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On the boolean minimal realization problem
in the max-plus algebra: Addendum

Bart De Schutter Vincent Blondel Remco de Vries Bart De Moor

In this addendum we present an upper bound for the minimal system order of a max-linear
time-invariant DES that can be computed very efficiently, and we give some lemmas that

characterize the ultimate behavior of the sequence { A® }ZOZO for a matrix A € RI*",

A Upper bounds for the minimal system order

Definition A.1 (Ultimately geometric impulse response [12, A4])
Let {G}32, be the impulse response of a maz-linear time-invariant DES. If

Jko € N, e € Ng, 3X € R, such that Vk = ko : Gige = 2% ® Gy , (A.1)
then we say that the impulse response {Gy}po, is ultimately geometric.

Note that an ultimately geometric sequence G = {Gy};2, is also ultimately periodic. Fur-
thermore, the smallest integers ¢ and kg for which (A.1) holds, correspond to respectively the
period of G and the length of the transient part of G.

Suppose that we have a DES that can be characterized by a triple (A, B, C). A sufficient but
not necessary condition for the impulse response of this DES to be ultimately geometric is
that A is irreducible (cf. Theorem 2.4). This will, e.g., be the case for a DES without separate
independent subsystems, and with a cyclic behavior or with feedback from the output to the
input (such as, e.g., a flexible production system in which the parts are carried around on a
limited number of pallets that circulate in the system [3]).

Definition A.2 (Max-plus-algebraic weak column rank [11, 12]) Let A € RI"™". If
A # Exn then the maz-plus-algebraic weak column rank of A is defined by
rankg we (A) = min{#[ ) IC{1,2,...,n} and Vk € {1,2,...,n},

dl € Ng, Ji1,49,...,4 €1, Jag,ao,...,a; € R,

l
such that A ; = @ ajA i } .

j=1
By definition we have rankg . (€) = 0.

Efficient methods to compute the max-plus-algebraic weak column rank of a matrix are
described in [4, 11, A2]. It is easy to verify that for any matrix A € RI™"™ we have
rankg Schein (A) < rankg we (A4).

Lemma A.3 Let G be an ultimately geometric sequence with period c. Let ko be the length
of the transient part of G. Then we have

rankg we H(G) = ranks we (H(G)) forallk > ko+c . (A.2)

{1a27“~7k}’{1727“'1k}



Proof: We shall prove this lemma for a sequence of numbers g = { gk}iozo. The extension
of this proof to a sequence of matrices is straightforward.

Define Hy = (H(g)).7{1,2,...,ko+c} and Hy = (H(g))
First we show that rankg wec H(g) = rankg we Hi.
Let k € N. We have

{1727"'7k0+c}7{1727”'7k0+c}.

gk0+k
Gko+k+1

(H(G))~7k0+k+1 = 9k0+k+2

Since g is ultimately geometric, there exists a number A € R, such that gx,4ctr = 2@ Jhko+k
for all k € N. Hence, grytretk = 2@ Jko+k for all 7 € Ng and £ € N, and thus also
(H(G))

2@ (H(@)) for all 7 € Ng and k € N .

Skotretk+l Sko+k+1

This implies that any column (H(G)) kotetl with [ € Ny can be written as a ® (H(G))
for some s € {1,2,...,c} and some a € R.. As a consequence, we have

.,ko—l—s

rankg we H(G) = rankg we (H(G)) = ranke we H1 -

1,2, ko+c}
Using a similar reasoning as the one that has been used above, it can be shown that any row

(Hl)k0+c+l. with [ € Ny can be written as a ® (Hl) for some s € {1,2,...,c} and some

. ko+s,.
a € R,. So if we have

(H2) .k = @ aj(Ha). 4

Jj=1

for some [, k,i1,i2,...,15 € {1,2,...,ko + ¢} and a1, a9,...,0; € R, then we also have

(H1).) = @ aj(Hy) i -

j=1

This implies that ranke Hy = rankg we (H1){1,2,... ko+c},. = Tanke we Ha.
Hence, ranke we H(G) = rankg, wc H2. As a consequence, (A.2) holds. O

Remark A.4 Note that Lemma A.3 implies that if G is an ultimately geometric sequence
then ranke we H(G) is finite and can be determined using a finite number of elementary
operations.

The max-plus-algebraic sum of sequences is defined as follows. If G = {Gy};2, and H =
{H.}52, with Gy, Hy, € RX™ for all k € N, then G H is a sequence with (GO H)y, = Gy @ Hy,
for all £ € N.

From Theorem 3.1 it follows that the impulse response of a max-linear time-invariant DES
can always be considered as the max-plus-algebraic sum of a finite number of ultimately
geometric impulse responses (see also [1, 11, 12]).

Theorem A.5 Let g be the impulse response of a maz-linear time-invariant SISO DES with
g # {etnsy- Letgi, g2, ..., gs be ultimately geometric sequences such that g = g1©ga®- - -Dys.

S
Then there exists a state space realization of g of order Z rankg we (H(gz))
i=1

ii



Proof: See [11, 12]. O

Proposition A.6 For any ultimately periodic sequence G we can compute a finite upper
bound for the minimal system order of the maz-linear time-invariant DES the impulse response
of which coincides with G using a finite number of elementary operations.

Proof: This is a direct consequence of Lemma A.3 and Theorem A.5. O

B The ultimate behavior of the sequence of consecutive max-
plus-algebraic matrix powers

If we permute the rows or the columns of the max-plus-algebraic identity matrix, we obtain
a max-plus-algebraic permutation matrix. If P € RI*" is a max-plus-algebraic permutation
matrix, then we have P ® PT = PT @ P = E,. A matrix R € R™*" is a max-plus-algebraic
upper triangular matrix if r;; = ¢ for all 4, j with i > j.

Lemma B.1 If A € RI*" then there exists a maz-plus-algebraic permutation matriz P €
R™*™ such that the matriv A = P ® A® PT is a maa-plus-algebraic block upper triangular
matriz of the form

Au Ao Ay
A-| € o A (A3)

-
uA)z'th l? 1 and uihere the matrices 12111, Agg, c, flll are square and irreducible. The matrices
Ay, Ao, ..., Ay are uniquely determined to within simultaneous permutation of their rows

and columns, but their ordering in (A.3) is not necessarily unique.

Proof: See, e.g., [1]. This lemma is also the max-plus-algebraic equivalent of a result of [A5].
A proof of the uniqueness assertion can be found in [A1] (Theorem 3.2.4%). |

The form in (A.3) is called the max-plus-algebraic Frobenius normal form of the matrix A.
Note that if A is irreducible then there is only one block in (A.3) and then A is a max-plus-
algebraic Frobenius normal form of itself.

Let A € B™" (or A € R™™). If A= P® A® PT is the max-plus-algebraic Frobenius normal
form of A, then we have A = PT @ A ® P. Hence,

. : .
A" = (PTo Ao P)” =PTo A" g p

-k
for all kK € N. Therefore, we may consider without loss of generality the sequence {A® };O:O

. k . . A
instead of the sequence {A® }ZOZO. Furthermore, since the transformation from A to A
corresponds to a simultaneous reordering of the rows and columns of A (or to a reordering of

the vertices of G(A)), we have ¢(A4) = ¢(A).
The following lemma is an extension of Theorem 2.4 and a corrected version of a lemma
that can be found in [A6]:

L Although this theorem is stated for (0, 1)-matrices, there is a one-to-one correspondence between a max-
plus-algebraic boolean matrix and a (0, 1)-matrix if we let 0 and & correspond with 1 and 0 respectively.
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Lemma B.2 Let A € RZ*™ be a matriz of the form (A.3) where the matrices A, ..., Ay
are square and irreducible. Let \; and c; be respectively the max-plus-algebraic eigenvalue and
the cyclicity of Ay fori=1,...,1. Define sets ou, ..., oy such that Aaiaj = flij for all i,
with 1 < J.

Define

AMTH#E’ for r=0,...,s =1}

Ly = U 0l

YESi;
Ao — Mt €Ty} if Ty # 0,
v {e} if Ty =10,
lem{c: |t €Ty} if Ty #0 and ¢t # 0 for some t € Ty;,
Cij =
! 1 otherwise,

for all i,j with i < j. We have
. . ~ ok
Viyje{l,...,l}withi>j: <A® ) = Enixn; forallk eN. (A.4)
o0

Moreover, there exists an integer K € N such that

vie{l,...,0}: (A@'”ci) =2 @ (A@'“) forallk > K (A.5)

[e7187 7167

and

Vi, j € {1,...,l}with i < j,Vp € ;,¥q € aj, F0, - -+, Ve;j—1 € Nij such that
o _kepidcis » ~ _keis
(A® CJ+CJ+8> =757 ® (A® C]+8) forallk > K and for s =0,...,¢;; — 1.

" (A.6)

Pq

Furthermore, for each combination i,j,p,q with ¢ < j, p € oy and q € «j, there exists at
least one index s € {0,...,c;; — 1} such that the smallest s for which (A.6) holds is equal to
max Aj;.

Proof: See [A3]. O

If G = {Gy};2, is the impulse response of a max-linear time-invariant DES and if the triple
(A, B,C) is a state space realization of the DES, then it follows from Lemmas B.1 and B.2
that the period of G is a divisor of the cyclicity ¢(A) of the system matrix A.
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