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Abstract

We consider a traffic light controlled intersection. First we

construct a model that describes the evolution of the queue

lengths (as continuous variables) in each lane. Next, we

discuss how optimal and suboptimal traffic light switching

schemes (with possibly variable cycle lengths) for this sys-

tem can be determined. We also show that for a special

class of objective functions suboptimal traffic light switch-

ing schemes can be computed very efficiently.

1 Introduction

As the number of vehicles and the need for transportation

grow, cities around the world face serious road traffic con-

gestion problems. On the short term the most effective mea-

sures in the battle against traffic congestion seem to be a

selective construction of new roads and a better control of

traffic through traffic management. Traffic light control can

be used to augment the flow of traffic in urban environments

by providing a smooth circulation of the traffic or by using

“green waves”, or to regulate the access to highways or main

roads (ramp metering).

In this paper we study the optimal traffic light control prob-

lem for an intersection of two two-way streets1. We de-

rive an approximate model that describes the evolution of

the queue lengths as a continuous function of time. Start-

ing from this model we can then compute the traffic light

switching scheme that minimizes a criterion such as aver-

age queue length, worst case queue length, average wait-

ing time, . . . , thereby augmenting the flow of traffic and di-

minishing the effects of traffic congestion. We show that

for a special class of objective functions an optimal traf-

fic light switching scheme can be computed very efficiently.

The main difference of the approach presented in this paper

and most other existing methods is that we allow the green-

amber-red cycle time to vary from one cycle to another. Fur-

thermore, we use an optimization over a fixed number of

switch-overs instead of an optimization over a fixed number

of time steps.

1Our derivation can easily be extended to an intersection of more than

two streets and streets with more than two lanes.
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Figure 1: A traffic light controlled intersection of two two-way

streets.

Table 1: The traffic light switching scheme.

Period T1, T3 T2, T4

t0 – t1−δa red green

t1−δa – t1 red amber

t1 – t2−δa green red

t2−δa – t2 amber red

t2 – t3−δa red green

t3−δa – t3 red amber

...
...

...

2 The set-up and the model of the system

We consider an intersection of two two-way streets (see Fig-

ure 1). There are four lanes L1, L2, L3 and L4, and on each

corner of the intersection there is a traffic light (T1, T2, T3

and T4). For each traffic light there are three subsequent

phases: green, amber, and red2. We assume that the dura-

tion of the amber phase is fixed and equal to δa.

Let t0, t1, t2, . . . be the main switching time instants, i.e., the

time instants at which the traffic lights switch from one main

phase to another (see Table 1). Define δk = tk+1 − tk. Let

2This is an extension of the work we reported in [2] where we only

considered two phases: green and red.



li(t) be the queue length (i.e., the number of cars waiting)

in lane Li at time instant t. In reality li(t) will be an integer

valued function and the arrival and departure rates will vary

as a function of time. As a consequence, the exact model

for the evolution of the queue lengths is not very amenable

to mathematical analysis. Therefore, we introduce some as-

sumptions that will result in a much simpler (approximate)

model that can be analyzed very easily and for which we can

efficiently compute optimal traffic light switching schemes

(see Section 3).

We make the following assumptions:

• the queue lengths are continuous variables,

• in each main phase the average arrival and departure

rates of the cars are constant3,

• for each lane the average departure rate during a green

phase is greater than or equal to the average departure

rate during the subsequent amber phase.

The first two assumptions deserve a few remarks:

• Designing optimal traffic light switching schemes is

only useful if the arrival and departure rates of ve-

hicles at the intersection are high. In that case, ap-

proximating the queue lengths by continuous vari-

ables only introduces small errors. Furthermore, there

is also some uncertainty and variation in time of the

arrival and departure rates, which makes that in gen-

eral computing the exact optimal traffic light switch-

ing scheme is utopian. Moreover, in practice we are

more interested in quickly obtaining a good approx-

imation of the optimal traffic light switching scheme

than in spending a large amount of time to obtain the

exact optimal traffic light switching scheme.

• If we keep in mind that one of the main purposes of

the model that we shall derive, is the design of optimal

traffic light switching schemes, then assuming that

the average arrival and departure rates are constant in

each phase is not a serious restriction since we can

approximate time-varying arrival and departure rates

by piecewise constant functions4. Moreover, we can

also use a moving horizon strategy: we compute the

optimal traffic light switching scheme for, say, 10 cy-

cles, based on a prediction of the average arrival and

departure rates (using historical data and data mea-

sured during the previous cycles) and we apply this

scheme during the first of the 10 cycles, meanwhile

we update our estimates of the arrival and departure

3This is an extension of the work reported in [3] where we required

the average arrival and departure rates to be constant whereas in this paper

these rates may vary from phase to phase.
4In order to determine the average rates for each green-amber or red

phase, we could first assume that all main phases have equal length. Then

we compute the optimal scheme and use the result to get better estimates of

the average rates for the main phases, which can then be used as the input

for another optimization run. If necessary we could repeat this process a

few times.

rates and compute a new optimal scheme for the next

10 cycles, and so on.

Let λ̄
(k)
i be the average arrival rate of vehicles in lane Li in

time interval (tk, tk+1). Let µ̄
(k)
i (respectively κ̄

(k)
i ) be the av-

erage departure rate in lane Li in time interval (tk, tk+1) when

the traffic light is green (respectively amber) and the queue

length is larger than 0 (i.e., when there are cars waiting or

arriving at lane Li).

Let us now write down the equations that describe the rela-

tion between the queue lengths at the main switching time

instants. Consider lane L1. When the traffic light T1 is red,

there are arrivals at lane L1 and no departures. Hence,

dl1(t)

dt
= λ̄

(2k)
1

for t ∈ (t2k, t2k+1) and

l1(t2k+1) = l1(t2k)+ λ̄
(2k)
1 δ2k .

In the time interval (t2k+1, t2k+2) the traffic light T1 is green

and there are arrivals and departures at lane L1. Since the net

queue growth rate is λ̄
(2k+1)
1 − µ̄

(2k+1)
1 and since the queue

length cannot be negative, we have

dl1(t)

dt
=

{

λ̄
(2k+1)
1 − µ̄

(2k+1)
1 if l1(t)> 0

0 if l1(t) = 0

for t ∈ (t2k+1, t2k+2−δa). We can write down a similar ex-

pression for the amber phase (t2k+2−δa, t2k+2). So

l1(t2k+2 −δa) = max
(

l1(t2k+1)+

(λ̄
(2k+1)
1 − µ̄

(2k+1)
1 )(δ2k+1 −δa), 0

)

l1(t2k+2) = max
(

l1(t2k+2 −δa)+

(λ̄
(2k+1)
1 − κ̄

(2k+1)
1 )δa, 0

)

= max
(

l1(t2k+1)+(λ̄
(2k+1)
1 − µ̄

(2k+1)
1 )

δ2k+1 +(µ̄
(2k+1)
1 − κ̄

(2k+1)
1 )δa,

(λ̄
(2k+1)
1 − κ̄

(2k+1)
1 )δa, 0

)

.

Note that we also have

l1(t2k+1) = max
(

l1(t2k)+ λ̄
(2k)
1 δ2k, 0

)

since l1(t)≥ 0 for all t.

We can write down similar equations for l2(tk), l3(tk) and

l4(tk). So if we define

xk =
[

l1(tk) l2(tk) l3(tk) l4(tk)
]T

,

we obtain

x2k+1 = max
(

x2k +b
(2k)
1 δ2k +b

(2k)
2 ,b

(2k)
3

)

(1)

x2k+2 = max
(

x2k+1 +b
(2k+1)
1 δ2k+1 +b

(2k+1)
2 ,b

(2k+1)
3

)

(2)



for k = 0,1,2, . . . and for appropriately defined vectors b
(k)
1 ,

b
(k)
2 and b

(k)
3 .

3 Optimal traffic light control

3.1 Problem statement

From now on we assume that the average arrival and depar-

ture rates in each main phase are known. For a given integer

N we want to compute an optimal sequence t0, t1, . . . , tN of

switching time instants that minimizes a criterion such as:

• (weighted) average queue length over all queues:

J1 =
4

∑
i=1

wi

tN − t0

∫ tN

t0

li(t)dt , (3)

• (weighted) average queue length over the worst

queue:

J2 = max
i

(

wi

tN − t0

∫ tN

t0

li(t)dt

)

, (4)

• (weighted) worst case queue length:

J3 = max
i, t

(

wi li(t)
)

, (5)

• (weighted) average waiting time over all queues:

J4 =
4

∑
i=1

wi

tN − t0

(

N−1

∑
k=0

∫ tk+1

tk

li(t)

λ̄
(k)
i

dt

)

, (6)

• (weighted) average waiting time over the worst

queue:

J5 = max
i

(

wi

tN − t0

N−1

∑
k=0

∫ tk+1

tk

li(t)

λ̄
(k)
i

dt

)

, (7)

where wi > 0 for all i.

We can impose some extra conditions such as minimum and

maximum durations for the green times, maximum queue

lengths, and so on. This leads to the following problem:

minimize J (8)

subject to

δ
(2k+1)
min,g,1 ≤ δ2k+1 −δa ≤ δ

(2k+1)
max,g,1 for k ∈ βN (9)

δ
(2k)
min,g,2 ≤ δ2k −δa ≤ δ

(2k)
max,g,2 for k ∈ αN (10)

xk ≤ x
(k)
max for k ∈ γN (11)

x2k+1 = max
(

x2k +b
(2k)
1 δ2k +b

(2k)
2 ,b

(2k)
3

)

for k ∈ αN (12)

x2k+2 = max
(

x2k+1 +b
(2k+1)
1 δ2k+1+

b
(2k+1)
2 ,b

(2k+1)
3

)

for k ∈ βN (13)

where δ
(k)
min,g,i and δ

(k)
max,g,i are the minimum and maximum

green time in lane Li in (tk, tk+1), (x
(k)
max)i is the maximum

queue length in Li in (tk, tk+1), αN =
{

0,1, . . . ,
⌊

N−1
2

⌋}

,

βN =
{

0,1, . . . ,
⌊

N
2

⌋

−1
}

and γN = {1,2, . . . ,N}.

Now we discuss some methods to solve problem (8) – (13).

Consider (12) for an arbitrary index k. It is easy to verify [3]

that this equation is equivalent to:

x2k+1 −x2k −b
(2k)
1 δ2k −b

(2k)
2 ≥ 0 (14)

x2k+1 −b
(2k)
3 ≥ 0 (15)

4

∑
i=1

(x2k+1 −x2k −b
(2k)
1 δ2k −b

(2k)
2 )i ·

(x2k+1 −b
(2k)
3 )i = 0 . (16)

We can repeat this reasoning for (13) and for each k. So if

we define

x∗ =











x1

x2

...

xN











and δ ∗ =











δ0

δ1

...

δN−1











,

we finally get a problem of the following form:

minimize J (17)

subject to

Ax∗+Bδ ∗+ c ≥ 0 (18)

x∗+d ≥ 0 (19)

Ex∗+Fδ ∗+g ≥ 0 (20)

(Ax∗+Bδ ∗+ c)T (x∗+d) = 0 . (21)

The system (18) – (21) is a special case of an Extended Lin-

ear Complementarity Problem (ELCP) [1]. In [1] we have

developed an algorithm to compute a parametric description

of the complete solution set of an ELCP. Once this paramet-

ric description is obtained, we can compute for which com-

bination of the parameters the objective function J reaches

a global minimum. However, since the general ELCP is

an NP-hard problem [1], the ELCP based approach is not

feasible if the number of switching cycles N is large. If N

is large, we could consider a small number Ns of switch-

ing cycles, compute the optimal switching strategy with the

method given above, implement the first step(s) of this strat-

egy, and recompute the optimal switching strategy for the

next Ns switching cycles. This approach is called the multi-

ELCP approach. Note that although this is feasible in prac-

tice, it will only give a suboptimal solution.

We can also consider problem (8) – (13) as a constrained op-

timization problem in δ ∗ where the constraints (11) – (13)

are considered as nonlinear constraints; alternatively these
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Figure 2: The functions li (full line) and l̃i (dashed line). During the red phase the functions li and l̃i coincide. The left plot shows a

situation in which the queue length does not become 0 during the green phase, whereas the right plot shows a situation where

the queue length becomes 0 during the green phase.

constraints can also be taken into account by adding an ex-

tra penalty term for values of xk that exceed x
(k)
max to the

objective function. The major disadvantage of these two

approaches is that in general the minimization routine will

only return a local minimum. Our computational experi-

ments have shown that several initial starting points are nec-

essary to obtain the global minimum.

3.2 The relaxed problem and suboptimal solutions

Now we make another approximation that will result in sub-

optimal traffic light switching schemes that can be com-

puted very efficiently and that approximate the exact opti-

mum very well.

For given x0 and t0, we define the function l̃i(·,x
∗,δ ∗) as

the piecewise-linear function that interpolates in the points

(tk, li(tk)) for k = 0,1, . . . ,N. The approximate objective

functions J̃l are defined as in (3) – (7) but with li replaced

by l̃i. It is easy to verify that the values of J3 and J̃3 coin-

cide. Now let l ∈ {1,2,4,5}. The value of Jl and J̃l is de-

termined by the surface under the functions li and l̃i respec-

tively. If the duration of the amber phase is zero and if the

queue lengths never become zero, then the functions li and

l̃i and the values of Jl and J̃l coincide (cf. Figure 2). In prac-

tice, the length of the amber phase will be small compared

to the length of the green or red phases. Furthermore, an

optimal traffic light switching scheme implies the absence

of long periods in which no cars wait in one lane while in

the other lanes the queue lengths increase. So if we have an

optimal traffic light switching scheme, then the periods dur-

ing which the queue length in some lane is equal to 0 are in

general short. As a consequence, for traffic light switching

schemes in the neighborhood of the optimal scheme J̃l will

be a good approximation of Jl .

Let P be the problem (8) – (13). We define the “relaxed”

problem P̃ corresponding to the original problem P as:

minimize J (22)

subject to

δ
(2k+1)
min,g,1 ≤ δ2k+1 −δa ≤ δ

(2k+1)
max,g,1 for k ∈ βN (23)

δ
(2k)
min,g,2 ≤ δ2k −δa ≤ δ

(2k)
max,g,2 for k ∈ αN (24)

xk ≤ x
(k)
max for k ∈ γN (25)

x2k+1 ≥ x2k +b
(2k)
1 δ2k +b

(2k)
2 for k ∈ αN (26)

x2k+1 ≥ b
(2k)
3 for k ∈ αN (27)

x2k+2 ≥ x2k+1 +b
(2k+1)
1 δ2k+1 +b

(2k+1)
2 for k ∈ βN (28)

x2k+2 ≥ b
(2k+1)
3 for k ∈ βN . (29)

Note that compared to the original problem we have re-

placed (12) – (13) by relaxed equations of the form (14) –

(15) without taking (16) into account. In general it is easier

to solve P̃ since the set of feasible solutions of P̃ is con-

vex, whereas the set of feasible solutions of P corresponds

to an ELCP and is thus in general not convex [3].

Proposition 3.1 If J is a strictly monotonous function of x∗

— i.e., if for any δ ∗ with positive components and for all

x̃∗, x̂∗ with 0 ≤ x̃∗ ≤ x̂∗ and with x̃∗j < x̂∗j for at least one

index j, we have J(x̃∗,δ ∗) < J(x̂∗,δ ∗) — then any solution

of the relaxed problem P̃ is also a solution of the original

problem P .

Proof: The proof is similar to that of Proposition 3.2 of

[3]. The main difference is that in [3] we assumed that the

average arrival and departure rates were constant during the

whole period (t0, tN), whereas in this paper we allow them

to vary from one main phase to another.

Using a reasoning similar to the one of [3] it can be shown

that J̃1 and J̃4 are strictly monotonous functions of x∗, i.e.,

they satisfy the conditions of Proposition 3.1. Furthermore,

if all the δk’s are equal then J̃1 and J̃4 are linear, strictly

monotonous functions of x∗, which implies that problem

(8) – (13) then reduces to a linear programming problem,

which can be solved efficiently using a simplex or interior

point method. In [3] we also discuss some extensions of the

basic model such as: an amber duration that is a variable or

that depends on k; streets consisting of more than two lanes;

different average departure rates for vehicles that turn left,

right or go straight ahead; and intersections of networks.



Table 2: The values of the objective function J4 (up to 3 deci-

mal places) and the CPU time (up to 2 decimal places)

needed to compute the (sub)optimal switching interval

vectors of the example of Section 4.

δ ∗ J4(δ
∗) CPU time

δ ∗
ELCP 364.944 1114.46

δ ∗
con 364.944 177.37

δ ∗
pen 367.760 155.85

δ ∗
mul 366.715 14.69

δ̃ ∗ 364.944 0.88

δ ∗
lin 378.372 0.63

For more information on traffic modeling and traffic light

control the interested reader is referred to [4, 5, 6, 7, 8].

4 Example

The following example illustrates that using the approxima-

tions introduced in the Section 3.2 for the objective func-

tions J4 leads to good suboptimal solutions that can be com-

puted very efficiently. All times will be expressed in seconds

and all rates in vehicles per second.

Consider the intersection of Figure 1 with the following

data: λ̄
(k)
1 = 0.22, λ̄

(k)
2 = 0.13, λ̄

(k)
3 = 0.19, λ̄

(k)
4 = 0.12,

µ̄
(k)
1 = µ̄

(k)
3 = 0.5, µ̄

(k)
2 = µ̄

(k)
4 = 0.4, κ̄

(k)
1 = κ̄

(k)
3 = 0.05,

κ̄
(k)
2 = κ̄

(k)
4 = 0.03, x0 = [22 18 15 14 ]T , δa = 3, δ

(k)
min,g,1 =

δ
(k)
min,g,2 = 6, δ

(k)
max,g,1 = δ

(k)
max,g,2 = 60, x

(k)
max = [25 15 25 15 ]T .

Let w = [ 2 1 2 1 ]T . We want to compute a traffic light

switching sequence t0, t1, . . . , t7 that minimizes the weighted

average waiting time J4. We have computed an optimal

solution δ ∗
ELCP obtained using the ELCP method, a so-

lution δ ∗
con using constrained optimization with nonlinear

constraints, a solution δ ∗
pen using constrained optimization

with a penalty function, a multi-ELCP solution δ ∗
mul with

Ns = 3, a solution δ̃ ∗ that minimizes the approximate objec-

tive function J̃4 and a linear programming solution δ ∗
lin. In

Table 2 we have listed the value of the objective function J4

for the various switching interval vectors and the CPU time

needed to compute the switching interval vectors on a SUN

Ultra 10 300 MHz workstation with the optimization rou-

tines called from MATLAB and implemented in C or For-

tran. The CPU time values listed in the table are average

values over 10 experiments.

If we look at Table 2 then we see that if we take the trade-off

between optimality and efficiency into account, then the δ̃ ∗

solution is clearly the most interesting.

5 Conclusions

We have derived a model that describes the evolution of the

queue lengths at a traffic light controlled intersection of two

streets. We have shown how an optimal traffic light switch-

ing scheme for the given system can be determined. In gen-

eral this leads to a minimization problem over the solution

set of an Extended Linear Complementarity Problem. For

objective functions that depend strictly monotonously on the

queue lengths at the traffic light switching time instants, the

optimal traffic light switching scheme can be computed very

efficiently. We have derived approximate objective func-

tions for which this property holds. Moreover, if the ob-

jective function is linear, the problem reduces to a linear

programming problem.

Topics for further research include: extension of our ap-

proach to models with integer queue lengths, extension to

centralized traffic light control for networks of intersections,

and development of other efficient algorithms to compute

optimal traffic light switching schemes.
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