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ON THE SEQUENCE OF CONSECUTIVE POWERS OF A MATRIX

IN A BOOLEAN ALGEBRA

BART DE SCHUTTER∗ AND BART DE MOOR†

Abstract. In this paper we consider the sequence of consecutive powers of a matrix in a Boolean
algebra. We characterize the ultimate behavior of this sequence, we study the transient part of the
sequence and we derive upper bounds for the length of this transient part. We also indicate how
these results can be used in the analysis of Markov chains and in max-plus-algebraic system theory
for discrete event systems.

Key words. Boolean algebra, Boolean matrices, transient behavior, Markov chains, max-plus
algebra

AMS subject classifications. 06E99, 15A99, 16Y99

1. Introduction. In this paper we consider the sequence of consecutive pow-
ers of a matrix in a Boolean algebra. This sequence reaches a “cyclic” behavior
after a finite number of terms. Even for more complex algebraic structures, such as
the max-plus algebra (which has maximization and addition as its basic operations)
this ultimate behavior has already been studied extensively by several authors (See,
e.g., [1, 9, 13, 26] and the references therein). In this paper we completely charac-
terize the ultimate behavior of the sequence of the consecutive powers of a matrix in
a Boolean algebra. Furthermore, we also study the transient part of this sequence.
More specifically, we give upper bounds for the length of the transient part of the
sequence as a function of structural parameters of the matrix.

Our main motivation for studying this problem lies in the max-plus-algebraic
system theory for discrete event systems. Furthermore, our results can also be used
in the analysis of the transient behavior of Markov chains.

This paper is organized as follows. In §2 we introduce some of the notations and
concepts from number theory, Boolean algebra, matrix algebra and graph theory that
will be used in the paper. In §3 we characterize the ultimate behavior of the sequence
of consecutive powers of a given matrix in a Boolean algebra, and we derive upper
bounds for the length of the transient part of this sequence. In §4 we briefly sketch
how our results can be used in the analysis of Markov chains and in the max-plus-
algebraic system theory for discrete event systems. In this section we also explain
why we have restricted ourselves to Boolean algebras in this paper and we indicate
some of the phenomena that should be taken into account when extending our results
to more general algebraic structures. Finally we present some conclusions in §5.

2. Preliminaries.

2.1. Notation, definitions and some lemmas from number theory. In
this paper we use “vector” as a synonym for “column matrix”. If a is a vector, then
ai is the ith component of a. If A is a matrix, then aij or (A)ij is the entry on the
ith row and the jth column, and Aαβ is the submatrix of A obtained by removing all
rows that are not indexed by the set α and all columns that are not indexed by the
set β.
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2 B. DE SCHUTTER AND B. DE MOOR

Table 2.1

The operations ⊕ and ⊗ for the Boolean algebra ({0,1},⊕,⊗).

⊕ 0 1

0 0 1

1 1 1

⊗ 0 1

0 0 0

1 0 1

The set of the real numbers is denoted by R, the set of the nonnegative integers
by N, and the set of the positive integers by N0.

If S is a set, then the number of elements of S is denoted by #S. If γ is a set of
positive integers then the least common multiple of the elements of γ is denoted by
lcm γ and the greatest common divisor of the elements of γ is denoted by gcd γ.

If x ∈ R then ⌈x⌉ is the smallest integer that is larger than or equal to x, and ⌊x⌋
is the largest integer that is less than or equal to x.

Lemma 2.1. Let p, q ∈ N0 be coprime. The smallest integer n such that for any
integer m ≥ n, there exist two nonnegative integers α and β such that m = αp+ βq,
is given by n = (p− 1)(q − 1).

Proof. See, e.g., the proof of Lemma 3.5.5 of [5].
Let a1, a2, . . . , an ∈ N0 with gcd(a1, a2, . . . , an) = 1. We define g(a1, a2, . . . , an) to
be the largest positive integer N for which the equation a1x1+a2x2+ . . .+anxn = N

subject to x1, x2, . . . , xn ∈ N, has no solution. From Lemma 2.1 it follows that
g(a, b) = (a− 1)(b− 1)− 1 = ab− a− b. Although a formula exists for the case where
n = 3, no general formulas are known for n ≥ 4. However, some upper bounds have
been proved [4, 11]:

Lemma 2.2. If a1, a2, . . . , an ∈ N0 with a1 < a2 < . . . < an and gcd(a1, . . . , an) =
1, then g(a1, . . . , an) ≤ (a1 − 1)(an − 1)− 1.

Lemma 2.3. If a1, a2, . . . , an ∈ N0 with a1 < a2 < . . . < an and gcd(a1, . . . , an) =
1, then we have g(a1, . . . , an) ≤ 2an−1

⌊

an

n

⌋

− an.

2.2. Boolean algebra. A Boolean algebra is an algebraic structure of the form
(B,⊕,⊗) with B = {0,1} such that the operations ⊕ and ⊗ applied on 0 and 1 yield
the results of Table 2.1, where ⊕ and ⊗ are associative, and where ⊗ is distributive
with respect to ⊕. The element 0 is called the Boolean zero element, 1 is called the
Boolean identity element, ⊕ is called the Boolean addition and ⊗ is called the Boolean
multiplication.

Some examples of Boolean algebras are: ({false, true}, or, and), ({0,∞},min,+),
({0, 1},max, ·), ({∅,N},∪,∩), ({0, 1},max,min), ({−∞,∞},max,min), and so on (see
[1, 15]). In this paper we shall use the following examples of Boolean algebra in order to
transform known results from max-plus algebra and from nonnegative matrix algebra
to Boolean algebra:

1. The Boolean algebra ({−∞, 0},max,+) is a subalgebra of the max-plus al-
gebra ( R ∪ {−∞},max,+).

2. The Boolean algebra ({0, p},+, ·) where p stands for an arbitrary positive
number1 can be considered as a Boolean restriction of nonnegative algebra.

A matrix with entries in B is called a Boolean matrix. The operations ⊕ and ⊗
are extended to matrices as follows. If A,B ∈ B

m×n then we have

(A⊕B)ij = aij ⊕ bij

1So p+ p = p and p · p = p.



CONSECUTIVE POWERS OF A BOOLEAN MATRIX 3

for all i, j. If A ∈ B
m×p and B ∈ B

p×n then

(A⊗B)ij =

p
⊕

k=1

aik ⊗ bkj

for all i, j. Note that these definitions resemble the definitions of the sum and the
product of matrices in linear algebra but with ⊕ instead of + and ⊗ instead of ·.

The n by n Boolean identity matrix is denoted by In, the m by n Boolean zero
matrix is denoted by Om×n, and the m by n matrix all the entries of which are equal
to 1 is denoted by Em×n. If the dimensions of these matrices are not indicated they
should be clear from the context.

The Boolean matrix power of the matrix A ∈ B
n×n is defined as follows:

A⊗
0
= In , and A⊗

k
= A⊗A⊗

k−1
for k = 1, 2, . . .

If we permute the rows or the columns of the Boolean identity matrix, we obtain a
Boolean permutation matrix. If P ∈ B

n×n is a Boolean permutation matrix, then we
have P ⊗ PT = PT ⊗ P = In. A matrix R ∈ B

m×n is a Boolean upper triangular
matrix if rij = 0 for all i, j with i > j.

2.3. Boolean algebra and graph theory. We assume that the reader is fa-
miliar with basic concepts of graph theory such as directed graph, path, (elementary)
circuit, and so on (see, e.g., [1, 18, 27]). In this paper we shall use the definitions of [1]
since they are well suited for our proofs. Sometimes these definitions differ slightly
from the definitions adopted by other schools in the literature. The most important
differences are:

• In this paper we also consider empty paths, i.e., paths that consist of only
one vertex and have length 0. However, unless it is explicitly specified, we always
assume that paths have a nonzero length.

• The precedence graph of the matrix A ∈ B
n×n, by denoted by G(A), is a

directed graph with vertices 1, 2, . . . , n and an arc j → i for each aij 6= 0. Note that
vertex i is the end point of this arc.

• A directed graph is called strongly connected if for any two different vertices
vi, vj there exists a path from vi to vj . Note that this implies that a graph consisting
of one vertex (with or without a loop) is always strongly connected.

• A matrix is irreducible if its precedence graph is strongly connected. Since
according to the definition we use a graph with only one vertex is always strongly
connected, the 1 by 1 Boolean zero matrix [0 ] is irreducible. However, the 1 by 1
Boolean zero matrix [0 ] is the only Boolean zero matrix that is irreducible.

Let us now give a graph-theoretic interpretation of the Boolean matrix power.
Let A ∈ B

n×n and let k ∈ N0. Recall that there is an arc j → i in G(A) if and only if
aij = 1. Since

(A⊗
k
)ij =

⊕

i1,i2,...,ik−1

aii1 ⊗ ai1i2 ⊗ . . .⊗ aik−1j

for all i, j and since 0 is absorbing for ⊗, (A⊗
k
)ij is equal to 1 if and only if there

exists a path of length k from vertex j to vertex i in G(A).
A maximal strongly connected subgraph (m.s.c.s.) Gsub of a directed graph G is

a strongly connected subgraph that is maximal, i.e., if we add an extra vertex (and
some extra arcs) of G to Gsub then Gsub is no longer strongly connected.
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A well-known result from matrix algebra states that any square matrix can be
transformed into a block upper diagonal matrix with irreducible blocks by simulta-
neously reordering the rows and columns of the matrix (see, e.g., [1, 2, 5, 12, 17, 22]
for the proof of this theorem and for its interpretation in terms of graph theory and
Markov chains):

Theorem 2.4. If A ∈ B
n×n then there exists a permutation matrix P ∈ B

n×n

such that the matrix Â = P ⊗A⊗ PT is a block upper triangular matrix of the form

Â =











Â11 Â12 . . . Â1l

O Â22 . . . Â2l

...
...

. . .
...

O O . . . Âll











(1)

with l ≥ 1 and where the matrices Â11, Â22, . . . , Âll are square and irreducible. The
matrices Â11, Â22, . . . , Âll are uniquely determined to within simultaneous permuta-
tion of their rows and columns, but their ordering in (1) is not necessarily unique.

The form in (1) is called the Frobenius normal form of the matrix A. If A is irreducible
then there is only one block in (1) and then A is a Frobenius normal form of itself.
Each diagonal block of Â corresponds to an m.s.c.s. of the precedence graph of Â.

Theorem 2.5. If A ∈ B
n×n is irreducible, then

∃k0 ∈ N, ∃c ∈ N0, such that ∀k ≥ k0 : A⊗
k+c

= λ⊗
c
⊗A⊗

k
(2)

where λ is equal to 1 if there exists a circuit in G(A), and equal to 0 otherwise.

Proof. See, e.g., [1, 7, 13].

The smallest c for which (2) holds is called the cyclicity [1], index of cyclicity [2] or
index of imprimitivity2 [5, 12] of the matrix A. The cyclicity c(A) of a matrix A is
equal to the cyclicity of the precedence graph G(A) of A and can be computed as
follows. The cyclicity of a strongly connected graph or of an m.s.c.s. is the greatest
common divisor of the lengths of all the circuits of the given graph or m.s.c.s. If an
m.s.c.s. or a graph contains no circuits then its cyclicity is equal to 0 by definition.
The cyclicity of general graph is the least common multiple of the nonzero cyclicities
of the m.s.c.s.’s of the given graph.

Lemma 2.6. If A ∈ B
n×n is irreducible then c(A) ≤ n.

Proof. Let c = c(A). Since A is irreducible, G(A) contains only one m.s.c.s.
If A = [0 ] then we have c = 0 ≤ 1 = n.
From now on we assume that A 6= O. Since c is the greatest common divisor of the
lengths of the (elementary) circuits in G(A), c is maximal if there is only one circuit
and if this circuit has length n. In that case we have c = n. In the other cases, c will
be less than n.
So c(A) ≤ n.

Lemma 2.7. Let A ∈ B
n×n be irreducible and let c be the cyclicity of A. Consider

i, j ∈ {1, 2, . . . , n}. If c > 0 and if there exists a (non-empty) path of length l1 from
j to i and a (non-empty) path of length l2 from j to i then there exists a (possibly
negative) integer z such that l2 = l1 + zc.

2We prefer to use the word “cyclicity” or “index of cyclicity” in this paper in order to avoid
confusion with the concept “index of primitivity” [2, 25] of a nonnegative matrix A, which is defined
to be the least positive integer γ(A) such that all the entries of Aγ(A) are positive.
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Proof. This lemma is a reformulation of Lemma 3.4.1 of [5] that states that if G
is a strongly connected directed graph with cyclicity c then for each pair of vertices j
and i of G, the lengths of the paths from j to i are congruent modulo c.
Remark 2.8. Consider A ∈ B

n×n and i, j ∈ {1, 2, . . . , n}. Let lij be the length of
the shortest path from vertex j to vertex i in G(A). Note that Lemma 2.7 does not
imply that there exists a path of length lij + kc from j to i for every k ∈ N. ✸

In the next section we discuss upper bounds for the integer k0 that appears in Theo-
rem 2.5. We also extend this theorem to Boolean matrices that are not irreducible.

3. Consecutive powers of a Boolean matrix. In this section we consider

the sequence
{

A⊗
k}∞

k=1
where A is a Boolean matrix. First we consider matrices

with a cyclicity that is equal to 0. Next we consider matrices with a cyclicity that
is larger than or equal to 1. Here we shall make a distinction between four different
cases depending on whether the given matrix is irreducible or not, and on whether its
cyclicity is equal to 1, or larger than or equal to 1. Of course the last case that will
be considered is the most general one, but for the other cases we can provide tighter

upper bounds on the length of the transient part of the sequence
{

A⊗
k}∞

k=1
and that

is why we consider four different cases.
If possible we also give examples of matrices for which the sequence of the con-

secutive matrix powers exhibits the longest possible transient behavior.

3.1. Boolean matrices with a cyclicity that is equal to 0. Lemma 3.1.

Let A ∈ B
n×n. If c(A) = 0 then we have A⊗

k
= On×n for all k ≥ n.

Proof. If the cyclicity of A is equal to 0, then there are no circuits in G(A), which
means that there do not exist paths in G(A) with a length that is larger than or equal
to n since in such paths at least one vertex would appear twice, which implies that

such paths contain a circuit. Therefore, we have A⊗
k
= O for all k ≥ n.

Example 3.2. If there exists a permutation matrix P such that A ∈ B
n×n can be

written as

Â = P ⊗A⊗ PT =















0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

0 0 0 . . . 0















,

then the upper bound of Lemma 3.1 is tight, i.e., we have A⊗
k

6= O for k =

1, 2, . . . , n − 1 and A⊗
k

= O for all k ≥ n. The graph of the matrix Â is repre-
sented in Figure 3.1. Note that c(A) = c(Â) = 0 since G(Â) contains no circuits and
since the transformation from A to Â corresponds to a simultaneous reordering of the
rows and the columns of A (or of the vertices of G(A)). ✸

From now on we only consider matrices with a cyclicity that is larger than or equal
to 1.

3.2. Boolean matrices with cyclicity 1. Theorem 3.3. Let A ∈ B
n×n. If

the cyclicity of A is equal to 1 and if A is irreducible, then we have A⊗
k+1

= A⊗
k
=

En×n for all k ≥ (n− 1)2 + 1.
Proof. This theorem can be considered as the Boolean equivalent of Theorem 4.14

of [2] or of Theorem 3.5.6 of [5]. Note that A cannot be equal to [0 ] since c(A) = 1.
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−2n

−1n

2

1

3

n

Fig. 3.1. The precedence graph of the matrix Â of Example 3.2.

If more information about the structure of A is known (such as the number of diagonal
entries that are equal to 1, the length of the shortest elementary circuit of G(A), or
whether A is symmetrically nonnegative) other upper bounds for the length of the

transient part of the sequence
{

A⊗
k}∞

k=1
where A is a Boolean matrix with cyclicity

1 can be found in §2.4 of [2].
Example 3.4. If there exists a permutation matrix P such A ∈ B

n×n can be written
as

Â = P ⊗A⊗ PT =















0 1 0 . . . 0

0 0 1 . . . 0
...

... 0
. . .

...
1 0 0 . . . 1

1 0 0 . . . 0















,(3)

then the bound in Theorem 3.3 is tight: we have A⊗
k
= E for all k ≥ (n− 1)2+1 but

A⊗
(n−1)2

6= 1. Let us now show that the latter part of this statement indeed holds.
Since the transformation from A to Â = P ⊗ A⊗ PT corresponds to a simultaneous
reordering of the rows and the columns of A, we may assume without loss of generality
that P is the identity matrix. So A = Â. If n = 2 then we have (n − 1)2 + 1 = 2.
Since

A =

[

1 1

1 0

]

and A⊗
2
= A⊗

3
= . . . = E ,

we indeed have A⊗
(n−1)2

6= E if n = 2.
From now on we assume that n > 2. In Figure 3.2 we have drawn G(A). There are
two elementary circuits in G(A): circuit C1 : n → n − 1 → . . . → 1 → n of length
n and circuit C2 : n − 1 → n − 2 → 1 → n − 1 of length n − 1. Note that only the
longest circuit passes through vertex n. Furthermore, if n > 2 then gcd(n− 1, n) = 1.
Any circuit that passes through vertex n can be considered as a concatenation of α
times C1, a path from vertex n to a vertex t in C2, β times C2, and a path from t

to n for some nonnegative integers α and β. The length of this circuit is equal to
n + αn + β(n − 1). By Lemma 2.1 the smallest integer N such that for any integer
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−1n

−2n

n

1

2

3

Fig. 3.2. The precedence graph of the matrix Â of Example 3.4.

p ≥ N there exist nonnegative integers α and β such that p = αn + β(n − 1) is
given by N = (n− 1)(n− 2). This implies that (n− 1)(n− 2)− 1 cannot be written
as γn + δ(n − 1) with γ, δ ∈ N. This implies that there does not exist a circuit
of length n + (n − 1)(n − 2) − 1 = (n − 1)2 that passes through vertex n. Hence,
(

A⊗
(n−1)2

)

nn
= 0 and thus A⊗

(n−1)2

6= E . ✸

Let A ∈ B
n×n. If Â = P ⊗ A⊗ PT is the Frobenius normal form of A, then we have

A = PT ⊗ Â⊗ P . Hence,

A⊗
k
= (PT ⊗ Â⊗ P )

⊗
k

= PT ⊗ Â⊗
k
⊗ P

for all k ∈ N. Therefore, we may consider without loss of generality the sequence
{

Â⊗
k}∞

k=1
instead of the sequence

{

A⊗
k}∞

k=1
. Furthermore, since the transformation

from A to Â corresponds to a simultaneous reordering of the rows and columns of A
(or to a reordering of the vertices of G(A)), we have c(A) = c(Â).

Theorem 3.5. Let Â ∈ B
n×n be a matrix of the form (1) where the matrices

Â11, Â22, . . . , Âll are irreducible and such that c(Â) = 1. Define sets α1, α2, . . . , αl

such that Âαiαj
= Âij for all i, j with i ≤ j. Let ni = #αi for all i. Define:

λi =

{

0 if Âii = [0 ]

1 otherwise

for i = 1, 2, . . . , l. Define

Sij =
{

{i0, i1, . . . , is} ⊆ {1, 2, . . . , l}
∣

∣ i = i0 < i1 < . . . < is = j and

Âirir+1
6= O for r = 0, 1, . . . , s− 1

}

for all i, j with i < j.
Let λii = λi and kii = (ni − 1)2 + 1 for i = 1, 2, . . . , n. Define

Γij =
{

t
∣

∣ ∃γ ∈ Sij such that t ∈ γ
}

λij =











⊕

t∈Γij

λt if Γij 6= ∅

0 otherwise
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tij =

{

argmin {nt | t ∈ Γij and λtt 6= 0} if λij 6= 0

0 otherwise

kij =



























∑

t∈Γij

t 6=tij

nt + ktijtij if λij 6= 0

#Γij if Γij 6= ∅ and λij = 0

1 if Γij = ∅

for all i, j with i < j. Then we have for all i, j with i ≤ j:

(

Â⊗
k
)

αiαj

=

{

Eni×nj
if λij 6= 0

Oni×nj
if λij = 0

for all k ≥ kij .(4)

For all i, j with i > j we have

(

Â⊗
k
)

αiαj

= Oni×nj
for all k ∈ N .(5)

Remark 3.6. Note that Âij is an ni by nj matrix for all i, j.
Let us now give a graphical interpretation of the sets Sij and Γij .

Let Ci be the m.s.c.s. of G(Â) that corresponds to Âii for i = 1, 2 . . . , l. So αi is the
set of vertices of Ci.
If {i0 = i, i1, . . . , is−1, is = j} ∈ Sij then there exists a path from a vertex in Cir

to a vertex in Cir−1
for each r = 1, 2, . . . , s. Since each m.s.c.s. Ci of G(Â) either is

strongly connected or consists of only one vertex, this implies that there exists a path
from a vertex in Cj to a vertex in Ci that passes through Cis−1

, Cis−2
, . . . , Ci1 .

If Sij = ∅ then there does not exist any path from a vertex in Cj to a vertex in Ci.

The set Γij is the set of indices of the m.s.c.s.’s of G(Â) through which some path
from a vertex of Cj to a vertex of Ci passes.
If Sij 6= ∅ then Ctij is the smallest m.s.c.s. of G(A) that contains a circuit and through
which some path from a vertex of Cj to a vertex of Ci passes

3. ✸

Proof. Proof of Theorem 3.5.
Let Ci be the m.s.c.s. of G(Â) that corresponds to Âii for i = 1, 2 . . . , l. Since Âαiαj

=
O if i > j, there are no arcs from any vertex of Cj to a vertex in Ci. As a consequence,
(5) holds if i > j.
Note that c(Âii) = 1 for all i ∈ {1, 2, . . . , l} with Âii 6= [0 ] since c(Â) = 1 and since
each Âii corresponds to an m.s.c.s. of G(Â).
If l = 1 then Â is irreducible and then (4) holds by Theorem 3.3. It is easy to verify
that (4) holds if i = j.
From now on we assume that l > 1 and i < j.
If Γij = ∅ then there does not exist a path from a vertex in Cj to a vertex in Ci.

Hence,
(

Â⊗
k)

αiαj
= O for all k ∈ N.

If Γij 6= ∅ and λij = 0 then we have Âtt = [0 ] for all t ∈ Γij . So there exist paths
from a vertex in Cj to a vertex in Ci, but each path passes only through m.s.c.s.’s
that consist of one vertex and contain no loop. Such a path passes through at most
#Γij of such m.s.c.s.’s (Cj and Ci included). This implies that there does not exist

3Or more precisely: if Sij 6= ∅ then Ctij belongs to the set of the smallest m.s.c.s.’s of G(A) that
contain a circuit and through which some path from a vertex of Cj to a vertex of Ci passes.
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= C

ir

i

r

+1

s

= C

i i

0

r

r i
+1r

+1

j

s

is

r

r
−1

0

0

−1r

r−1

C

v

u

C

v

C
C

v

u

v

u

C

u

v

u

Fig. 3.3. Illustration of the proof of Theorem 3.5. There exists a path from vertex us of m.s.c.s.

Cj to vertex v0 of m.s.c.s. Ci that passes through the m.s.c.s.’s Cis−1
, Cis−2

, . . . , Ci1 .

a path with a length that is larger than or equal to #Γij from a vertex in Cj to a

vertex in Ci. Hence, we have
(

A⊗
k)

αiαj
= O for all k ≥ #Γij .

From now on we assume that l > 1, i < j, Γij 6= ∅ and λij 6= 0. Then there exists
a set {i0, i1, . . . , is} ⊆ {1, 2, . . . , l} with tij ∈ {i0, i1, . . . , is} and there exist indices
ur ∈ αir , vr+1 ∈ αir+1

for r = 0, 1, . . . , s− 1 such that i = i0 < i1 < . . . < is = j and

Âurvr+1
6= 0 for each r. So there exists an arc from vertex vr+1 of Cir+1

to vertex ur

of Cir for each r ∈ {0, 1, . . . , s− 1}. Select an arbitrary vertex us of Cis = Cj and an
arbitrary vertex v0 of Ci0 = Ci. Note that s ∈ {1, 2, . . . , j − i}. Let r ∈ {0, 1, . . . , s}.
Recall that the only Boolean zero matrix that is irreducible is the 1 by 1 Boolean zero
matrix [0 ]. Now we distinguish between two cases:

• If Âirir = [0 ] then we have nir = 1 and ur = vr. So in this case we could
say that there exists an empty path of length lr = 0 from vertex ur to vertex vr of
Cir .

• On the other hand, if Âirir 6= [0 ], then there exists a (possibly empty) path
of length lr ≤ nir − 1 from vertex ur to vertex vr of Cir since G(Âirir ) is strongly
connected. If ur = vr then this path is empty and has length 0.
So for each r ∈ {0, 1, . . . , s} there exists a (possible empty) path of length lr ≤ nir −1
from vertex ur to vertex vr of Cir .
Let t̃ = ir̃ = tij . Clearly, we have Âir̃ir̃ 6= [0 ]. Since Âir̃ir̃ is irreducible and since

c(Âir̃ir̃ ) = 1, it follows from Theorem 3.3 that there exists a path of length k from
vertex ur̃ to vertex vr̃ of Cir̃ for any k ≥ kir̃ir̃ = kt̃t̃. Note that #Γij ≥ s+ 1. Hence,

kij =
∑

t∈Γij

t 6=t̃

nt + kt̃t̃ =
∑

t∈Γij

t 6=t̃

(nt − 1) + (#Γij − 1) + kt̃t̃ ≥
s
∑

r=0
r 6=r̃

lr + s+ kt̃t̃ .
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So if we have an integer k ≥ kij then we can decompose it as

k = l0 + l1 + . . .+ lr̃−1 + lr̃+1 + . . .+ ls + s+ kt̃t̃ + k̃

with k̃ ∈ N. By Theorem 3.3 there exists a path of length kt̃t̃ + k̃ from ur̃ to vr̃ in
Cir̃ for each k̃ ∈ N. This implies that there exists a path from vertex us to vertex
v0 of length k in G(Â). This path consists of the concatenation of paths of length lr
from vertex ur to vertex vr of Cir for r = 0, 1, . . . , r̃ − 1, r̃ + 1, . . . , s, paths of length
1 from vertex vr+1 of Cir+1

to vertex ur of Cir for r = 0, 1, . . . , s − 1 and a path of

length kt̃t̃ + k̃ from vertex ur̃ to vertex vr̃ of Cir̃ (See Figure 3.3). This implies that
(

Â⊗
k)

v0us
= 1 for all k ≥ kij . Since us is an arbitrary vertex of Cj and since v0 is an

arbitrary vertex of Ci, this implies that
(

Â⊗
k)

αiαj
= E for all k ≥ kij .

So (4) also holds if λij 6= 0.

Example 3.7. Consider the following matrix:

Â =









0 1 0 0

1 0 1 0

1 0 0 1

0 0 0 0









.

This matrix is in Frobenius normal form and its block structure is indicated by the
vertical and horizontal lines. The precedence graph of Â is represented in Figure 3.4.
Using the notations and definitions of Theorem 3.5, we have l = 2,

Â11 =





0 1 0

1 0 1

1 0 0



 , Â12 =





0

0

1



 and Â22 = [0 ] .

Furthermore, α1 = {1, 2, 3}, α2 = {4}, n1 = 3, n2 = 1, λ1 = λ11 = 1, λ2 = λ22 = 0,
S12 =

{

{1, 2}
}

, Γ12 = {1, 2}, λ12 = 1, t12 = 1, k11 = 5, k22 = 1 and k12 = 1+ 5 = 6.
We have

Â⊗
2
=









1 0 1 0

1 1 0 1

0 1 0 0

0 0 0 0









, Â⊗
3
=









1 1 0 1

1 1 1 0

1 0 1 0

0 0 0 0









, Â⊗
4
=









1 1 1 0

1 1 1 1

1 1 0 1

0 0 0 0









Â⊗
5
=









1 1 1 1

1 1 1 1

1 1 1 0

0 0 0 0









, Â⊗
6
=









1 1 1 1

1 1 1 1

1 1 1 1

0 0 0 0









= A⊗
7
= . . .

Note that Â11 is a matrix of the form (3). So the smallestK11 for which Â⊗
k

11 = E for all

k ≥ K11 is equal to k11 = 5. Furthermore, the smallest K12 such that
(

Â⊗
k)

α1α2
= E

for all k ≥ K12 is equal to k12 = 6. So for the matrix Â of this example all the bounds
kij that appear in Theorem 3.5 are tight.
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3

2

1

4

Fig. 3.4. The precedence graph of the matrix Â of Example 3.7.

It is easy to verify that for a matrix of the form


















0 1 0 . . . 0 0

0 0 1 . . . 0 0
...

...
...

. . .
...

...
1 0 0 . . . 1 0

1 0 0 . . . 0 1

0 0 0 . . . 0 0



















all the bounds kij that appear in Theorem 3.5 are tight. ✸

Lemma 3.8. Let A ∈ B
n×n with c(A) = 1. Then we have A⊗

k+1
= A⊗

k
for all

k ≥ (n− 1)2 + 1.

Proof. If A is irreducible, then we have A⊗
k+1

= A⊗
k
for all k ≥ (n− 1)2 + 1 by

Theorem 3.3.
So from now on we assume that A is not irreducible. Let Â = P ⊗ A ⊗ PT be the
Frobenius normal form of A. Assume that Â is of the form (1) where the Âii’s are
square and irreducible. Let the numbers λij , ni, tij , kij and the sets αi and Γij be
defined as in Theorem 3.5.
We have kii = (ni − 1)2 + 1 ≤ (n− 1)2 + 1 for all i.
Let us now prove that kij ≤ (n − 1)2 + 1 for all i, j with i < j. Consider indices
i, j ∈ {1, 2, . . . , l} with i < j.

• If Γij = ∅ then we have kij = 1 ≤ (n− 1)2 + 1 for all n ∈ N0.
• We have n ≤ (n− 1)2 + 1 for all n ∈ N0. So if Γij 6= ∅ and λij = 0 then we

have

kij = #Γij ≤ j − i+ 1 ≤ n ≤ (n− 1)2 + 1 .

• Since nt ≥ 1 for each t ∈ {1, 2, . . . , l} and since l ≥ 1, we have

l
∑

t,s=1
t 6=s

ntns ≥
l
∑

t,s=1
t 6=s

1 ≥ l2 − l ≥ l − 1 .

Hence,

l ≤
l
∑

t,s=1
t 6=s

ntns + 1 .(6)
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So if λij 6= 0 then we have

kij =
∑

t∈Γij

t 6=tij

nt + ktijtij

≤
l
∑

t=1

ktt (since kii = (ni − 1)2 + 1 ≥ ni for each i)

≤
l
∑

t=1

(

(nt − 1)2 + 1
)

≤
l
∑

t=1

(n2
t − 2nt + 2)

≤
l
∑

t=1

n2
t − 2

l
∑

t=1

nt + 2l

≤
l
∑

t=1

n2
t − 2n + 2l

≤
l
∑

t=1

n2
t − 2n + 2









l
∑

t,s=1
t 6=s

ntns + 1









(by (6))

≤









l
∑

t=1

n2
t + 2

l
∑

t,s=1
t 6=s

ntns









− 2n+ 2

≤

(

l
∑

t=1

nt

)2

− 2n+ 1 + 1

≤ n2 − 2n+ 1 + 1

≤ (n− 1)2 + 1 .

Hence, kij ≤ (n − 1)2 + 1 for all i, j with i ≤ j. As a consequence, it follows from

Theorem 3.5 that
(

Â⊗
k+1)

αiαj
=
(

Â⊗
k)

αiαj
for all k ≥ (n− 1)2 + 1 and for all i, j ∈

{1, 2, . . . , l}. Hence, Â⊗
k+1

= Â⊗
k
for all k ≥ (n−1)2+1. Since A⊗

k
= PT ⊗Â⊗

k
⊗P ,

this implies that A⊗
k+1

= A⊗
k
for all k ≥ (n− 1)2 + 1.

3.3. Boolean matrices with a cyclicity that is larger than or equal to

1. Lemma 3.9. Let A ∈ B
n×n be an irreducible matrix with c(A) ≥ 2 and let

i, j ∈ {1, 2, . . . , n}. Then there exists a (possibly empty) path Pij from j to i in G(A)
that passes through at least one vertex of each (elementary) circuit of G(A) and that

has a length that is less than or equal to n2−1
2 .

Proof. Since the cyclicity of A is larger than or equal to 2, there are no loops in
G(A). Hence, A contains at least one circuit. Since A is irreducible, this implies that
j has to belong to an elementary circuit of G(A). Since the length of any elementary
circuit of G(A) is larger than or equal to 2, there exists a set S = {i1 = j, i2, . . . , im} ⊆
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{1, 2, . . . , n} with m ≤
⌈

n
2

⌉

such that any (elementary) circuit of G(A) contains at
least one vertex that belongs to S. Define im+1 = i. Since G(A) is strongly connected
there exists a (possibly empty) path Pk with length lk ≤ n−1 from vertex ik to vertex
ik+1 for each k ∈ {1, 2, . . . ,m}. Let lk be the length of Pk. There exists a path Pij

from j to i that contains at least one vertex of each (elementary) circuit of G(A): this
path consists of the concatenation of P1, P2, . . . , Pm. If lij is the length of Pij , then
we have

lij = l1 + . . .+ lm ≤ m(n− 1) ≤

(

n+ 1

2

)

(n− 1) ≤
n2 − 1

2
.

Remark 3.10. Note that we could have derived an upper bound that is more tight in
Lemma 3.9. The upper bound of Lemma 3.9 will be used in the proof of Theorem 3.11.
However, in that proof we shall also use Lemmas 2.2 and 2.3 which also yield upper
bounds, and therefore we do not refine the upper bound of Lemma 3.9. ✸

Theorem 3.11. Let A ∈ B
n×n be irreducible and let c = c(A) > 0. If we define

kn,c =







(n− 1)2 + 1 if c = 1

max
(

n− 1,
n2 − 1

2
+

n2

c
− 3n+ 2c

)

if c > 1 ,
(7)

then we have

A⊗
k+c

= A⊗
k

and A⊗
k
⊕A⊗

k+1
⊕ . . .⊕A⊗

k+c−1
= En×n for all k ≥ kn,c .(8)

Proof. From Theorem 3.3 it follows that (8) holds if c is equal to 1. Furthermore,
if the first part of (8) holds, then the second part also holds since A is irreducible.

From now on we assume that c > 1. Let i, j ∈ {1, 2, . . . , n}.
Let C1, C2, . . . , Cm be the elementary circuits of G(A). Let li be the length of Ci for
i = 1, 2, . . . ,m. Since A is irreducible, we have c = gcd(l1, l2, . . . , lm). Hence, there
exist positive integers w1, w2, . . . , wm such that wi c = li for each i and such that
gcd(w1, w2, . . . , wm) = 1.
First we consider the case where there is only one elementary circuit or where all the
elementary circuits have the same length. Hence, c = l1. Since A is irreducible, both
i and j have to belong to some elementary circuit. We may assume without loss of
generality that j belongs to C1. Since A is irreducible there exist paths from vertex
j to vertex i of G(A). Let Pij be the shortest (possibly empty) path from j to i and
let lij be the length of this path. We have lij ≤ n− 1 (Note that lij = 0 if i is equal
to j.). For any integer k ∈ N there exists a path of length lij + kc from j to i: this

path consists of k times C1 followed by Pij . Hence
(

A⊗
lij+kc)

ij
= 1 for all k ≥ 0. Let

l ∈ N with l ≥ n−1. Now there are two possibilities. If l can be written as l = lij+kc

for some k ∈ N, then we have
(

A⊗
l)

ij
= 1. If l cannot be written as l = lij + kc for

any k ∈ N, then it follows from Lemma 2.7 that there does not exist a path from j to

i and then we have
(

A⊗
l)

ij
= 0.

This implies that (8) holds if all the elementary circuits of G(A) have the same length.

From now on we assume that there exist at least two elementary circuits in G(A) that
have different lengths.
Since A is irreducible it follows from Lemma 3.9 that there exists a (possibly empty)

path Pij from vertex j to vertex i of G(A) with length lij ≤
n2−1

2 that passes through
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at least one vertex of each elementary circuit of G(A). For each circuit Ck we select
one vertex vk that belongs to the path Pij . Let l be an integer that can be written
as l = lij + pc with p ≥ g(w1, w2, . . . , wm) + 1. Since gcd(w1, w2, . . . , wm) = 1, there
exist nonnegative integers α1, α2, . . . , αm such that p = α1w1 +α2w2 + . . .+αmwm.
As a consequence, we have

l = lij + α1w1c+ α2w2c+ . . .+ αmwmc = lij + α1l1 + α2l2 + . . .+ αmlm .

So there exists a path of length l from j to i: this path consists of the concatenation
of Pij and αk times the circuit Ck (vk → . . . → vk) for k = 1, 2, . . . ,m. Hence,
(

A⊗
lij+pc)

ij
= 1 for all p ≥ g(w1, w2, . . . , wm) + 1.

Let us now determine an upper bound for g(w1, w2, . . . , wm). If ws = wt for some s, t ∈
{1, 2, . . . ,m} with s 6= t, then g(w1, w2, . . . , wm) = g(w1, w2, . . . , ws−1, ws+1, . . . , wm).
Therefore, we may assume without loss of generality that all the wi’s are different and
thus also that w1 < w2 < . . . < wm.
Since there are at least two elementary circuits in G(A) that have different lengths, we
have m ≥ 2. We have wk = lk

c
≤ n

c
for all k. Hence, wm ≤ n

c
and w1 ≤ n

c
− (m−1) ≤

n
c
− 1 since w1 < w2 . . . < wm and m ≥ 2. As a consequence, we have

g(w1, w2, . . . , wm) ≤ (w1 − 1) (wm − 1)− 1 (by Lemma 2.2)

≤

(

n

c
− 2

)(

n

c
− 1

)

− 1

≤
(n

c

)2

− 3
n

c
+ 1 .(9)

If we define

K =
n2 − 1

2
+

(

(n

c

)2

− 3
n

c
+ 2

)

c

then we have lij +
(

g(w1, w2, . . . , wm) + 1
)

c ≤ K. So if we have an integer l that is
larger thanK then it can either be written as l = lij+pc with p ≥ g(w1, w2, . . . , wm)+1

and then
(

A⊗
l)

ij
= 1, or l cannot be written as l = lij + pc for any p ∈ N and then it

follows from Lemma 2.7 that there does not exist a path of length l from j to i, i.e.,
(

A⊗
l)

ij
= 0. Note that K ≤ kn,c.

Hence, (8) also holds in this case.
Remark 3.12. In the proof of Theorem 3.11 we could also have used Lemma 2.3
to determine an upper bound for g(w1, w2, . . . , wm). We have m ≥ 2 and thus also
wm ≥ 2. Furthermore, wm−1 ≤ n

c
− 1. Hence,

g(w1, w2, . . . , wm) ≤ 2wm−1

⌊wm

m

⌋

− wm

≤ 2

(

n

c
− 1

)

n

2c
− 2

≤
(n

c

)2

−
n

c
− 2 .(10)

In the second part of the proof of Theorem 3.11 we have c ≥ 2. Since A is irreducible,
it follows from Lemma 2.6 that c ≤ n. Hence, 1 ≤ n

c
≤ n

2 . It is easy to verify that
the upper bound of (10) is less than the upper bound of (9) if n

c
< 3

2 . However, if



CONSECUTIVE POWERS OF A BOOLEAN MATRIX 15

n
c
< 3

2 , then we would have wm−1 ≤ 1
2 , which is not possible. This implies that for

combinations of n and c for which there are at least two elementary circuits in G(A)
with different lengths, the upper bound of (9) is less than or equal to the upper bound
of (10). ✸

The Boolean sum of sequences is defined as follows. Consider sequences gi={(gi)k}
∞
k=1

for i = 1, 2, . . . ,m with (gi)k ∈ B for all i, k. The sequence g = g1 ⊕ g2 ⊕ . . . ⊕ gm
is defined by gk = (g1)k ⊕ (g2)k ⊕ . . . ⊕ (gm)k for all k ∈ N0.

Lemma 3.13. Consider sequences gi = {(gi)k}
∞
k=1 for i = 1, 2, . . . ,m with (gi)k ∈

B for all i, k. Suppose that for each i ∈ {1, 2, . . . ,m} there exist integers Ki, ci ∈ N0

such that

(gi)k+ci = (gi)k for all k ≥ Ki .(11)

If K = max
i

Ki and

c =

{

1 if ci = 1 and (gi)Ki
= 1 for some i ∈ {1, 2, . . . ,m}

lcm(c1, c2, . . . , cm) otherwise,

then the sequence g = g1 ⊕ g2 ⊕ . . . ⊕ gm satisfies gk+c = gk for all k ≥ K.
Proof. Note that (11) implies that

(gi)k+pci = (gi)k for all k ≥ K ≥ Ki and for all p ∈ N .(12)

First we assume that there exists an index i ∈ {1, 2, . . . ,m} such that ci = 1 and
(gi)Ki

= 1. Then we have (gi)k = 1 for all k ≥ Ki and thus also gk = 1 for all
k ≥ K ≥ Ki.
From now on we assume that there does not exist any index i ∈ {1, 2, . . . ,m} such
that ci = 1 and (gi)Ki

= 1.
Since c = lcm(c1, c2, . . . , cm) there exist positive integers w1, w2, . . . , wm such that

c = wici for i = 1, 2, . . . ,m. Consider an integer k ≥ K. We have

gk+c =

m
⊕

i=1

(gi)k+c

=

m
⊕

i=1

(gi)k+wici

=

m
⊕

i=1

(gi)k (by (12))

= gk .

Example 3.14. Consider the sequences

g1 = 1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0, . . .

g2 = 1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1, . . .

If we use the notation of Lemma 3.13 then we have c1 = 2, c2 = 3 and K1 = K2 = 1.
Hence, c = lcm(2, 3) = 6 and K = max(K1,K2) = 1. We have

g = g1 ⊕ g2 = 1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,1, . . .

It is easy to verify that gk+6 = gk for all k ≥ 1. ✸
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Theorem 3.15. Let Â ∈ B
n×n be a matrix of the form (1) where the matrices

Â11, Â22, . . . , Âll are irreducible. Define sets α1, α2, . . . , αl such that Âαiαj
= Âij

for all i, j with i ≤ j. Let ni = #αi and cii = ci = c(Âii) for all i. Define:

λi =

{

0 if Âii = [0 ]

1 otherwise

for i = 1, 2, . . . , l. Define

Sij =
{

{i0, i1, . . . , is} ⊆ {1, 2, . . . , l}
∣

∣ i = i0 < i1 < . . . < is = j and

Âirir+1
6= O for r = 0, 1, . . . , s− 1

}

for all i, j with i < j.
Let λii = λi and kii = ki = kni,ci for i = 1, 2, . . . , n where kni,ci is defined as in (7)
with kni,0 = 0 by definition.
For each i, j with i < j we define for each γ ∈ Sij:

δγ = {t ∈ γ |λt 6= 0}

cγ =

{

gcd{ct | t ∈ δγ} if δγ 6= ∅

1 otherwise.

Define

Γij =
{

t
∣

∣ ∃γ ∈ Sij such that t ∈ γ
}

∆ij =
{

t
∣

∣ t ∈ Γij and λt 6= 0
}

λij =

{

1 if ∆ij 6= ∅

0 otherwise

cij =

{

lcm{cγ |γ ∈ Sij} if λij 6= 0 and cγ 6= 1 for each γ ∈ Sij with δγ 6= ∅

1 otherwise

rij =

{

argmax{nt | t ∈ ∆ij} if λij 6= 0

1 otherwise

kij =



















































∑

t∈∆ij

knt,ct +#Γij − 1+

max






0, max

γ∈Sij

δγ 6=∅

{

n2
rij

cγ
− 3nrij + 2cγ

}






if λij 6= 0

#Γij if Γij 6= ∅ and λij = 0

1 if Γij = ∅

for all i, j with i < j.
Then we have for all i, j with i ≤ j:

(

Â⊗
k+cij

)

αiαj

=
(

Â⊗
k
)

αiαj

for all k ≥ kij(13)

and

(

Â⊗
k

⊕ Â⊗
k+1

⊕ . . . ⊕ Â⊗
k+cij−1)

αiαj
=

{

Eni×nj
if λij 6= 0

Oni×nj
if λij = 0

(14)
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for all k ≥ kij.
For all i, j with i > j we have

(

Â⊗
k
)

αiαj

= Oni×nj
for all k ∈ N .(15)

Proof. Let Ci be the m.s.c.s. of G(Â) that corresponds to Âii for i = 1, 2, . . . , l.
Let i, j ∈ {1, 2, . . . , l}. In the proof of Theorem 3.15 is has already been proved that
(15) holds if i > j, and that (13) and (14) hold if i ≤ j and Γij = ∅, or if i ≤ j,
Γij 6= ∅ and λij = 0. Furthermore, (13) and (14) hold by Theorem 3.11 if i = j.
So from now on we assume that i < j, Γij 6= ∅ and λij 6= 0. Note that i < j implies
that l > 1.
Select an arbitrary vertex u of Ci and an arbitrary vertex v of Cj .
Since λij 6= 0 there exists at least one set γ ∈ Sij for which δγ 6= ∅. So ∆ij 6= ∅ and
kij is well defined. Note that kij ≥ #Γij . If γδ = ∅ for some set γ ∈ Sij then there
do not exist paths from v to u of length n ≥ #Γij that correspond to γ. So from now
on we only consider sets γ ∈ Sij for which δγ 6= ∅.
Let γ = {i0, i1, . . . , is} ∈ Sij with i = i0 < i1 < . . . < is = j. Since we assume that

δγ 6= ∅, we have Âirir 6= [0 ] for at least one index ir ∈ γ. Assume that δγ is given by
{j0, j1, . . . , jŝ}. Define

S =
{

(U, V )
∣

∣ U = {u0, u1, . . . , us}, V = {v0, v1, . . . , vs}, us = v, v0 = u, and

ur ∈ αir , vr+1 ∈ αir+1
and (Â)urvr+1

6= 0 for r = 0, 1, . . . , s
}

.

Let (U, V ) ∈ S with U = {u0, u1, . . . , us} and V = {v0, v1, . . . , vs}. Let P(γ, U, V )
be the set of paths from v to u that pass through m.s.c.s. Cir for r = 0, 1, . . . , s and
that enter Cir at vertex ur for r = 0, 1, . . . , s − 1 and that exit from Cir through
vertex vr for r = 1, 2, . . . , s (See also Figure 3.3). Let the sequences {(gγ,U,V )k}

∞
k=1

and {(gγ)k}
∞
k=1 be defined by

(gγ,U,V )k =

{

1 if there exists a path of length k that belongs to P(γ, U, V )

0 otherwise

(gγ)k =











1 if there exists a path of length k that belongs to P(γ, U, V )

for some pair (U, V ) ∈ S

0 otherwise.

Define cγ = gcd{ct|t ∈ δγ}. Let us now show that the sequences {(gγ,U,V )k}
∞
k=1 and

{(gγ)k}
∞
k=1 satisfy

(gγ,U,V )k+cγ = (gγ,U,V )k for all k ≥ kij(16)

(gγ,U,V )k ⊕ (gγ,U,V )k+1 ⊕ . . . ⊕ (gγ,U,V )k+cγ−1 = 1 for all k ≥ kij(17)

(gγ)k+cγ = (gγ)k for all k ≥ kij(18)

(gγ)k ⊕ (gγ)k+1 ⊕ . . . ⊕ (gγ)k+cγ−1 = 1 for all k ≥ kij .(19)

Note that if (16) and (17) hold for each pair (U, V ) ∈ S then (18) and (19) also hold.
Therefore, we now show that (16) and (17) hold. Define ũr = us and ṽr = vs if jr = is
for r = 0, 1, . . . , ŝ. We consider three cases:
Case A: cjr̃ = 1 for some r̃ ∈ {0, 1, . . . , ŝ}.

In this case we have cγ = 1.
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Let lr be the length of the shortest (possibly empty) path from vertex ũr to
vertex ṽr of Cjr for each r ∈ {0, 1, . . . , ŝ}. We have lr ≤ njr − 1 for each r.

Since Âjr̃jr̃ is irreducible and since cjr̃ = 1, it follows from Theorem 3.3 that
for any integer p ≥ (njr̃ − 1)2 + 1 there exists a path of length p from vertex
ũr̃ to vertex ṽr̃ of Cjr̃ . If we also take into account that there are s arcs of
the form vr+1 → ur for r = 0, 1, . . . , s− 1 then it follows that for any

k ≥
ŝ
∑

r=0
r 6=r̃

(njr − 1) + s+ (njr̃ − 1)2 + 1
def
= KA

there exists a path of length k that belongs to P(γ, U, V ). Let us now show
that KA ≤ kij . Let r ∈ {0, 1, . . . , ŝ}. If cjr > 1 then it follows from the
definition of knjr ,cjr

that njr − 1 ≤ knjr ,cjr
. Furthermore, if cjr = 1, then we

have njr −1 ≤ (njr −1)2+1 = knjr ,cjr
. Since cjr̃ = 1, we have (njr̃ −1)2+1 =

knjr̃
,cjr̃

. Furthermore, δγ ⊆ ∆ij and s ≤ #Γij − 1. Hence, KA ≤ kij , which
implies that (16) and (17) hold in this case.

Case B: ct = cγ and ct 6= 1 for all t ∈ δγ .
Assume that cjr̃ = cγ with r̃ ∈ {0, 1, . . . , ŝ}.
Let lr be the length of the shortest (possibly empty) path from vertex ũr to
vertex ṽr of Cjr for each r ∈ {0, 1, . . . , r̃ − 1, r̃ + 1, . . . , ŝ}. So lr ≤ njr − 1 for
each r 6= r̃. From Lemma 2.7 and from the proof of Theorem 3.11 it follows
that there exists an integer Kr̃ with knjr̃

,cjr̃
≤ Kr̃ ≤ knjr̃

,cjr̃
+ cjr̃ − 1 such

that there exist paths of length Kr̃ + p cjr̃ from vertex ũr̃ to vertex ṽr̃ of Cjr̃

for any p ∈ N, while there do not exist paths of length Kr̃ + pcjr̃ + q from ũr̃

to ṽr̃ for any p ∈ N and any q ∈ {1, 2, . . . , cjr̃ − 1}. So if we define

KB =

ŝ
∑

r=0
r 6=r̃

lr + s+ knjr̃
,cjr̃

then it follows from Lemma 2.7 that for any k ≥ KB either there exists a
path of length k+ p cγ that belongs to P(γ, U, V ) for each p ∈ N, or there do
not exist paths of length k + p cγ that belong to P(γ, U, V ) for any p ∈ N. It
is easy to verify that KB ≤ kij . Hence, (16) and (17) also hold in this case.

Case C: cjr 6= 1 for all r ∈ {0, 1, . . . , ŝ} and cja 6= cjb for some a, b ∈ {0, 1, . . . , ŝ}.
From Lemma 2.7 and from the proof of Theorem 3.11 it follows that for each
r ∈ {0, 1, . . . , ŝ} there exists an integer Kr with knjr ,cjr

≤ Kr ≤ knjr ,cjr
+

cjr − 1 such that there exist paths of length Kr + p cjr from ũr to ṽr for each
p ∈ N, while there do not exist paths of length Kr+p cjr +q from ũr to ṽr for
any p ∈ N and for any q ∈ {1, 2, . . . , cjr − 1}. This implies that there exist
paths of length K0+K1+. . .+Kŝ+s+p0cj0+p1cj1+. . .+pŝcjŝ that belong to
P(γ, U, V ) for each choice of p0, p1, . . . , pŝ such that pr ≥ 0 for each r. Define

Kγ =
ŝ
∑

r=0

Kr + s. Since cγ = gcd{ct | t ∈ δγ} there exist positive integers

w0, w1, . . . , wŝ such that cjr = wr cγ for each r ∈ {0, 1, . . . , ŝ} and such that
gcd(w0, w1, . . . , wŝ) = 1. So for any integer q ≥ g(w0, w1, . . . , wŝ) + 1 there
exist nonnegative integers α0, α1, . . . , αŝ such that q = α0w0 + α1w1 + . . . +
αŝwŝ.
Since cja 6= cjb we have wa 6= wb. Therefore, we may assume without loss



CONSECUTIVE POWERS OF A BOOLEAN MATRIX 19

of generality that w0 < w1 < . . . < wŝ with ŝ ≥ 2. We have wŝ =
cjŝ
cγ

≤
njŝ

cγ
≤

nrij

cγ
. Hence, w0 ≤

nrij

cγ
− 1 since w0 < wŝ. Furthermore, w0 ≥ 1 and

thus wŝ ≥ 2. Using a reasoning that is similar to the one used in the proof
of Theorem 3.11 and Remark 3.12 we can show that

g(w0, w1, . . . , wŝ) + 1 ≤

(

nrij

cγ

)2

− 3
nrij

cγ
+ 2 .

So if we define

KC = Kγ + cγ

(

(

nrij

cγ

)2

− 3
nrij

cγ
+ 2

)

,

then we have KC ≥ Kγ + cγ
(

g(w0, w1, . . . , wŝ) + 1
)

. Let k ∈ N with k ≥ KC.
Now there are two possibilities:

• If k can be written as Kγ + q cγ with q ≥ g(w0, w1, . . . , wŝ) + 1 then
we have

k = Kγ +(α0w0+α1w1+ . . .+αŝwŝ)cγ = Kγ +α0 cj0 +α1 cj1 + . . .+αŝ cjŝ ,

which implies that there exists a path of length k that belongs to P(γ, U, V ).
• On the other hand, if k cannot be written as Kγ + q cγ for any q ∈ N

then it follows from Lemma 2.7 that there does not exist a path of length k

that belongs to P(γ, U, V ).
Since kij ≥ KC this implies that (16) and (17) also hold in this case.

If we consider all possible paths from vertex v to vertex u of length k ∈ N with
k ≥ #Γij , then each of these paths corresponds to some set γ ∈ Sij with δγ 6= ∅.

Since (Â⊗
k
)uv is equal to 1 if and only if there exists a path of length k from v to u,

we have

(

Â⊗
k
)

uv
=
⊕

γ∈Sij

δγ 6=∅

(gγ)k

if k ≥ #Γij . Note that if cγ = 1 and δγ 6= ∅ then we have (gγ)kij
= 1. Since each

sequence {(gγ)k}
∞
k=1 satisfies (18), it follows from Lemma 3.13 that

(

Â⊗
k+cij

)

uv
=
(

Â⊗
k
)

uv
for all k ≥ kij .

Furthermore, since each sequence {(gγ)k}
∞
k=1 satisfies (19), we have

(

Â⊗
k

⊕ Â⊗
k+1

⊕ . . . ⊕ Â⊗
k+cij−1

)

uv
= 1 for all k ≥ kij .

So (13) and (14) also hold if λij 6= 0.
Remark 3.16. Note that if γ1, γ2 ∈ Sij and γ1 ⊆ γ2 then we do not have to consider
γ1 when we are determining Sij . Hence, we could have defined Sij as the set of
maximal subsets {i0, i1, . . . , is} of {1, 2, . . . , l} with i = i0 < i1 < . . . < is = j and
Âirir+1

6= O for r = 0, 1, . . . , s− 1. ✸

Let us now give an example in which the various sets and indices that appear in the
formulation of Theorem 3.15 are illustrated.
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Example 3.17. Consider the matrix

A =





















0 1 0 1 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 1

0 0 0 0 0 1 0

0 0 0 1 0 0 0

0 0 0 0 1 0 1

0 0 0 0 0 0 0





















This matrix is in Frobenius normal form and its block structure is indicated by the
horizontal and vertical lines. The precedence graph of A is represented in Figure 3.5.
We have

A⊗
2
=





















0 0 1 0 0 1 0

0 1 0 0 0 0 1

0 0 1 0 0 0 0

0 0 0 0 1 0 1

0 0 0 0 0 1 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0





















, A⊗
3
=





















0 1 0 0 1 0 1

0 0 1 0 0 0 0

0 1 0 0 0 0 1

0 0 0 1 0 0 0

0 0 0 0 1 0 1

0 0 0 0 0 1 0

0 0 0 0 0 0 0





















,

A⊗
4
=





















0 0 1 1 0 0 0

0 1 0 0 0 0 1

0 0 1 0 0 0 0

0 0 0 0 0 1 0

0 0 0 1 0 0 0

0 0 0 0 1 0 1

0 0 0 0 0 0 0





















, A⊗
5
=





















0 1 0 0 0 1 1

0 0 1 0 0 0 0

0 1 0 0 0 0 1

0 0 0 0 1 0 1

0 0 0 0 0 1 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0





















,

A⊗
6
=





















0 0 1 0 1 0 1

0 1 0 0 0 0 1

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 1

0 0 0 0 0 1 0

0 0 0 0 0 0 0





















, A⊗
7
=





















0 1 0 1 0 0 1

0 0 1 0 0 0 0

0 1 0 0 0 0 1

0 0 0 0 0 1 0

0 0 0 1 0 0 0

0 0 0 0 1 0 1

0 0 0 0 0 0 0





















,

A⊗
8
=





















0 0 1 0 0 1 0

0 1 0 0 0 0 1

0 0 1 0 0 0 0

0 0 0 0 1 0 1

0 0 0 0 0 1 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0





















, A⊗
9
=





















0 1 0 0 1 0 1

0 0 1 0 0 0 0

0 1 0 0 0 0 1

0 0 0 1 0 0 0

0 0 0 0 1 0 1

0 0 0 0 0 1 0

0 0 0 0 0 0 0





















,

A⊗
10

=





















0 0 1 1 0 0 0

0 1 0 0 0 0 1

0 0 1 0 0 0 0

0 0 0 0 0 1 0

0 0 0 1 0 0 0

0 0 0 0 1 0 1

0 0 0 0 0 0 0





















, . . .
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Fig. 3.5. The precedence graph G(A) of the matrix A of Example 3.17. The subgraphs C1, C2,

C3 and C4 are the m.s.c.s.’s of G(A).

So A⊗
k+6

= A⊗
k
for all k ≥ 2.

We have α1 = {1}, α2 = {2, 3}, α3 = {4, 5, 6} and α4 = {7}. Furthermore, λ1 =

λ4 = 0 and λ2 = λ3 = 1. Let us now look at the sequence
{(

A⊗
k)

α1α4

}∞
k=1

. We have

S14 = {γ1, γ2} with γ1 = {1, 2, 4} and γ2 = {1, 3, 4}. So δγ1
= {2}, cγ1

= 2, δγ2
= {3}

and cγ2
= 3. We have Γ14 = {1, 2, 3, 4}, ∆14 = {2, 3}, λ14 = 1, c14 = lcm(2, 3) = 6

and r14 = 3. Hence,

k14 = k2,2 + k3,3 +#Γ14 − 1 + max

(

0,
n2
3

cγ1

− 3n3 + 2 cγ1
,
n2
3

cγ2

− 3n3 + 2 cγ2

)

=
3

2
+ 4 + 4− 1 + max

(

0,
9

2
− 9 + 4,

9

3
− 9 + 6

)

=
17

2
.

Note that we indeed have
(

A⊗
k+6)

α1α4
=
(

A⊗
k)

α1α4
for all k ≥ 9. ✸

Lemma 3.18. Consider m positive integers c1, c2, . . . , cm. Let c = lcm(c1, c2, . . . ,
cm). Consider r non-empty subsets α1, α2, . . . , αr of {1, 2, . . . ,m}. Define di =
gcd{ck |k ∈ αi} for each i. If d = lcm(d1, d2, . . . , dr), then d is a divisor of c.

Proof. We may assume without loss of generality that ci 6= cj for all i, j with i 6= j.
If d is a divisor of lcm(c1, c2, . . . , cm−1) then it also is a divisor of lcm(c1, c2, . . . , cm).
Therefore, we may assume without loss of generality that α1 ∪ α2 ∪ . . . ∪ αr =
{1, 2, . . . ,m}. If αi ⊆ αj then dj is a divisor of di and then lcm(d1, d2, . . . , dr) =
lcm(d1, d2, . . . , dj−1, dj+1, . . . , dr), which implies that αj is redundant and may be
removed. If di = dj then αj is also redundant and may be removed. It is easy to
verify that if we remove all redundant sets, then the resulting number of sets αi is
less than or equal to m (The worst cases being when αi = {1, 2, . . . ,m} \ {i} for
i = 1, 2, . . . ,m or when αi = {i} for i = 1, 2, . . . ,m.) Hence, we may assume without
loss of generality that r ≤ m and that di 6= dj for all i, j with i 6= j.
Since r ≤ m, α1 ∪ α2 ∪ . . . ∪ αr = {1, 2, . . . ,m} and αi 6⊆ αj for all i, j with i 6= j, we
can select indices l1, l2, . . . , lr such that li ∈ αi for i = 1, 2, . . . , r and li 6= lj for all
i, j with i 6= j.
Since di = gcd{ck |k ∈ αi}, di is a divisor of cli for each i.
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Since all ci’s are different we have

c = lcm(c1, c2, . . . , cm) =
c1 c2 . . . cm

gcd(c1, c2, . . . , cm)
.

We also have

d =
d1 d2 . . . dr

gcd(d1, d2, . . . , dr)
.

Since α1∪α2∪. . .∪αr = {1, 2, . . . ,m} we have gcd(c1, c2, . . . , cm) = gcd(d1, d2, . . . , dr).
So

c =
c1 c2 . . . cm

d1 d2 . . . dr
d .

Since di is a divisor of cli for i = 1, 2, . . . , r there exist integers wi ∈ N such that
cli = wi di for i = 1, 2, . . . , r. If we define β = {1, 2, . . . ,m} \ {l1, l2, . . . , lr}, then we
have

c = w1w2 . . . wr

(

∏

i∈β

ci

)

d

where
∏

i∈∅
ci is equal to 1 by definition. So c = wd for some integer w ∈ N, which

implies that d is a divisor of c.
Lemma 3.19. Let n ∈ N and let c ∈ {0, 1, . . . , n}. If kn,c is defined by (7) if

c > 0 and if kn,c = 0 if c = 0, then we have kn,c ≤ (n− 1)2 + 1.
Proof. It is obvious that the lemma holds if c = 0 or if c = 1. So from now on we

assume that c > 1.
Define f(c) = n2−1

2 + n2

c
− 3n+ 2c. Let us now show that f(c) ≤ (n− 1)2 + 1.

We have df
dc

= −n2

c2
+ 2. So f reaches a local minimum in c = n√

2
and is decreasing if

1 < c < n√
2
and increasing if c > n√

2
.

Let us first consider the cases where n is equal to 2 or to 3. If n = 2 then we have
c = 2 and f(c) = 4−1

2 + 2 − 6 + 4 = 3
2 ≤ 2 = (2 − 1)2 + 1. If n = 3 then n√

2
does

not belong to the interval [2, 3] and then the maximal value of f in [2, 3] is equal to
f(3) = 9−1

2 + 9
3 − 9 + 6 = 9

2 ≤ 5 = (3− 1)2 + 1.
From now on we assume that n is larger than or equal to 4. If n ≥ 4, then n√

2
belongs

to the interval [2, n] and then the maximal value of f in [2, n] is equal to

max(f(2), f(n)) = max

(

n2 − 1

2
+

n2

2
− 3n+ 4,

n2 − 1

2
+ n− 3n+ 2n

)

= max

(

n2 − 3n+
7

2
,
n2

2
−

1

2

)

= n2 − 3n+
7

2
(since n ≥ 4)

≤ (n− 1)2 + 1 (since n ≥ 2).

Hence, kn,c ≤ (n− 1)2 + 1.

Theorem 3.20. Let A ∈ B
n×n and let c be the cyclicity of A. We have A⊗

k+c
=

A⊗
k
for all k ≥ 2n2 − 3n+ 2.
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Proof. Let Â = P ⊗ A ⊗ PT be the Frobenius normal from of A where P is a
permutation matrix. Assume that Â is a matrix of the form (1) with Âii irreducible
for i = 1, 2, . . . , l. Consider i, j ∈ {1, 2, . . . , l} with i ≤ j. Let Sij , Γij , ∆ij , λij , cij ,
rij and kij be defined as in Theorem 3.15. Let us now show that kij ≤ 2(n− 1)2 + n.
It is easy to verify that this holds if i = j, or if i < j and λij = 0. So from now on
we assume that λij 6= 0. Hence,

kij =
∑

t∈∆ij

knt,ct +#Γij − 1 + max






0, max

γ∈Sij

δγ 6=∅

{

n2
rij

cγ
− 3nrij + 2cγ

}






.

Since we have kni,ci ≤ (ni−1)2+1 for each i ∈ {1, 2, . . . , l} by Lemma 3.19, it follows
from the proof of Lemma 3.8 that

∑

t∈∆ij

knt,ct ≤ (n− 1)2 + 1 .

Furthermore, #Γij ≤ j − i+ 1 ≤ n.
Let us now show that

n2
rij

cγ
− 3nrij + 2cγ ≤ (n− 1)2

for each γ ∈ Sij with δγ 6= ∅. Let γ ∈ Sij with δγ 6= ∅. From Lemma 2.6 it follows that
ct ≤ nt for each t ∈ δγ . Hence, 1 ≤ cγ = gcd{nt | t ∈ δγ} ≤ max{nt | t ∈ δγ} ≤ nrij .

Define f(c) =
n2
rij

c
− 3nrij + 2c. From the proof of Lemma 3.19 it follows that f is

decreasing if c <
nrij√

2
and increasing if c >

nrij√
2
.

If nrij = 1 then we have cγ = 1 and f(cγ) = 1− 3 + 2 = 0 ≤ 0 = (1− 1)2.
If nrij > 1 then the maximum value of f in the interval [1, nrij ] is equal to

max(f(1), f(nrij )) = max
(

n2
rij

− 3nrij + 2, nrij − 3nrij + 2nrij

)

= max
(

(nrij − 1)2 + 1− nrij , 0
)

≤ (nrij − 1)2 (since nrij ≥ 1)

≤ (n− 1)2 .

Hence, kij ≤ 2(n − 1)2 + n = 2n2 − 3n + 2. Furthermore, cij is a divisor of c by

Lemma 3.18. Hence, Â⊗
k+c

= Â⊗
k
for all k ≥ 2n2−3n+2. Since, A⊗

k
= PT⊗Â⊗

k
⊗P

for all k ∈ N, this implies that A⊗
k+c

= A⊗
k
for all k ≥ 2n2 − 3n+ 2.

4. Applications and extensions.

4.1. Markov chains. It is often possible to represent the behavior of a physical
system by describing all the different states the system can occupy and by specifying
how the system moves from one state to another at each time step. If the state space
of the system is discrete and if the future evolution of the system only depends on the
current state of the system and not on past history, the system may be represented by
a Markov chain. Markov chains can be used to describe a wide variety of systems and
phenomena in domains such as diffusion processes, genetics, learning theory, sociology,
economics, and so on [22].
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A finite homogeneous Markov chain is a stochastic process with a finite number of
states s1, s2, . . . , sn where the transition probability to go from one state to another
state only depends on the current state and is independent of the time step. We
define an n by n matrix P such that pij is equal to the probability that the next
state is si given that the current state is sj . Note that pij ≥ 0 for all i, j. We define
a sequence of vectors

{

θ(k)
}∞
k=0

with θ(k) ∈ [0, 1]n where
(

θ(k)
)

i
is the probability

that the system is in state si at time step k. If the initial probability vector θ(0) is
given, the evolution of the system is described by

θ(k + 1) = Pθ(k) for k ∈ N .

Hence,

θ(k) = P kθ(0) for k ∈ N .

So if we consider the Boolean algebra ({0, p},+, ·) where p stands for an arbitrary
positive number and if we define a matrix P̃ ∈ {0, p}n×n such that p̃ij = 0 if pij = 0
and p̃ij = p if pij > 0, then we can give the following interpretation to the Boolean

matrix power P̃⊗
k
. We can go from state sj to state si in k steps if and only if

(

P k
)

ij
> 0 or equivalently if

(

P̃⊗
k)

ij
= p. As a consequence, the results of this paper

can also be used to obtain upper bounds for the length of the transient behavior of a
finite homogeneous Markov chain.

For more information on Markov chains and their applications the interested
reader is referred to [2, 12, 20, 22] and the references therein.

4.2. Max-plus algebra. Our main motivation for studying sequences of con-
secutive powers of a matrix in a Boolean algebra lies in the max-plus-algebraic system
theory for discrete event systems. Typical examples of discrete event systems are flexi-
ble manufacturing systems, telecommunication networks, parallel processing systems,
traffic control systems and logistic systems. The class of the discrete event systems
essentially consists of man-made systems that contain a finite number of resources
(e.g., machines, communications channels or processors) that are shared by several
users (e.g., product types, information packets or jobs) all of which contribute to the
achievement of some common goal (e.g., the assembly of products, the end-to-end
transmission of a set of information packets, or a parallel computation).

There are many modeling and analysis techniques for discrete event systems, such
as queuing theory, (extended) state machines, max-plus algebra, formal languages,
automata, temporal logic, generalized semi-Markov processes, Petri nets, perturbation
analysis, computer simulation and so on (See [1, 6, 19, 23, 24] and the references cited
therein). In general models that describe the behavior of a discrete event system are
nonlinear in conventional algebra. However, there is a class of discrete event systems
– the max-linear discrete event systems – that can be described by a model that is
“linear” in the max-plus algebra [1, 7, 8]. The model of a max-linear discrete event
system can be characterized by a triple of matrices (A,B,C), which are called the
system matrices of the model.

One of the open problems in the max-plus-algebraic system theory is the min-
imal realization problem, which consists in determining the system matrices of the
model of a max-linear discrete event system starting from its “impulse response4”

4This is the output of the system when a certain standardized input sequence is applied to the
system.
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such that the dimensions of the system matrices are as small as possible (See [1] for
more information). In order to tackle the general minimal realization problem it is
useful to first study a simplified version: the Boolean minimal realization problem, in
which only models with Boolean system matrices are considered. The results of this
paper on the length of the transient part of the sequence of consecutive powers of a
matrix in a Boolean algebra can be used to obtain some results for the Boolean min-
imal realization problem in the max-plus-algebraic system theory for discrete event
systems [10]: they can be used to obtain a lower bound for the minimal system order
(i.e., the smallest possible size of the system matrix A) and to prove that the Boolean
minimal realization problem in the max-plus algebra is decidable (and can be solved
in a time that is bounded from above by a function that is exponential in the minimal
system order).

Both Boolean algebras and the max-plus algebra are special cases of a dioid (i.e.,
an idempotent semiring) [1, 16]. For applications of dioids in graph theory, generating
languages and automata theory the interested reader is referred to [14, 15, 16].

4.3. Extensions. In this paper we have restricted ourselves to Boolean algebras.
In this section we give some examples that illustrate some of the phenomena that could
occur when we want to extend our results to more general algebraic structures. In
our examples we shall use the max-plus algebra (R ∪ {−∞},max,+), but for other
extensions of Boolean algebras similar examples can be constructed.

In contrast to Boolean algebra (cf. Theorem 3.20) the sequence of consecutive
powers of a matrix in a more general algebraic structure does not always reach a
stationary or cyclic regime after a finite number of terms as is shown by the following
example.
Example 4.1. Consider the matrix

A =

[

0 −∞
−∞ −1

]

.

Since the kth max-plus-algebraic power of A is given by

A⊗
k
=

[

0 −∞
−∞ −k

]

for k ∈ N0, the sequence
{

A⊗
k}∞

k=1
does not reach a stationary or cyclic regime in a

finite number of steps. ✸

Note that the matrix A of Example 4.1 is not irreducible. However, if a matrix is
irreducible then it can be shown [1, 7, 13] that the sequence of consecutive max-plus-
algebraic powers of the given matrix always reaches a cyclic regime of the form (2)
after a finite number of terms. However, even if the sequence of consecutive powers
reaches a stationary regime then in general the length of the transient part will not
only depend on the size and the cyclicity of the matrix but also on the range and the
resolution (i.e., on the size of the representation) of the finite elements of the matrix
as is shown by the following examples.
Example 4.2. Let N ∈ N and consider

A(N) =

[

−1 −N

0 0

]

.

The matrix A(N) is irreducible and has cyclicity 1 and its λ-value5 is equal to 0. The

5For methods to compute the number λ that appears in Theorem 2.5 for a max-plus-algebraic
matrix the reader is referred to [1, 3, 7, 21].
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kth max-plus-algebraic power of A(N) is given by

(

A(N)
)⊗

k

=

[

max(−k,−N) −N

0 0

]

for each k ∈ N0. This implies that the smallest integer k0 for which (2) holds, is given
by k0 = N , i.e., k0 depends on the range of the finite entries of A(N). ✸

Example 4.3. Let ε > 0 and consider the matrix

A(ε) =

[

0 0
−1 −ε

]

.

This matrix is irreducible, has cyclicity 1 and its λ-value is equal to 0. Since the kth
max-plus-algebraic power of A(ε) is given by

(

A(ε)
)⊗

k

=

[

0 0
−1 max(−1,−kε)

]

,

the smallest integer k0 for which (2) holds, is k0 =
⌈

1
ε

⌉

. So this example — which has
been inspired by the example on p. 152 of [1] — shows that in general the length of

the transient part of the sequence
{

A⊗
k}∞

k=1
depends on the resolution of the finite

entries of A. ✸

5. Conclusions. In this paper we have studied the ultimate behavior of the
sequence of consecutive powers of a matrix in a Boolean algebra, and we have derived
some upper bounds for the length of the transient part of this sequence. The results
that have been derived in this paper can be used in the analysis of the transient
behavior of Markov chains and in the max-plus-algebraic system theory for discrete
event systems.

Topics for future research are the derivation of tighter upper bounds for the length
of the transient part of the sequence of consecutive power of a matrix in a Boolean
algebra, and extension of our results to more general algebraic structures such as the
max-plus algebra.
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