations). In general we could say that a hybrid system
can be in one of several “regimes” whereby in each regime the behavior of the
system can be described by a system of difference or differential equations, and
that the system switches from one regime to another due to the occurrence of
events.
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In [6,9] we have shown that the ELCP can be used to solve some basic prob-
lems that appear in the max-plus-algebraic system theory for discrete event
systems. In [13–15,17] it has been shown that the LDCP and the GLCP (both
of which are special cases of the ELCP) play a role in the modeling and anal-
ysis of continuous variable systems and systems with discontinuous dynamics,
both of which can be considered as special classes of hybrid systems. In [10,11]
we have used the ELCP in a model that describes the evolution of the queue
lengths at a traffic-light controlled intersection, which can also be considered
as a special type of hybrid system. Since the class of discrete event systems can
also be considered as a subclass of the class of hybrid systems, this seems to
indicate that the ELCP will play an important role in many analysis problems
for hybrid systems.

Note that the main purpose of this paper is to show that the LDCP is a
special case of the ELCP and that the ELCP can be considered as a general
framework for the analysis of special classes of hybrid systems. We certainly
do not claim that the ELCP approach is more efficient than, e.g., the use of
the LDCP in the analysis of complementary-slackness systems. Furthermore,
it is obvious that each class of hybrid systems that can be analyzed using
the ELCP will lead to a special case of the ELCP that is especially suited
to the class of systems under consideration. The computational complexity of
these ELCPs and the development of efficient algorithms to solve them or to
determine whether their solution set is non-empty or a singleton still are open
problems. One possible approach to tackle the complexity problem is to use
approximations and/or to develop procedures to efficiently obtain suboptimal
solutions (see, e.g., [10]).

7 Conclusions and topics for further research

In this paper we have shown that the Linear Dynamic Complementarity Prob-
lem (LDCP) can be considered as a special case of the Generalized Linear
Complementarity Problem (GLCP) and of the Extended Linear Complemen-
tarity Problem (ELCP).

Topics for further research include: development of efficient algorithms to com-
pute solutions of (special cases of) the ELCP, development of algorithms to
determine whether an ELCP, a GLCP or an LDCP has a (unique) solution,
development of approximation algorithms or procedures to find suboptimal
solutions, and investigation of the possible applications of (special cases of)
the ELCP in the analysis of hybrid systems.
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