Technical report 97-68a

On the boolean minimal realization problem in the max-plus algebra: Addendum

B. De Schutter, V. Blondel, R. de Vries, and B. De Moor

December 1997
On the boolean minimal realization problem in the max-plus algebra: Addendum

Bart De Schutter Vincent Blondel Remco de Vries Bart De Moor

In this addendum we present an upper bound for the minimal system order of a max-linear time-invariant DES that can be computed very efficiently, and we give some lemmas that characterize the ultimate behavior of the sequence \(\{A^k\} \) for a matrix \(A \in \mathbb{R}^{n \times n} \).

A Upper bounds for the minimal system order

Definition A.1 (Ultimately geometric impulse response [12, A4])

Let \(\{G_k\}_{k=0}^\infty \) be the impulse response of a max-linear time-invariant DES. If

\[
\exists k_0 \in \mathbb{N}, \exists c \in \mathbb{N}_0, \exists \lambda \in \mathbb{R}_+ \text{ such that } \forall k \geq k_0 : G_{k+c} = \lambda^c \otimes G_k ,
\]

(A.1)

then we say that the impulse response \(\{G_k\}_{k=0}^\infty \) is ultimately geometric.

Note that an ultimately geometric sequence \(G = \{G_k\}_{k=0}^\infty \) is also ultimately periodic. Furthermore, the smallest integers \(c \) and \(k_0 \) for which (A.1) holds, correspond to respectively the period of \(G \) and the length of the transient part of \(G \).

Suppose that we have a DES that can be characterized by a triple \((A, B, C) \). A sufficient but not necessary condition for the impulse response of this DES to be ultimately geometric is that \(A \) is irreducible (cf. Theorem 2.4). This will, e.g., be the case for a DES without separate independent subsystems, and with a cyclic behavior or with feedback from the output to the input (such as, e.g., a flexible production system in which the parts are carried around on a limited number of pallets that circulate in the system [3]).

Definition A.2 (Max-plus-algebraic weak column rank [11, 12])

Let \(A \in \mathbb{R}^{m \times n}_+ \). If \(A \neq \mathbb{E}^{m \times n} \), then the max-plus-algebraic weak column rank of \(A \) is defined by

\[
\text{rank}_{\oplus, wc}(A) = \min \left\{ \# I \mid I \subseteq \{1, 2, \ldots, n\} \text{ and } \forall k \in \{1, 2, \ldots, n\}, \right.
\]

\[
\exists \ell \in \mathbb{N}_0, \exists i_1, i_2, \ldots, i_\ell \in I, \exists \alpha_1, \alpha_2, \ldots, \alpha_\ell \in \mathbb{R}_+ \text{ such that } A_{.,k} = \bigoplus_{j=1}^\ell \alpha_j A_{.,i_j} .
\]

By definition we have \(\text{rank}_{\oplus, wc}(\mathbb{E}) = 0 \).

Efficient methods to compute the max-plus-algebraic weak column rank of a matrix are described in [4, 11, A2]. It is easy to verify that for any matrix \(A \in \mathbb{R}^{m \times n}_+ \) we have \(\text{rank}_{\oplus, Schein}(A) \leq \text{rank}_{\oplus, wc}(A) \).

Lemma A.3

Let \(G \) be an ultimately geometric sequence with period \(c \). Let \(k_0 \) be the length of the transient part of \(G \). Then we have

\[
\text{rank}_{\oplus, wc} H(G) = \text{rank}_{\oplus, wc} \left(H(G) \right)_{\{1, 2, \ldots, k\}, \{1, 2, \ldots, k\}} \text{ for all } k \geq k_0 + c .
\]

(A.2)
Proof: We shall prove this lemma for a sequence of numbers \(g = \{g_k\}_{k=0}^{\infty} \). The extension of this proof to a sequence of matrices is straightforward.

Define \(H_1 = (H(g))_{1,2,\ldots,k_0+c} \) and \(H_2 = (H(g))_{1,2,\ldots,k_0+c,m} \).

First we show that \(\text{rank}_{\oplus,\text{wc}} H(g) = \text{rank}_{\oplus,\text{wc}} H_1 \).

Let \(k \in \mathbb{N} \). We have

\[
(H(G))_{k_0+k+1} = \begin{bmatrix} g_{k_0+k} \\ g_{k_0+k+1} \\ g_{k_0+k+2} \\ \vdots \end{bmatrix}.
\]

Since \(g \) is ultimately geometric, there exists a number \(\lambda \in \mathbb{R} \) such that \(g_{k_0+c+k} = \lambda^{s+c} \otimes g_{k_0+k} \) for all \(k \in \mathbb{N} \). Hence, \(g_{k_0+c+k} = \lambda^{s+c} \otimes g_{k_0+k} \) for all \(r \in \mathbb{N}_0 \) and \(k \in \mathbb{N} \), and thus also

\[
(H(G))_{k_0+c+k+1} = \lambda^{s+c} \otimes (H(G))_{k_0+k+1} \quad \text{for all } r \in \mathbb{N}_0 \text{ and } k \in \mathbb{N}.
\]

This implies that any column \((H(G))_{k_0+c+l} \) with \(l \in \mathbb{N}_0 \) can be written as \(\alpha \otimes (H(G))_{k_0+s} \) for some \(s \in \{1,2,\ldots,c\} \) and some \(\alpha \in \mathbb{R} \). As a consequence, we have

\[
\text{rank}_{\oplus,\text{wc}} H(G) = \text{rank}_{\oplus,\text{wc}} (H(G))_{1,2,\ldots,k_0+c} = \text{rank}_{\oplus,\text{wc}} H_1.
\]

Using a similar reasoning as the one that has been used above, it can be shown that any row \((H_1)_{k_0+c+l} \) with \(l \in \mathbb{N}_0 \) can be written as \(\alpha \otimes (H_1)_{k_0+s} \) for some \(s \in \{1,2,\ldots,c\} \) and some \(\alpha \in \mathbb{R} \). So if we have

\[
(H_1)_{k} = \bigoplus_{j=1}^{l} \alpha_j (H_2)_{i,j}
\]

for some \(l, k, i_1, i_2, \ldots, i_l \in \{1,2,\ldots,k_0+c\} \) and \(\alpha_1, \alpha_2, \ldots, \alpha_l \in \mathbb{R} \), then we also have

\[
(H_1)_{k} = \bigoplus_{j=1}^{l} \alpha_j (H_1)_{i,j}.
\]

This implies that \(\text{rank}_{\oplus} H_1 = \text{rank}_{\oplus,\text{wc}} (H_1)_{1,2\ldots,k_0+c} = \text{rank}_{\oplus,\text{wc}} H_2 \).

Hence, \(\text{rank}_{\oplus,\text{wc}} H(G) = \text{rank}_{\oplus,\text{wc}} H_2 \). As a consequence, (A.2) holds. \(\square \)

Remark A.4 Note that Lemma A.3 implies that if \(G \) is an ultimately geometric sequence then \(\text{rank}_{\oplus,\text{wc}} H(G) \) is finite and can be determined using a finite number of elementary operations.

The max-plus-algebraic sum of sequences is defined as follows. If \(G = \{G_k\}_{k=0}^{\infty} \) and \(H = \{H_k\}_{k=0}^{\infty} \) with \(G_k, H_k \in \mathbb{R}^{l_x \times m} \) for all \(k \in \mathbb{N} \), then \(G \oplus H \) is a sequence with \((G \oplus H)_k = G_k \oplus H_k \) for all \(k \in \mathbb{N} \).

From Theorem 3.1 it follows that the impulse response of a max-linear time-invariant DES can always be considered as the max-plus-algebraic sum of a finite number of ultimately geometric impulse responses (see also [1, 11, 12]).

Theorem A.5 Let \(g \) be the impulse response of a max-linear time-invariant SISO DES with \(g \neq \{\varepsilon\}_{k=0}^{\infty} \). Let \(g_1, g_2, \ldots, g_s \) be ultimately geometric sequences such that \(g = g_1 \oplus g_2 \oplus \cdots \oplus g_s \).

Then there exists a state space realization of \(g \) of order \(\sum_{i=1}^{s} \text{rank}_{\oplus,\text{wc}} (H(g_i)) \).
Proof: See [11, 12]. □

Proposition A.6 For any ultimately periodic sequence G we can compute a finite upper bound for the minimal system order of the max-linear time-invariant DES the impulse response of which coincides with G using a finite number of elementary operations.

Proof: This is a direct consequence of Lemma A.3 and Theorem A.5. □

B The ultimate behavior of the sequence of consecutive max-plus-algebraic matrix powers

If we permute the rows or the columns of the max-plus-algebraic identity matrix, we obtain a max-plus-algebraic permutation matrix. If $P \in \mathbb{R}^{n \times n}_\epsilon$ is a max-plus-algebraic permutation matrix, then we have $P \otimes P^T = P^T \otimes P = E_n$. A matrix $R \in \mathbb{R}^{m \times n}_\epsilon$ is a max-plus-algebraic upper triangular matrix if $r_{ij} = \epsilon$ for all i, j with $i > j$.

Lemma B.1 If $A \in \mathbb{R}^{n \times n}_\epsilon$ then there exists a max-plus-algebraic permutation matrix $P \in \mathbb{R}^{n \times n}_\epsilon$ such that the matrix $\hat{A} = P \otimes A \otimes P^T$ is a max-plus-algebraic block upper triangular matrix of the form

$$\hat{A} = \begin{bmatrix} \hat{A}_{11} & \hat{A}_{12} & \ldots & \hat{A}_{1l} \\ \epsilon & \hat{A}_{22} & \ldots & \hat{A}_{2l} \\ \vdots & \vdots & \ddots & \vdots \\ \epsilon & \epsilon & \ldots & \hat{A}_{ll} \end{bmatrix} \tag{A.3}$$

with $l \geq 1$ and where the matrices $\hat{A}_{11}, \hat{A}_{22}, \ldots, \hat{A}_{ll}$ are square and irreducible. The matrices $\hat{A}_{11}, \hat{A}_{22}, \ldots, \hat{A}_{ll}$ are uniquely determined to within simultaneous permutation of their rows and columns, but their ordering in (A.3) is not necessarily unique.

Proof: See, e.g., [1]. This lemma is also the max-plus-algebraic equivalent of a result of [A5]. A proof of the uniqueness assertion can be found in [A1] (Theorem 3.2.4).

The form in (A.3) is called the max-plus-algebraic Frobenius normal form of the matrix A. Note that if A is irreducible then there is only one block in (A.3) and then A is a max-plus-algebraic Frobenius normal form of itself.

Let $A \in \mathbb{B}^{n \times n}$ (or $A \in \mathbb{R}^{n \times n}_\epsilon$). If $\hat{A} = P \otimes A \otimes P^T$ is the max-plus-algebraic Frobenius normal form of A, then we have $A = P^T \otimes \hat{A} \otimes P$. Hence,

$$A^\otimes k = (P^T \otimes \hat{A} \otimes P)^\otimes k = P^T \otimes \hat{A}^\otimes k \otimes P$$

for all $k \in \mathbb{N}$. Therefore, we may consider without loss of generality the sequence $\{\hat{A}^\otimes k\}_{k=0}^\infty$ instead of the sequence $\{A^\otimes k\}_{k=0}^\infty$. Furthermore, since the transformation from A to \hat{A} corresponds to a simultaneous reordering of the rows and columns of A (or to a reordering of the vertices of $G(A)$), we have $c(A) = c(\hat{A})$.

The following lemma is an extension of Theorem 2.4 and a corrected version of a lemma that can be found in [A6]:

\[1\] Although this theorem is stated for $(0, 1)$-matrices, there is a one-to-one correspondence between a max-plus-algebraic boolean matrix and a $(0, 1)$-matrix if we let 0 and ϵ correspond with 1 and 0 respectively.
Lemma B.2 Let $\hat{A} \in \mathbb{R}_n^{n \times n}$ be a matrix of the form (A.3) where the matrices $\hat{A}_{11}, \ldots, \hat{A}_{ll}$ are square and irreducible. Let λ_i and c_i be respectively the max-plus-algebraic eigenvalue and the cyclicity of \hat{A}_{ii} for $i = 1, \ldots, l$. Define sets $\alpha_1, \ldots, \alpha_l$ such that $\hat{A}_{\alpha_i \alpha_j} = \hat{A}_{ij}$ for all i, j with $i \leq j$.

Define

$S_{ij} = \{ \{i_0, \ldots, i_s\} \subseteq \{1, \ldots, l\} \mid i = i_0 < i_1 < \ldots < i_s = j \}$

$\Gamma_{ij} = \bigcup_{\gamma \in S_{ij}} \gamma$

$\Lambda_{ij} = \begin{cases} \{\lambda_t \mid t \in \Gamma_{ij}\} & \text{if } \Gamma_{ij} \neq \emptyset, \\ \{\varepsilon\} & \text{if } \Gamma_{ij} = \emptyset, \end{cases}$

$c_{ij} = \begin{cases} \text{lcm} \{c_t \mid t \in \Gamma_{ij}\} & \text{if } \Gamma_{ij} \neq \emptyset \text{ and } c_t \neq 0 \text{ for some } t \in \Gamma_{ij}, \\ 1 & \text{otherwise}, \end{cases}$

for all i, j with $i < j$. We have

\[\forall i, j \in \{1, \ldots, l\} \text{ with } i > j : \left(\hat{A}^k\right)_{\alpha_i \alpha_j} = \varepsilon_{n_i \times n_j} \text{ for all } k \in \mathbb{N}. \quad (A.4) \]

Moreover, there exists an integer $K \in \mathbb{N}$ such that

\[\forall i \in \{1, \ldots, l\} : \left(\hat{A}^{k+c_i}\right)_{\alpha_i \alpha_i} = \lambda_i \otimes \left(\hat{A}^k\right)_{\alpha_i \alpha_i} \text{ for all } k \geq K \]

and

\[\forall i, j \in \{1, \ldots, l\} \text{ with } i < j, \forall p \in \alpha_i, \forall q \in \alpha_j, \exists \gamma_0, \ldots, \gamma_{c_{ij}-1} \in \Lambda_{ij} \text{ such that} \]

\[\left(\hat{A}^{kc_{ij}+c_{ij}+s}\right)_{pq} = \gamma_s \otimes \left(\hat{A}^{kc_{ij}+s}\right)_{pq} \text{ for all } k \geq K \text{ and for } s = 0, \ldots, c_{ij} - 1. \]

Furthermore, for each combination i, j, p, q with $i < j, p \in \alpha_i$ and $q \in \alpha_j$, there exists at least one index $s \in \{0, \ldots, c_{ij} - 1\}$ such that the smallest γ_s for which (A.6) holds is equal to $\max \Lambda_{ij}$.

Proof: See [A3].

If $G = \{G_k\}_{k=0}^\infty$ is the impulse response of a max-linear time-invariant DES and if the triple (A, B, C) is a state space realization of the DES, then it follows from Lemmas B.1 and B.2 that the period of G is a divisor of the cyclicity $c(A)$ of the system matrix A.

Additional references

