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Abstract

Similarity transformations between two different minimal realizations of a given impulse response

of a discrete event system are discussed. In the symmetrized max-algebra an explicit expression

can be given for the transformation between an arbitrary minimal realization of a given impulse

response and a minimal realization of the same impulse response in a standard form. It is con-

jectured that a more general result holds which gives a transformation matrix between any two

minimal realizations of an impulse response. We will illustrate the difficulties encountered when

trying to prove this conjecture.

1 Introduction

A class of Discrete Event Systems (DES), e.g. systems which involve synchronization, can be de-

scribed by linear models provided that the usual addition is replaced by maximization and multipli-

cation by addition. The resulting algebraic structure is called the max-algebra and a max-algebraic

system theory has been developed for this class of DES. An extensive exposition of such systems and

of the underlying algebraic structure can be found in [1].

One of the problems in the system theory for DES is the minimal realization problem, which

can be formulated in the following way. Given an impulse response of a system, find a state space

description of minimal dimension of which the behavior is equal to the given impulse response. An

overview is given of a number of (partial) solutions for this problem.

The minimal realization problem for max-linear systems was introduced in [11]. The results in this

paper were extended in [12] in which the two-dimensional case was studied. In these papers a mapping

from the max-algebra to the conventional algebra is used to solve the problem. Cuninghame-Green

[5] tries to solve the problem using algebraic techniques valid within the algebra itself. Extensions

are given in [15] and in [16]. In [7] and [6] it is shown that the minimal realization problem can

be formulated as an Extended Linear Complementarity Problem (ELCP), an extension of the Linear

Complementarity Problem which is one of the fundamental problems in mathematical programming.

The ELCP approach can then be used to compute a partial realization of a given impulse response

even for MIMO systems. A drawback of the general ELCP is that it is an NP-hard problem, so it can

probably not be solved in polynomial time. It is not clear yet whether the minimal realization problem

is also NP-hard. In [8] the authors present a heuristic procedure which can overcome this drawback

of the ELCP method.

*A shortened version of this report is published in the Proceedings of the IFAC Conference on System Structure and

Control, July 8–10 1998, Nantes, France, pp. 587–592
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In conventional system theory it is always possible to find a state space transformation between

two different minimal realizations of the same impulse response. It is investigated whether a similar

statement holds true in the max-algebraic system theory of DES. It can be shown that in some cases

state space transformations exist in the max-algebra, see e.g. [6] in which some possible transfor-

mations are discussed. A problem in finding transformations for more general cases is that in the

max-algebra the inverse of a matrix only exists for a small class of matrices. Therefore, we extend

the search for state space transformations to the symmetrized max-algebra, which is the linear closure

of the max-algebra. The symmetrized max-algebra structure was first introduced in [10], see also [1]

and [9].

This paper is organized as follows. In Section 2 we will discuss the max-algebra and its linear

closure, the symmetrized max-algebra. Furthermore we will briefly demonstrate how a class of sys-

tems can be described by linear relations in the max-algebra. In Section 3 the minimal realization

problem is discussed and some known results are summarized. We show why the similarity trans-

formation problem is of interest. This problem will be discussed in Section 4. We first recall some

results from conventional system theory. Then we will introduce possible similarity transformations

for max-algebraic systems. Finally, in Section 5 we will make some concluding remarks and state

some questions which have remained unanswered.

2 Max-algebra and extensions

In this section we will give a brief overview of the max-algebra and of the symmetrized max-algebra.

For a more extensive discussion we refer to [1] or [4].

Let ε =−∞ and denote by Rε the set R∪{ε}. For a,b ∈ Rε the operations ⊕ and ⊗ are defined

by

a⊕b = max(a,b),

a⊗b = a+b.

The set Rε together with the operations ⊕ and ⊗ will be denoted by Rmax and is called the max-

algebra or max-plus algebra. In Rmax, ε is the neutral element for the operation ⊕ and an absorbing

element for ⊗. The neutral element for ⊗ is 0.

We can extend the max-algebra operations to matrices in the following way. If A,B ∈ R
m×n
ε then

(A⊕B)i j = ai j ⊕bi j for i = 1, . . . ,m and j = 1, . . . ,n.

If A ∈ R
m×p
ε and B ∈ R

p×n
ε then

(A⊗B)i j =
p

⊕

k=1

aik ⊗bk j for i = 1, . . . ,m and j = 1, . . . ,n.

We will denote by En or just by E the n×n max-algebraic unit matrix. For this matrix we have

Ei j = ε for i, j = 1, . . . ,n with i 6= j

Eii = 0 for i = 1, . . . ,n.

A problem with Rmax is that it is not a ring since an equation of the form a⊕ x = b does not

necessarily have a solution. If a > b no solution exists. The reason for this is that for a ∈ R we

cannot find an element b ∈ Rε such that a⊕ b = ε . A solution to overcome this problem, at least in
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some ways, is presented in [10], see also [1] and [9]. In these references a symmetrization of Rmax

is introduced, which results in the closure of Rmax denoted by Smax. This structure will be called the

symmetrized max-plus algebra. In this section we will give the basic notions regarding Smax. For a

formal derivation and proofs we refer to [10], [1] and [9].

The set S consists of the three subsets S⊕, S⊖ and S
• defined by

S
⊕ = {a | a ∈ Rε}

S
⊖ = {⊖a | a ∈ Rε}

S
• = {a• = a⊖a | a ∈ Rε}.

The elements in S
⊕ will be called max-positive, the elements in S

⊖ max-negative and the elements in

S
• will be called balanced. The elements in the set S⊕ ∪S

⊖ will be called signed. The set of signed

elements is denoted by S
∨. For elements x,y ∈ Rε we have

x⊕ (⊖y) = x if x > y,

x⊕ (⊖y) =⊖y if x < y,

x⊕ (⊖y) = x• if x = y.

Furthermore, for any x,y ∈ S we have

⊖(x⊕ y) = (⊖x)⊕ (⊖y)

x⊗ (⊖y) =⊖(x⊗ y),

(⊖x)⊗ (⊖y) = x⊗ y,

⊖(⊖x) = x.

These properties allow us to write a⊕(⊖b) = a⊖b. Note that the ⊖-sign shares many properties with

the minus sign in ordinary algebra.

Let a ∈ S. Define its max-positive part a⊕ and its max-negative part a⊖ as follows. If a ∈ S
⊕ then

a⊕ = a and a⊖ = ε . If a ∈ S
⊖ then a⊕ = ε and a⊖ = a. Finally, if a ∈ S

• then there exists b ∈ R such

that a⊕ = a⊖ = b. With these definitions any element a ∈ S can then be written as a = a⊕⊖a⊖.

In Smax we still cannot find an element b such that for an element a∈R we have that a⊕b= ε . But

with the introduction of a new relation, the so-called balance relation, we can get close. For a,b ∈ S

the balance relation, denoted by ∇, is defined as

a ∇ b ⇔ a⊕⊕b⊖ = a⊖⊕b⊕.

From this definition we can derive the following rules:

1. ∀a,b,c ∈ S: a ∇ b⊕ c ⇔ a⊖b ∇ c,

2. ∀a,b ∈ S
∨: a ∇ b ⇔ a = b.

The first rule implies, with c = ε , that: a ∇ b ⇔ a⊖b ∇ ε . When a = b we conclude from rules 1 and

2 that a⊖a ∇ ε or a• ∇ ε .

The introduction of the max-negative numbers, the balanced numbers and the balance operator

allows us to manipulate with max-algebraic numbers almost in the same way as with numbers in the

conventional algebra. One exception is that we do not have cancellation of equal terms with opposite

signs, since a⊖a becomes a• which is unequal to ε for a 6= ε . But we do have that a• ∇ ε .
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Rule 2 is only valid for signed elements. Let, for instance, a = 4• and b = 3. Then a ∇ b since

4• ∇ 3 ⇔ 4⊖ 4 ∇ 3 ⇔ 4 ∇ 3⊕ 4 ⇔ 4 ∇ 4 ⇔ 4 = 4, but a 6= b. This implies that equality is a stronger

property than balance.

A major difficulty with the balance relation is that it is not transitive, e.g. 1 ∇ 1• ⇔ 1• ∇ ⊖ 1 but

1 ∇/ ⊖1.

The extension of Smax to matrices is similar to the extension of Rmax to matrices.

In Smax we can define the determinant of a matrix, see [1]. First, we define the signature of a

permutation σ as

sgn(σ) =

{

0 if σ is even

⊖0 otherwise.

Then the determinant of an n×n matrix A is defined (as usual) as

det(A) =
⊕

σ

sgn(σ)⊗
n

⊗

i=1

Aiσ(i).

Next, we can define the transpose of the matrix of cofactors, denoted by A♮, by A
♮
i j = cof ji(A), where

cof ji(A) is equal to the determinant of the matrix obtained from A by deleting its j-th row and i-th

column. This matrix satisfies A⊗A♮ ∇ det(A)⊗En, according to Theorem 3.76 of [1]. The ‘inverse’

of a matrix A, denoted by A# since it is not the real inverse in max-algebra sense, could then be defined

as A# ⊗det(A) = A♮, provided that det(A)∇/ ε .

The determinant can be used to characterize linear dependency of columns in a matrix. In the sym-

metrized max-algebra vectors v1,v2, . . . ,vm are said to be linearly dependent if scalars α1,α2, . . . ,αm ∈

S
∨ which are not all equal to ε , exist such that

m
⊕

i=1

αi ⊗ vi ∇ ε . Let A be an n× n matrix. Then its

columns are linearly dependent if and only if det(A)∇ ε . Since det(A) = det(AT ) a similar statement

is valid for the rows of the matrix A.

Within the max-algebra structure, a class of discrete event systems can be described by linear

(in max-algebra sense) equations. Such relations were first described in [3] and [2], see also [1].

Consider for instance a production network which consists of n nodes (machines). Node i can only

become active for the (k + 1)-th time when previous nodes have finished their k-th activity and supplied

node i. Let xi(k) denote the time instant node i becomes active for the k-th time and let ai j denote the

production time of node j and the transportation time from node j to node i. Then we have that

xi(k+1) = max
j
(x j(k)+ai j)

where j ranges over all nodes preceding node i. In max-algebra notation this relation becomes

xi(k+1) =
⊕

j

x j(k)⊗ai j,

or, in matrix-vector form

x(k+1) = A⊗ x(k).

A more general model is the following

x(k+1) = A⊗ x(k)⊕B⊗u(k) (1)

y(k) =C⊗ x(k). (2)
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In this model u(k) denotes the time instants outside resources become available and y(k) denotes the

time instants at which the k-th production cycle is finished. In the following we shall characterize a

model of the form (1)–(2) by the triple (A,B,C) of system matrices.

When we assume that x(0) = x0 then the input/output behavior of the system (1)–(2) is given by

y(k) =C⊗Ak ⊗ x0 ⊕
k−1
⊕

i=0

C⊗Ak−1−i ⊗B⊗u(i). (3)

If we apply a unit impulse, defined by u(k) = ε for k 6= 0 and u(0) = 0, to the system and if we assume

that x0 = ε , then the output of the system becomes y(k) =C⊗Ak−1⊗B for k = 1,2, . . . One could view

the application of the unit impulse to the system as the starting of the process, where it is assumed that

all the resources are immediately available. Define

gk =C⊗Ak−1 ⊗B k = 1,2, . . . (4)

These values are called the Markov parameters and the sequence {gk}
∞
k=1 is the impulse response of

the system. In this paper we will only consider single input, single output (SISO) systems. For multi

input, multi output (MIMO) systems the Markov parameters become matrices.

3 The minimal realization problem

The minimal realization problem can be formulated as follows. Given a sequence of Markov pa-

rameters {gk}
∞
k=1, find matrices A,B,C of appropriate dimensions such that C ⊗Ak−1 ⊗B = gk for

k = 1,2, . . . and such that the dimension of A is as small as possible.

A starting point is the construction of the semi-infinite Hankel matrix H corresponding with a

sequence of Markov parameters {gk}
∞
k=1. This matrix is given by

H =











g1 g2 g3 . . .
g2 g3 g4 . . .
g3 g4 g5 . . .
...

...
...

. . .











.

We will denote by Hα,β the truncated Hankel matrix consisting of the first α rows and the first β

columns of H.

The following theorem is an immediate translation from a similar theorem from conventional

linear system theory (see e.g. [14]).

Theorem 1 Given an impulse response {gk}
∞
k=1 such that for the corresponding Hankel matrix

i-th column ⊕ a1 ⊗ (i−1)-th column ⊕ . . . ⊕ an ⊗ (i−n)-th column ∇ ε , (5)

for i = n+1,n+2, . . . , ai ∈ S and where n is the smallest integer for which this or another dependency

of this form is possible. Then the discrete event system characterized by

A =

















ε 0 ε . . . ε
...

. . .
. . .

. . .
...

...
. . .

. . . ε

ε ε . . . ε 0

⊖an ⊖an−1 . . . . . . ⊖a1

















, B =











g1

g2

...

gn











, C =
(

0 ε . . . ε
)

(6)
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is a minimal realization. In general we will have

C⊗Ai−1 ⊗B ∇ gk, i = 1,2, . . . (7)

Proof : Direct calculation shows that the impulse response of the given system balances the given

impulse response. If there would exist a lower dimensional realization, then there would be a smaller

number of successive columns of the Hankel matrix which would be linear independent. This follows

from the fact that the resulting A-matrix satisfies its own characteristic equation (see [13]). Hence, we

obtain a contradiction with the statement of the theorem. ✷

Remark: Since we will have in general a relation of the form (7) in which we have a balanced relation

instead of (4) in which equality holds, the realization given by (6) will be called a minimal balancing

realization. We will refer to the realization given by (6) as the realization in companion form.

Example 1 Consider the following sequence of Markov parameters

{gk}
∞
k=1 = 3,5,8,9,14,15,20,21,26,27,32,33, . . . (8)

A relation between those parameters which holds for any four consecutive Markov parameters, is

given by

gi+3 ⊖2⊗gi+2 ⊖6⊗gi+1 ⊕8⊗gi ∇ ε , i = 1,2, . . . (9)

There is no relation of the form (5) which holds for any three consecutive parameters. A similar

relation holds for the columns of the corresponding Hankel matrix. According to Theorem 1 a minimal

balancing realization is given by

A =





ε 0 ε

ε ε 0

⊖8 6 2



, B =





3

5
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, C =
(

0 ε ε
)

. (10)

The sequence of Markov parameters generated by this triple is equal to

{g′k}
∞
k=1 = 3,5,8,11•,14,17•,20,23•, . . .

This sequence also satisfies the relation given by (9), but it is not equal to the original sequence

{gk}
∞
k=1. We have that for k = 1,2, . . .

g2k ∇ g′2k,

g2k−1 = g′2k−1.

Note that for k ≥ 3 we have both gk+2 = 6⊗gk and g′k+2 = 6⊗g′k.

The system description in state space form, characterized by the matrices given in (10), can also

be written in the following way

x1(k+1) = x2(k)⊕3⊗u(k)

x2(k+1) = x3(k)⊕5⊗u(k)

x3(k+1)⊕8⊗ x1(k) = 6⊗ x2(k)⊕2⊗ x3(k)⊕8⊗u(k)

y(k) = x1(k).
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In matrix-vector form these relations read

x(k+1)⊕A⊖⊗ x(k) = A⊕⊗ x(k)⊕Bu(k) (11)

where the matrix A from (10) is written as

A = A⊕⊖A⊖.

It is not clear yet how to interpret a system of the form (11). ✷

The use of Theorem 1 seems to be rather limited since the entries of the matrix A in (6) are not

necessarily in Rε . A special case of Theorem 1 is given in [11] and in [12]. It is repeated here as

Theorem 2.

Theorem 2 Suppose that the columns in the Hankel matrix satisfy the following relation

i-th column = c1 ⊗ (i−1)-th column ⊕ . . . ⊕ cn ⊗ (i−n)-th column,

for i = n+ 1,n+ 2, . . . with c j ∈ Rε for j = 1, . . . ,n, and suppose n is the smallest integer for which

this or another dependency of the same form is possible. Then the discrete-event system characterized

by

A =























ε 0 ε . . . ε
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . ε

ε ε . . . . . . ε 0

cn cn−1 . . . . . . . . . c1























, B =











g1

g2

...

gn











, C =
(

0 ε . . . ε
)

is a minimal realization.

So, in this case we have that c j =⊖a j for j = 1, . . . ,n. Note that all the entries of the matrices are

in Rε .

In [12] also the following theorem is proved.

Theorem 3 Given a series {gk}
∞
k=1 such that for the corresponding Hankel matrix any three succes-

sive columns are linearly dependent. Then a realization, represented by the triple (A,B,C), of at most

state dimension 2 exists for which the given series is the impulse response and such that all entries of

the matrices A, B and C are in Rε .

In the work by Cuninghame-Green et al. (see e.g. [5], [15] and [16]) a sufficient condition for the

existence of a minimal realization is derived for a certain behavior of the impulse response. These

results are summarized in [6] as follows.

Theorem 4 A minimal realization exists if the impulse response G = {gk}
∞
k=1 of a SISO DES exhibits

a ‘uniformly up-terrace’ behavior, i.e. if the sequence G consists of M subsequences with lengths

n1,n2, . . . ,nM and increments c1,c2, . . . ,cM respectively such that

gk+1 = gk + ci for i = 1,2, . . . ,M and k = ti, . . . , ti +ni −1,

with nM =+∞, t1 = 0, ti+1 = ti +ni and ci+1 > ci for i = 1,2, . . . ,M−1.
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The results which we mentioned above all deal with specific cases. No general theory exists

yet. In [7] and [6] it is shown that the realization problem can be formulated as an Extended Linear

Complementarity Problem (ELCP). In this reference a lower and upper bound for the system order is

used. The lower bound is equal to the smallest value r such that r consecutive columns of the Hankel

matrix are linearly dependent. Note that the order of the realization given in Theorem 1 is equal to

this lower bound. With the ELCP approach it is also possible to find realizations for MIMO systems,

while the other results which we mentioned in this section all deal with SISO systems. A drawback

of this approach is that up until now no efficient algorithms have been developed which solve the

problem in all cases.

The problem now becomes whether we can derive from (6) a realization of the given impulse

response such that the entries of the resulting matrices are all in Rε . In conventional system theory the

approach would be to look for a state space or similarity transformation which would transform the

realization in companion form to a desired form. Therefore, we will study similarity transformations

in the max-algebraic system theory in the next section and we will try to find a relation between a

triple (A,B,C) given by (6) and a yet unknown triple (A′,B′,C′) such that the entries of the latter triple

are in Rε .

Before we will discuss state space transformations we conclude this section with the following

proposition which we will use in the following section. The proposition provides another similarity

between conventional system theory and the max-algebraic system theory for DES.

Proposition 5 Let the triple (A,B,C) be a minimal balancing realization of order n of a given se-

quence of Markov parameters {gk}
∞
k=1. Define the matrices O and R as follows

O =











C

C⊗A
...

C⊗An−1











and R =
(

B A⊗B . . . An−1 ⊗B
)

. (12)

Then det(O)∇/ ε and det(R)∇/ ε .

Proof : Suppose det(R)∇ ε (When det(O)∇ ε the proof is analogous.) This implies that the columns

of R are linearly dependent. From (12) it follows that the i-th column of R is equal to Ai−1 ⊗ B

(i = 1, . . . ,n). So, there exist scalars αi (i = 1, . . . ,n) not all equal to ε such that

n
⊕

i=1

αi ⊗Ai−1 ⊗B ∇ ε .

If we multiply this relation with C⊗Ak, k = 0,1, . . . , we obtain

n
⊕

i=1

αi ⊗C⊗Ak+i−1 ⊗B ∇ ε , for k = 0,1, . . .

or, from the definition of the Markov parameters (see (4)),

n
⊕

i=1

αi ⊗gk+i ∇ ε , for k = 0,1, . . .

This implies that there is a relation between any n consecutive Markov parameters and according to

Theorem 1 a realization of dimension lower than n would exist. This contradicts the assumption that

the triple (A,B,C) is a minimal balancing realization of order n. ✷
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Remarks:

• Recall that in conventional system theory a minimal realization is both reachable and observable

(see e.g. [14]). For SISO systems this means that the determinant of neither the reachability

matrix nor the observability matrix is equal to zero. A similar statement is made in Proposition

5 for max-algebraic systems. However, there is no interpretation in terms of reachability or

observability of the system yet.

• Proposition 5 is valid for general matrices in Smax. For matrices with entries in Rε this propo-

sition only holds if the minimal balancing realization and a minimal realization for which all

entries of the system matrices are in Rε , are of the same order.

The opposite of Proposition 5 is not necessarily true. Let the triple (A,B,C) be an n-dimensional

realization of a given impulse response which is not minimal and let H be the corresponding Han-

kel matrix. Then according to Proposition 6.3.3 from [6] we have that det(Hn,n)∇ ε . According to

Proposition 2.1.7 from [9] there holds

det(Hn,n) = det(O⊗R) = det(O)⊗det(R)⊕a• with a ∈ Rε (13)

in which O and R are as defined in (12). From (13) it follows that det(Hn,n)∇ ε does not necessarily

imply that either det(O)∇ ε or det(R)∇ ε . To illustrate this consider the system given by the following

matrices

A =

(

−1 1

0 3

)

, B =

(

−3

2

)

, C =
(

3 2
)

. (14)

Then

O =

(

3 2

2 5

)

and R =

(

−3 3

2 5

)

.

We have det(O) = 8 ∇/ ε and det(R) = ⊖5 ∇/ ε . But the system given by (14) is not minimal. The

sequence of Markov parameters {gk}
∞
k=1 associated with (14) is given by

{gk}
∞
k=1 = 4,7,10,13,16,19,22, . . . (15)

From this sequence we conclude that gk+1 = 3⊗ gk for k = 1,2, . . . and det(H2,2) = 14• ∇ ε . Hence,

a one-dimensional realization of (15) exists. An example of a system which has (15) as its Markov

parameters is given by the triple (A′,B′,C′) with A′ = 3, B′ = 2, C′ = 2.

We will encounter the matrices O and R defined in (12) again in the next section in which we will

discuss similarity transformations.

4 Similarity transformations

In this section we will first recall some results on similarity transformations from conventional system

theory. Then we will show that when a certain transformation exists between two realizations, these

realizations exhibit the same behavior. Unfortunately, such a transformation does not always exists

between two minimal realizations of the same impulse response. Therefore, we will look for similarity

transformations under less restrictive constraints. We will show that a transformation between the

realization in companion form and a realization with elements in Rε exists under certain conditions.

It is conjectured that a similar result is valid for more general realizations.
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4.1 Results from conventional system theory

An important question is whether we are able to find state space transformations between two different

realizations of a given impulse response. In conventional system theory, see e.g. [14], the following

results are known:

1. When a similarity transformation is applied to the system, represented by the triple (A1,B1,C1),
then the resulting system (A2,B2,C2) will have the same behavior as the original system.

2. Between any two minimal realizations (A1,B1,C1) and (A2,B2,C2) of a given impulse response

a similarity transformation exists.

If we represent the similarity transformation by an invertible matrix T then the relation between the

two systems is in both cases given by

A1 = TA2T−1, B1 = T B2 and C1 =C2T−1. (16)

In the max-algebra the inverse of a matrix only exists for a small class of matrices, viz. matrices

which can be written as the product of a diagonal matrix and a permutation matrix. Only for such

matrices state space transformations can be defined in a similar way as in the conventional system

theory. Therefore, we will look for a more general formulation of (16) in which we do not need

inverse matrices.

4.2 A similarity transformation in the max-algebra

In [6] two transformations are proposed, the so-called L- and M-transformations, which make it pos-

sible to derive system equivalence for a broader class of triples of system matrices. But in the same

reference it is also shown that such transformations may not exist between two different realizations

of the same impulse response. Here we introduce a different transformation, the T-transformation,

which is more general than the L- and M-transformations.

Proposition 6 Let the triples (A1,B1,C1) and (A2,B2,C2) be such that:

T ⊗A2 = A1 ⊗T,

T ⊗B2 = B1, and

C2 =C1 ⊗T,

for some matrix T . Then both triples are equivalent (i.e. they exhibit the same input/output behavior).

Proof : Let k ∈ N. Then

C2 ⊗Ak
2 ⊗B2 =C1 ⊗T ⊗Ak

2 ⊗B2

=C1 ⊗A1 ⊗T ⊗Ak−1
2 ⊗B2

= · · ·=C1 ⊗Ak
1 ⊗T ⊗B2

=C1 ⊗Ak
1 ⊗B1. ✷

In the same way it is shown that two triples (A1,B1,C1) and (A2,B2,C2) are equivalent when a matrix

S exists such that S⊗A1 = A2 ⊗ S, S⊗B1 = B2 and C1 = C2 ⊗ S. The matrices S and T do not have

to be square. It is easily shown that these transformations, which will be called the T-transformation

respectively the S-transformation, include the M-transformation respectively the L-transformation.

But unfortunately, also these transformations may not exist between two different realizations of the

same impulse response. This will be demonstrated in the following example.
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Example 2 Consider the triple (A1,B1,C1) given by

A1 =

(

6 9

0 5

)

, B1 =

(

0

−4

)

, C1 =
(

9 15
)

, (17)

and the triple (A2,B2,C2) given by

A2 =

(

6 10

−1 5

)

, B2 =

(

0

−4

)

, C2 =
(

9 15
)

. (18)

Both triples are minimal realizations of the following sequence of Markov parameters

{gk}
∞
k=1 = 11,16,21,27,33,39,45,51,57, . . . , (19)

see Example 6.4.1 in [6]. Between the triples (A1,B1,C1) and (A2,B2,C2) a state space transformation

T exists such that T ⊗A2 = A1 ⊗T , T ⊗B2 = B1 and C2 =C1 ⊗T . The matrix T given by

T =

(

0 4

−6 0

)

(20)

satisfies these relations. It can be shown that no matrix S ∈ R
2×2
ε exists such that S⊗A1 = A2 ⊗ S,

S⊗B1 = B2 and C1 =C2 ⊗S.

In [6] also the following triple is computed as a minimal realization of the sequence given by (19),

A5 =

(

6 10

0 5

)

, B5 =

(

0

−4

)

, C5 =
(

8 15
)

. (21)

When we try to solve the equations T ⊗A5 = A1 ⊗T , T ⊗B5 = B1 and C5 =C1 ⊗T with the entries

of the matrix T as the unknowns, it turns out that no solution can be found. Hence, there does not

exist a T-transformation between the triples (A1,B1,C1) and (A5,B5,C5). In a similar way it can be

shown that no S-transformation exists between those triples. In [6] it was already shown that no M-

or L-transformation exists between these two realizations. ✷

From the previous examples we conclude that it is not always possible to find a state space trans-

formation in the max-algebra. Therefore, we will extend our search for state space transformations

between different realizations of a given impulse to the symmetrized max-algebra in the following

sections.

4.3 Transforming the companion form

From conventional system theory it is known (see [14, Theorem 20]) that between two minimal re-

alizations (A1,B1,C1) and (A2,B2,C2) of an impulse response a unique state space transformation

exists, represented by a matrix T , where T is given by (for SISO systems) T = (O1)
−1O2 = R1(R2)

−1

in which Oi and Ri (i = 1,2) are the observability respectively the controllability matrices of the given

systems. In the following we will show that similar results are valid, under certain conditions, for

systems in the max-algebra. A drawback however is that we obtain balances instead of the equalities

as in Proposition 6.

11



Proposition 7 Let the triple (A′,B′,C′) be an n-dimensional realization of a sequence of Markov

parameters {gk}
∞
k=1 such that all entries of the matrices are in Rε . Let (A,B,C) be the n-dimensional

minimal balancing realization of the same sequence according to Theorem 1 and such that the matrix

A′ satisfies the characteristic equation of A. Then a state space transformation matrix T such that

T ⊗A′ ∇ A⊗T , T ⊗B′ ∇ B and C′ ∇C⊗T is given by

T =











C′

C′⊗A′

...

C′⊗ (A′)n−1











. (22)

Proof : Some easy computations show that

T ⊗A′ =











C′⊗A′

C′⊗ (A′)2

...

C′⊗ (A′)n











,

while

A⊗T =











C′⊗A′

C′⊗ (A′)2

...

⊖a1 ⊗C′⊗ (A′)n−1 ⊖·· ·⊖an−1 ⊗C′⊗A′⊖an ⊗C′











.

The characteristic equation of A is equal to λ n⊕a1⊗λ n−1⊕·· ·⊕an ∇ ε . Since we have assumed that

A′ satisfies the characteristic equation of A, it follows immediately that T ⊗A′ ∇ A⊗T .

Furthermore, we have

T ⊗B′ =











C′⊗B′

C′⊗A′⊗B′

...

C′⊗ (A′)n−1 ⊗B′











=











g1

g2

...

gn











= B,

since both triples are realizations of the same sequence of Markov parameters. Finally

C⊗T =
(

0 ε . . . ε
)

⊗











C′

C′⊗A′

...

C′⊗ (A′)n−1











=C′,

which concludes the proof. ✷

Remarks:

• Note that we even proved that T ⊗B′ = B and C⊗T =C′, i.e. here we have an equality instead

of a balance relation. The equalities follow immediately from the fact that all the entries of

the matrices involved are in Rε . For the relation between A and A′ it will in general not be

possible to obtain equality instead of a balance relation, since the matrix A⊗ T may contain

signed entries.
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• One could try to use the result of Proposition 7 as the starting point of a construction of a

minimal realization. But it seems that the resulting problem which has to be solved is just the

minimal realization problem.

• The matrix A′ does not necessarily need to have the same characteristic equation as A. In the

proof we only used that A′ satisfied the characteristic equation of A, see also Example 6 in

Section 4.4.

A question is whether we can transform the minimal balancing realization obtained in Theorem

1, with entries which are not necessarily in Rε , to a triple for which the entries are in Rε and such

that the dimension of both systems are equal. In [12] it was shown that when the minimal balancing

realization is two-dimensional, always a two-dimensional realization can be found of which all the

entries of the system matrices are in Rε , see also Theorem 3. For higher dimensional systems this will

not always be the case as is shown in the following example.

Example 3 Consider the following sequence of Markov parameters

{gk}
∞
k=1 = 14,20,30,33,44,47,58,61,72,75,86,89, . . .

A relation between the Markov parameters is the following

gi+3 ⊕4⊗gi+2 ⊖14⊗gi+1 ⊖18⊗gi ∇ ε ,

for i = 1,2,3, . . . According to Theorem 1 a minimal balancing realization is given by

A =





ε 0 ε

ε ε 0

18 14 ⊖4



, B =





14

20

30



, C =
(

0 ε ε
)

.

For this realization we have

{C⊗Ak−1 ⊗B}∞
k=1 = 14,20,30,34•,44,48•,58,62•,72,76•, . . . ∇{gk}

∞
k=1.

It turns out, for instance with the ELCP approach from [6], that no realization of dimension 3 of

the sequence {gk}
∞
k=1 exists with all its entries in Rε . A minimal realization in Rε is given by the

following 4-dimensional system

A′ =









−3 2 −6 −1

−2 −3 4 9

10 1 −6 1

−1 5 −4 −1









, B′ =









0

8

−4

−4









, C′ =
(

−2 −2 10 −5
)

.

The reason why it is not possible to transform the three-dimensional triple (A,B,C) to a three-

dimensional triple with entries in Rε could be the following. The characteristic polynomial of the

matrix A does not satisfy the necessary and sufficient conditions given by [6, Proposition 5.3.3], for

being the characteristic polynomial of a 3×3 matrix with entries in Rε . To conclude this example we

note that det(R′) = 65• ∇ ε and so according to Proposition 5 the system (A′,B′,C′) is not minimal in

Smax. ✷
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4.4 A balancing similarity transformation

Next, we will give a proposition in which we describe a possible similarity transformation between

two minimal realizations of a given impulse response. For a part of this proposition we do not have

a proof yet and the result is only conjectured. We will illustrate this conjecture with some small

examples.

Conjecture 8 Let the triples (A1,B1,C1) and (A2,B2,C2) be two minimal realizations of the same

sequence of Markov parameters and let (A,B,C) be a minimal balancing realization of the same

sequence. If the matrices A1 and A2 are of the same order as A and satisfy the characteristic equation

of A, then a state space transformation matrix T exists such that T ⊗B2 ∇ B1 and C2 ∇C1 ⊗T . Under

certain conditions (to be derived in the proof) T also satisfies T ⊗A2 ∇ A1 ⊗T . One matrix T is given

by T = To = O#
1 ⊗O2 with

Oi =











Ci

Ci ⊗Ai

...

Ci ⊗An−1
i











, i = 1,2, (23)

and where the matrix O#
1 is as defined in Section 2. Another transformation matrix is given by T =

Tr = R1 ⊗ (R2)
# with

Ri =
(

Bi Ai ⊗Bi . . . An
i ⊗Bi

)

, i = 1,2.

Proof : We first note that, since the triples are minimal realizations, according to Proposition 5

det(O1)∇/ ε and det(R2)∇/ ε and hence the matrices (O1)
# and (R2)

# exist.

Since both triples are realizations of the same sequence of Markov parameters it follows immedi-

ately that O1 ⊗B1 = O2 ⊗B2 and hence (O1)
# ⊗O1 ⊗B1 = (O1)

# ⊗O2 ⊗B2. Since (O1)
# ⊗O1 ∇ E,

we conclude that B1 ∇ To ⊗B2. In a similar way it can be shown that C2 ∇C1 ⊗Tr.

Let (A,B,C) be the realization of the same Markov parameters according to Theorem 1. In the

proof of Proposition 7, we concluded that C1 =C⊗O1 and C2 =C⊗O2. If we multiply both sides of

the former equality with (O1)
# ⊗O2 we obtain

C1 ⊗ (O1)
# ⊗O2 =C⊗O1 ⊗ (O1)

# ⊗O2

∇C⊗O2

=C2.

In an analogous way it can be shown that B1 ∇ Tr ⊗B2.

The relations T ⊗A2 ∇ A1 ⊗ T with T = To respectively T = Tr remain to be shown. A major

problem in this case is the fact that the balance relation is not necessarily transitive. In the following

we derive which conditions should be satisfied.

If we assume that both A1 and A2 satisfy the characteristic equation of A, then we know from

Proposition 7 (with T = O1 respectively T = O2) that the following relations hold

O1 ⊗A1 ∇ A⊗O1 (24)

O2 ⊗A2 ∇ A⊗O2. (25)

If we multiply both sides of (24) with (O1)
# we obtain

O1 ⊗A1 ⊗ (O1)
# ∇ A⊗O1 ⊗ (O1)

#. (26)
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Since O1 ⊗ (O1)
# ∇ E we have that the right-hand side of (26) balances A. The first question now is

whether also the left-hand side of (26) balances A, so whether

O1 ⊗A1 ⊗ (O1)
# ∇ A. (27)

If (27) is true, then also, after right-multiplication with O2,

O1 ⊗A1 ⊗ (O1)
# ⊗O2 ∇ A⊗O2. (28)

The second question now becomes, from (28) and (25), whether

O1 ⊗A1 ⊗ (O1)
# ⊗O2 ∇ O2 ⊗A2. (29)

If (29) holds, then we also have, after multiplication from the left with (O1)
#, that

(O1)
# ⊗O1 ⊗A1 ⊗ (O1)

# ⊗O2 ∇ (O1)
# ⊗O2 ⊗A2. (30)

The left-hand side of (30) balances A1 ⊗ (O1)
# ⊗O2 and hence the third and final question becomes

whether we can conclude that the following holds

A1 ⊗ (O1)
# ⊗O2 ∇ (O1)

# ⊗O2 ⊗A2. (31)

If (31) holds then the matrix To defined by To = (O1)
# ⊗O2 satisfies A1 ⊗To ∇ To ⊗A2. The problem

is that it is not clear under which conditions we can answer the questions posed, represented by the

relations (27), (29) and (31), positively. Similar conditions as (27), (29) and (31) can be derived for

the relation Tr ⊗A2 ∇ A1 ⊗Tr to hold. ✷

Remarks:

• Note that we have for the triple (A,B,C) given by (6) in Theorem 1 that

O =











C

C⊗A
...

C⊗An−1











= En.

So the transformation in Proposition 7 can be seen as a special case of the transformation sug-

gested in Conjecture 8.

• A different question is the following. Consider the triples (A1,B1,C1) and (A2,B2,C2) and

suppose that a matrix T can be found such that T ⊗A2 ∇ A1 ⊗T , T ⊗B2 ∇ B1 and C2 ∇C1 ⊗T .

Are both systems equivalent? This question seems hard to prove because the balance relation is

not transitive. Therefore, we cannot proceed as in the proof of Proposition 6.

In the following examples we will illustrate the given results.

Example 4 Consider the realizations given in Example 2 by (17) and (21). It is shown in [6] that no

M- or L-transformation exists between the two realizations. Also no S- or T-transformation exists, see

Example 2. But there does exist a transformation matrix To, viz.

To =

(

0 5⊖5

⊖(−6) 0

)

, (32)
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such that

To ⊗A5 ∇ A1 ⊗To, B1 ∇ To ⊗B5 and C5 ∇C1 ⊗To. (33)

When we use Theorem 1 we find the following realization

A =

(

ε 0

⊖11 6

)

, B =

(

11

16

)

, C =
(

0 ε
)

. (34)

Between this realization and the realization given by (17) respectively (21) there exist transformation

matrices T i (i = 1,5) such that

T i ⊗Ai ∇ A⊗T i, T i ⊗Bi ∇ B and Ci ∇C⊗T i, i = 1,5.

The following matrices satisfy these relations.

T 1 =

(

9 15

15 20

)

respectively T 5 =

(

8 15

15 20

)

,

between the triples (A,B,C) and (A1,B1,C1) respectively between the triples (A,B,C) and (A5,B5,C5).
Note that indeed for the matrices T 1 and T 5 we have

T i =

(

Ci

Ci ⊗Ai

)

i = 1,5.

If we compute the matrix (T 1)#, see Section 2 for the definition, we obtain

(T 1)# =

(

⊖(−10) −15

−15 ⊖(−21)

)

and hence

(T 1)# ⊗T 5 =

(

0 5•

⊖(−6) 0

)

= To

which supports Conjecture 8.

Another transformation matrix between the triples (A1,B1,C1) and (A5,B5,C5) is given by the

following matrix Tr

Tr =

(

0 4•

−5• 0

)

.

Note that Tr ∇ To. The matrix Tr is equal to R1 ⊗R#
5 where R1 and R5 are given by

Ri =
(

Bi Ai ⊗Bi

)

,

for i = 1,5.

In a similar way we can derive a transformation matrices To and Tr between the triple (A1,B1,C1)
and the triple (A2,B2,C2) given by (18). These transformation matrices turn out to be

To =

(

0 5•

−6• 0

)

and Tr =

(

0 4•

−5• 0

)

.

Note that To ∇ Tr. With these matrices we have the following relations To ⊗A2 ∇ A1 ⊗To, To ⊗B2 ∇ B1

and C2 ∇C1 ⊗To for To and similar relations with Tr. Note that in Example 2 we found a matrix T

such that we had equalities in these relations. The matrix T from Example 2, which is given by (20),

satisfies both T ∇ To and T ∇ Tr. ✷
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Based on the last remarks in Example 4 we have the following conjecture.

Conjecture 9 Let T be a transformation matrix between the triples (A1,B1,C1) and (A2,B2,C2) such

that T ⊗A2 ∇ A1 ⊗T , T ⊗B2 ∇ B1 and C2 ∇C1 ⊗T . If T ′ is another matrix such that these relations

hold, then T ′ ∇ T .

Remark: The matrix To given in (32) can be written as

To = Tp ⊖Tn

with

Tp =

(

0 5

ε 0

)

and Tn =

(

ε 5

−6 ε

)

.

With these matrices the balanced relations given by (33) can be transformed to the following equalities

Tp ⊗A5 ⊕A1 ⊗Tn = A1 ⊗Tp ⊕Tn ⊗A5,

B1 ⊕Tn ⊗B5 = Tp ⊗B5,

C5 ⊕C1 ⊗Tn =C1 ⊗Tp, (35)

since all entries of the matrices involved are in Rε . So, we could say that two triples (A1,B1,C1) and

(A5,B5,C5) with entries in Rε are equivalent if matrices Tp and Tn with entries in Rε can be found

such that (35) holds. It is, however, not clear yet how we can prove, using the relations given by (35),

that the triples (A1,B1,C1) and (A5,B5,C5) yield the same Markov parameters.

The following example is a continuation of Example 1.

Example 5 In Example 1 it was shown that a balancing realization of the following sequence of

Markov parameters

{gk}
∞
k=1 = 3,5,8,9,14,15,20,21,26,27,32,33, . . .

was given by

A =





ε 0 ε

ε ε 0

⊖8 6 2



, B =





3

5

8



, C =
(

0 ε ε
)

. (36)

A problem with this realization is that not all entries of A are in Rε .

A realization of the sequence {gk}
∞
k=1 which does have all its entries in Rε is given in [6] by the

triple

A1 =





2 ε ε

ε 1 3

0 3 ε



, B1 =





1

ε

0



, C1 =
(

2 ε 2
)

. (37)

According to Proposition 7 a similarity transformation exists between the triples (A,B,C) and (A1,B1,C1).
It is given by

T =





C1

C1 ⊗A1

C1 ⊗A2
1



=





2 ε 2

4 5 ε

6 6 8



 .
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With this matrix T we have

T ⊗A1 =





4 5 ε

6 6 8

8 11 9



 while A⊗T =





4 5 ε

6 6 8

10• 11 10•





and hence T ⊗A1 ∇ A⊗T . Since the matrix A⊗T contains signed entries we do not have equality in

this relation. Furthermore, we have

T ⊗B1 =





3

5

8



= B and C⊗T =
(

2 ε 2
)

=C1.

Another triple which realizes the Markov parameters of (8) and of which all entries are in Rε is

given by

A2 =





2 1 0

1 1 3

0 3 1



, B2 =





0

−3

−1



, C2 =
(

3 1 3
)

. (38)

There exists a transformation matrix To between the triple (A1,B1,C1) given by (37) and the triple

(A2,B2,C2) given by (38) such that To ⊗A2 ∇ A1 ⊗To, To ⊗B2 ∇ B1 and C2 ∇C1 ⊗To. This matrix is

given by

To =





1 −1• 1•

0• 1 0•

−1• −1• 1



 ,

As in Example 4 the matrix To is equal to O#
1 ⊗O2 with Oi =





Ci

Ci⊗Ai

Ci ⊗A2
i



, for i = 1,2.

The matrix To represents the following relation between the state variables associated with the

systems given by (37) and (38). Let x1(k) and x2(k) denote the state variable corresponding to (37)

respectively (38). Then we have

x1(k)∇ To ⊗ x2(k). (39)

It turns out that when we compute the impulse response of the systems given by (37) and (38) the

corresponding state variables x1(k) and x2(k) indeed satisfy (39) for all k = 1,2, . . . Furthermore it is

easily shown that x1(k) = T ⊗ x(k), where x(k) denotes the state variable corresponding to (36).

Another transformation matrix between the systems given by (37) and (38) is given by

Tr =





1 1• 0

−2• 1 −1•

0• 0• 1



 ,

which is equal to R1 ⊗R#
2 with Ri =

(

Bi Ai ⊗Bi A2
i ⊗Bi

)

, for i = 1,2. Also in this example we

have that To ∇ Tr. ✷

It is not completely clear under which conditions Conjecture 8 is valid. We will now present an

example for which it does not hold true.
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Example 6 Consider the systems

A1 =





5 −1 0

3 −3 5

−3 −3 −4



, B1 =





−1

0

0



, C1 =
(

−3 0 2
)

and

A2 =





ε ε 5

−3 ε 0

0 ε 5



, B2 =





0

−5

−5



, C2 =
(

2 7 2
)

.

Both systems are minimal realizations of the sequence

{gk}
∞
k=1 = 2,5,7,12,17,22,27,32,37,42, . . .

If we compute a transformation matrix To as in Conjecture 8 we obtain

To =





−1 ⊖1 4

2• 7 4•

0 ⊖1 2•



 ,

and we have

To ⊗A2 =





4 ε 9

5 ε 9•

2• ε 7•



 while A1 ⊗To =





4 6• 9

5 ⊖6 7•

1• 4 1•



 .

So, in this case To ⊗ A2 ∇/ A1 ⊗ To. A reason could be that between any four consecutive Markov

parameters several relations are possible. In fact, the given sequence of Markov parameters satisfies

any relation of the form

gi+3 ⊖5⊗gi+2 ⊕a⊗gi+1 ⊕b⊗gi ∇ ε , i = 1,2, . . . ,

where a,b ∈ S with a ⊕ 7 = 7 and b ⊕ 10 = 10. Therefore, it is possible that triples (A1,B1,C1)
and (A2,B2,C2) of which A1 and A2 have different characteristic polynomials, as is the case in this

example, both satisfy Ci⊗Ak−1
i ⊗Bi = gk for i= 1,2 and k= 1,2, . . . . Note that we do have T ⊗B2 ∇ B1

and C2 ∇C1 ⊗T .

One of the relations between the Markov parameters is the following

gi+3 ⊖5⊗gi+2 ⊖2⊗gi+1 ⊕7• ∇ ε i = 1,2, . . .

A minimal realization according to Theorem 1 is given by

A =





ε 0 ε

ε ε 0

7• 2 5



, B =





2

5

7



, C =
(

0 ε ε
)

.

Note that, since we have that C⊗Ai−1⊗B= gi for all i, this realization is not only a minimal balancing

realization. Both A1 and A2 satisfy the characteristic equation of A, although their respective charac-

teristic polynomials are different. Let Ti (i = 1,2) be given by (23). Then we have that Ti⊗Ai ∇ A⊗Ti,

B = Ti ⊗Bi and Ci = C ⊗ Ti (i = 1,2). From these relations we easily derive (see also the proof of

Conjecture 8) that B1 ∇ To ⊗ B2 and C2 ∇C1 ⊗ T where To = (T1)
# ⊗ T2. We already showed that

To ⊗A2 ∇/ A1 ⊗To. For the matrices in this example the relations (27) and (29) are true, but relation

(31) does not hold. ✷
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5 Concluding remarks

In this paper we have summarized some results on the minimal realization problem in the max-

algebraic system theory for discrete event systems. We also tried to find similarity transformations

between different realizations of a given impulse response. In certain cases the existence of a similar-

ity transformation could be proved. The transformations that we found resemble the transformations

which exist between two equivalent minimal realizations in the conventional system theory. We have

not proved a general result yet. The intransitivity of the balance relation is the major obstacle. It is

not obvious how to solve this problem, since the intransitivity of the balance relation seems to follow

immediately from its definition.
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