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On the boolean minimal realization problem

in the max-plus algebra: Addendum

Bart De Schutter Vincent Blondel Remco de Vries Bart De Moor

In this addendum we present an upper bound for the minimal system order of a max-linear
time-invariant DES that can be computed very efficiently, and we give some lemmas that

characterize the ultimate behavior of the sequence
{

A⊗
k}∞

k=0
for a matrix A ∈ R

n×n
ε .

A Upper bounds for the minimal system order

Definition A.1 (Ultimately geometric impulse response [12, A4])
Let {Gk}

∞
k=0

be the impulse response of a max-linear time-invariant DES. If

∃k0 ∈ N, ∃c ∈ N0, ∃λ ∈ Rε such that ∀k > k0 : Gk+c = λ⊗
c
⊗Gk , (A.1)

then we say that the impulse response {Gk}
∞
k=0

is ultimately geometric.

Note that an ultimately geometric sequence G = {Gk}
∞
k=0

is also ultimately periodic. Fur-
thermore, the smallest integers c and k0 for which (A.1) holds, correspond to respectively the
period of G and the length of the transient part of G.
Suppose that we have a DES that can be characterized by a triple (A,B,C). A sufficient but
not necessary condition for the impulse response of this DES to be ultimately geometric is
that A is irreducible (cf. Theorem 2.4). This will, e.g., be the case for a DES without separate
independent subsystems, and with a cyclic behavior or with feedback from the output to the
input (such as, e.g., a flexible production system in which the parts are carried around on a
limited number of pallets that circulate in the system [3]).

Definition A.2 (Max-plus-algebraic weak column rank [11, 12]) Let A ∈ R
m×n
ε . If

A 6= εm×n then the max-plus-algebraic weak column rank of A is defined by

rank⊕,wc (A) = min
{

#I
∣

∣

∣
I ⊆ {1, 2, . . . , n} and ∀k ∈ {1, 2, . . . , n} ,

∃l ∈ N0, ∃i1, i2, . . . , il ∈ I, ∃α1, α2, . . . , αl ∈ Rε

such that A.,k =
l

⊕

j=1

αjA.,ij

}

.

By definition we have rank⊕,wc (ε) = 0.

Efficient methods to compute the max-plus-algebraic weak column rank of a matrix are
described in [4, 11, A2]. It is easy to verify that for any matrix A ∈ R

m×n
ε we have

rank⊕,Schein (A) 6 rank⊕,wc (A).

Lemma A.3 Let G be an ultimately geometric sequence with period c. Let k0 be the length
of the transient part of G. Then we have

rank⊕,wcH(G) = rank⊕,wc

(

H(G)
)

{1,2,...,k},{1,2,...,k}
for all k > k0 + c . (A.2)
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Proof : We shall prove this lemma for a sequence of numbers g =
{

gk
}∞

k=0
. The extension

of this proof to a sequence of matrices is straightforward.
Define H1 =

(

H(g)
)

.,{1,2,...,k0+c}
and H2 =

(

H(g)
)

{1,2,...,k0+c},{1,2,...,k0+c}
.

First we show that rank⊕,wcH(g) = rank⊕,wcH1.
Let k ∈ N. We have

(H(G)).,k0+k+1 =











gk0+k

gk0+k+1

gk0+k+2

...











.

Since g is ultimately geometric, there exists a number λ ∈ Rε such that gk0+c+k = λ⊗
c
⊗gk0+k

for all k ∈ N. Hence, gk0+rc+k = λ⊗
rc

⊗ gk0+k for all r ∈ N0 and k ∈ N, and thus also

(

H(G)
)

.,k0+rc+k+1
= λ⊗

rc
⊗
(

H(G)
)

.,k0+k+1
for all r ∈ N0 and k ∈ N .

This implies that any column
(

H(G)
)

.,k0+c+l
with l ∈ N0 can be written as α⊗

(

H(G)
)

.,k0+s

for some s ∈ {1, 2, . . . , c} and some α ∈ Rε. As a consequence, we have

rank⊕,wcH(G) = rank⊕,wc

(

H(G)
)

.,{1,2,...,k0+c}
= rank⊕,wcH1 .

Using a similar reasoning as the one that has been used above, it can be shown that any row
(

H1

)

k0+c+l,.
with l ∈ N0 can be written as α⊗

(

H1

)

k0+s,.
for some s ∈ {1, 2, . . . , c} and some

α ∈ Rε. So if we have

(H2).,k =
l

⊕

j=1

αj(H2).,ij

for some l, k, i1, i2, . . . , il ∈ {1, 2, . . . , k0 + c} and α1, α2, . . . , αl ∈ Rε, then we also have

(H1).,k =

l
⊕

j=1

αj(H1).,ij .

This implies that rank⊕ H1 = rank⊕,wc (H1){1,2,...,k0+c},. = rank⊕,wcH2.
Hence, rank⊕,wcH(G) = rank⊕,wcH2. As a consequence, (A.2) holds. ✷

Remark A.4 Note that Lemma A.3 implies that if G is an ultimately geometric sequence
then rank⊕,wcH(G) is finite and can be determined using a finite number of elementary
operations.

The max-plus-algebraic sum of sequences is defined as follows. If G = {Gk}
∞
k=0

and H =

{Hk}
∞
k=0

with Gk, Hk ∈ R
l×m
ε for all k ∈ N, then G⊕H is a sequence with (G⊕H)k = Gk⊕Hk

for all k ∈ N.
From Theorem 3.1 it follows that the impulse response of a max-linear time-invariant DES
can always be considered as the max-plus-algebraic sum of a finite number of ultimately
geometric impulse responses (see also [1, 11, 12]).

Theorem A.5 Let g be the impulse response of a max-linear time-invariant SISO DES with
g 6= {ε}∞k=0

. Let g1, g2, . . . , gs be ultimately geometric sequences such that g = g1⊕g2⊕· · ·⊕gs.

Then there exists a state space realization of g of order
s

∑

i=1

rank⊕,wc

(

H(gi)
)

.
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Proof : See [11, 12]. ✷

Proposition A.6 For any ultimately periodic sequence G we can compute a finite upper
bound for the minimal system order of the max-linear time-invariant DES the impulse response
of which coincides with G using a finite number of elementary operations.

Proof : This is a direct consequence of Lemma A.3 and Theorem A.5. ✷

B The ultimate behavior of the sequence of consecutive max-

plus-algebraic matrix powers

If we permute the rows or the columns of the max-plus-algebraic identity matrix, we obtain
a max-plus-algebraic permutation matrix. If P ∈ R

n×n
ε is a max-plus-algebraic permutation

matrix, then we have P ⊗ P T = P T ⊗ P = En. A matrix R ∈ R
m×n
ε is a max-plus-algebraic

upper triangular matrix if rij = ε for all i, j with i > j.

Lemma B.1 If A ∈ R
n×n
ε then there exists a max-plus-algebraic permutation matrix P ∈

R
n×n
ε such that the matrix Â = P ⊗ A ⊗ P T is a max-plus-algebraic block upper triangular

matrix of the form

Â =











Â11 Â12 . . . Â1l

ε Â22 . . . Â2l

...
...

. . .
...

ε ε . . . Âll











(A.3)

with l > 1 and where the matrices Â11, Â22, . . . , Âll are square and irreducible. The matrices
Â11, Â22, . . . , Âll are uniquely determined to within simultaneous permutation of their rows
and columns, but their ordering in (A.3) is not necessarily unique.

Proof : See, e.g., [1]. This lemma is also the max-plus-algebraic equivalent of a result of [A5].
A proof of the uniqueness assertion can be found in [A1] (Theorem 3.2.41). ✷

The form in (A.3) is called the max-plus-algebraic Frobenius normal form of the matrix A.
Note that if A is irreducible then there is only one block in (A.3) and then A is a max-plus-
algebraic Frobenius normal form of itself.
Let A ∈ B

n×n (or A ∈ R
n×n
ε ). If Â = P ⊗A⊗P T is the max-plus-algebraic Frobenius normal

form of A, then we have A = P T ⊗ Â⊗ P . Hence,

A⊗
k
= (P T ⊗ Â⊗ P )

⊗
k

= P T ⊗ Â⊗
k
⊗ P

for all k ∈ N. Therefore, we may consider without loss of generality the sequence
{

Â⊗
k}∞

k=0

instead of the sequence
{

A⊗
k}∞

k=0
. Furthermore, since the transformation from A to Â

corresponds to a simultaneous reordering of the rows and columns of A (or to a reordering of
the vertices of G(A)), we have c(A) = c(Â).

The following lemma is an extension of Theorem 2.4 and a corrected version of a lemma
that can be found in [A6]:

1Although this theorem is stated for (0, 1)-matrices, there is a one-to-one correspondence between a max-
plus-algebraic boolean matrix and a (0, 1)-matrix if we let 0 and ε correspond with 1 and 0 respectively.
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Lemma B.2 Let Â ∈ R
n×n
ε be a matrix of the form (A.3) where the matrices Â11, . . . , Âll

are square and irreducible. Let λi and ci be respectively the max-plus-algebraic eigenvalue and
the cyclicity of Âii for i = 1, . . . , l. Define sets α1, . . . , αl such that Âαiαj

= Âij for all i, j
with i 6 j.
Define

Sij =
{

{i0, . . . , is} ⊆ {1, . . . , l}
∣

∣ i = i0 < i1 < . . . < is = j and

Âirir+1
6= ε for r = 0, . . . , s− 1

}

Γij =
⋃

γ∈Sij

γ

Λij =

{

{λt|t ∈ Γij} if Γij 6= ∅ ,

{ε} if Γij = ∅ ,

cij =

{

lcm{ct | t ∈ Γij } if Γij 6= ∅ and ct 6= 0 for some t ∈ Γij ,

1 otherwise ,

for all i, j with i < j. We have

∀i, j ∈ {1, . . . , l}with i > j :
(

Â⊗
k
)

αiαj

= εni×nj
for all k ∈ N . (A.4)

Moreover, there exists an integer K ∈ N such that

∀i ∈ {1, . . . , l} :
(

Â⊗
k+ci

)

αiαi

= λi
⊗
ci
⊗
(

Â⊗
k
)

αiαi

for all k > K (A.5)

and

∀i, j ∈ {1, . . . , l}with i < j, ∀p ∈ αi, ∀q ∈ αj , ∃γ0, . . . , γcij−1 ∈ Λij such that
(

Â⊗
kcij+cij+s

)

pq
= γs

⊗
cij

⊗
(

Â⊗
kcij+s

)

pq
for all k > K and for s = 0, . . . , cij − 1 .

(A.6)

Furthermore, for each combination i, j, p, q with i < j, p ∈ αi and q ∈ αj, there exists at
least one index s ∈ {0, . . . , cij − 1} such that the smallest γs for which (A.6) holds is equal to
maxΛij.

Proof : See [A3]. ✷

If G = {Gk}
∞
k=0

is the impulse response of a max-linear time-invariant DES and if the triple
(A,B,C) is a state space realization of the DES, then it follows from Lemmas B.1 and B.2
that the period of G is a divisor of the cyclicity c(A) of the system matrix A.
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