
Delft University of Technology
Fac. of Information Technology and Systems Control Systems Engineering

Technical report bds:98-02

The extended linear complementarity
problem and linear

complementary-slackness systems∗

B. De Schutter

If you want to cite this report, please use the following reference instead:
B. De Schutter, “The extended linear complementarity problem and linear
complementary-slackness systems,” Proceedings of the European Control Conference
1999 (ECC’99), Karlsruhe, Germany, 5 pp., Aug.–Sept. 1999. Paper 1006-3 / CM-
9.3.

Control Systems Engineering
Faculty of Information Technology and Systems
Delft University of Technology
Delft, The Netherlands
Current URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/98_02.html

https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/98_02.html


THE EXTENDED LINEAR COMPLEMENTARITY PROBLEM

AND LINEAR COMPLEMENTARY-SLACKNESS SYSTEMS

B. De Schutter

Control Laboratory, Fac. of Information Technology and Systems

Delft University of Technology, P.O. Box 5031

2600 GA Delft, The Netherlands

fax: +31-15-278.66.79, email: b.deschutter@its.tudelft.nl

Keywords: Hybrid systems, linear complementarity prob-

lems, complementary-slackness systems

Abstract

First we introduce the Extended Linear Complementarity

Problem, which is a kind of mathematical programming prob-

lem. Next we show how this problem arises when we want to

compute stationary points of linear complementary-slackness

systems or when we want to determine the uniqueness of

smooth continuations and the associated mode selection prob-

lem for linear complementary-slackness systems. We also

briefly discuss the role of the Extended Linear Complementar-

ity Problem in the analysis of other classes of hybrid systems

such as discrete event systems and traffic signal controlled in-

tersections.

1 The Extended Linear Complemen-

tarity Problem

1.1 The Linear Complementarity Problem

One of the possible formulations of the Linear Complementar-

ity Problem (LCP) is the following [1]:

Given M ∈ R
n×n and q ∈ R

n, find w, z ∈ R
n such

that

w = q+Mz (1)

w,z ≥ 0 (2)

zT w = 0 . (3)

Note that if w and z are solutions of the LCP then it follows

from (2) and (3) that zi wi = 0 for i = 1,2, . . . ,n. So for each

index i ∈ {1,2, . . . ,n} at least one of the following conditions

should hold:

zi = 0 and wi ≥ 0 (4)

or

zi ≥ 0 and wi = 0 . (5)

Hence, we have

wi > 0 ⇒ zi = 0 and zi > 0 ⇒ wi = 0

for i = 1,2, . . . ,n, i.e., the zero patterns of w and z are comple-

mentary. Therefore, condition (3) is called the complementar-

ity condition of the LCP.

The LCP has numerous applications such as quadratic pro-

gramming problems, determination of the Nash equilibrium of

a bimatrix game problem, the market equilibrium problem, the

optimal invariant capital stock problem, the optimal stopping

problem, etc. [1]. This makes the LCP one of the fundamental

problems of mathematical programming. For more informa-

tion on the LCP and its applications the interested reader is

referred to [1, 8].

1.2 The Extended Linear Complementarity

Problem

The Extended Linear Complementarity Problem (ELCP) is an

extension of the LCP and is defined as follows [3, 4]:

Given P ∈ R
p×n, Q ∈ R

q×n, r ∈ R
p, s ∈ R

q and m

subsets φ1, φ2, . . . , φm of {1,2, . . . , p}, find z ∈ R
n

such that
m

∑
j=1

∏
i∈φ j

(Pz− r)i = 0 (6)

subject to Pz ≥ r and Qz = s.

Condition (6) is called the complementarity condition of the

ELCP. Since this condition is equivalent to

∀ j ∈ {1,2, . . . ,m} ,∃i ∈ φ j such that (Pz− r)i = 0 ,

the ELCP can be considered as a system of linear equations

and inequalities (Pz ≥ r, Qz = s), where there are m groups of

linear inequalities (one group for each index set φ j) such that

in each group at least one inequality should hold with equality.

In [3, 4] we have developed an algorithm to compute the

complete solution set of an ELCP. In [3, 4] we have also

shown that the general ELCP with rational data is NP-hard.



2 The ELCP and complementary-

slackness systems

2.1 Complementary-slackness systems

In general the behavior of a linear complementary-slackness

system (CSS) can be described by a model of the following

form [10]:

ẋ(t) = Ax(t)+Bu(t)

y(t) = Cx(t)+Du(t)

subject to

y(t)≥ 0, u(t)≥ 0, yT (t)u(t) = 0 . (7)

Typical examples of CSS are linear mechanical systems sub-

ject to geometric inequality constraints, or electrical networks

consisting of linear resistors, capacitors, inductors, transform-

ers, gyrators and ideal diodes.

Let m be the number of inputs and outputs of the CSS.

Note that condition (7) implies that at each time instant t there

exists an index set I ⊆ {1,2, . . . ,m} such that

yi(t) = 0 for i ∈ I (8)

ui(t) = 0 for i 6∈ I . (9)

Each index set I ⊆ {1,2, . . . ,m} corresponds to a mode of the

system. So in principle there are 2m different possible modes,

but note that some of them may not be feasible (due to the

other constraints on u and y).

Now assume that we have a CSS that is driven by a con-

stant but yet unknown input u. In order to compute the station-

ary points of this CSS, we have to add the condition ẋ(t) = 0.

If we eliminate the output y, this leads to:

Ax+Bu = 0

Cx+Du ≥ 0

u ≥ 0

(Cx+Du)T u = 0 .

It is easy to verify that this problem is an ELCP with

z =

[

x

u

]

, P =

[

C D

O I

]

, Q =
[

A B
]

,

r = 0, s = 0 and φ j = { j, j+m} for j = 1,2, . . . ,m where m is

the number of inputs and outputs of the system.

It is easy to verify that if we replace (7) by more general

conditions of the form wi(t)≥ 0, w̃i(t)≥ 0, wi(t) w̃i(t) = 0 for

i ∈ I, where wi and w̃i are components of u, y or x and where

I is a set of indices, then we also get an ELCP if we want to

compute the stationary points of the system when it is driven

by a constant input.

2.2 The ELCP and the Linear Dynamic Com-

plementarity Problem

Let us first introduce some definitions.

We say that a vector a ∈ R
n is lexicographically nonnegative,

denoted by a � 0, if either ai = 0 for all i or the first nonzero

component of a is positive. So we have [1 −1 ]T � 0 and

[0 0 2 ]T � 0 but [0 −1 2 ]T 6� 0.

The sign decomposition a+,a− of a vector a ∈ R
n is defined

as follows: a+, a− ∈ R
n, a = a+−a− with

a+ ≥ 0, a− ≥ 0 and (a+)T a− = 0 . (10)

So if a = [2 −3 0 −4 ]T then we have a+ = [2 0 0 0 ]T and

a− = [0 3 0 4 ]T . Note the resemblance between the condi-

tions (2) – (3), (7) and (10).

The Linear Dynamic Complementarity Problem (LDCP) is de-

fined as follows [10, 12]:

Given matrices A ∈ R
n×n, B ∈ R

n×k, C ∈ R
k×n

and D ∈ R
k×k, find for a given x0 ∈ R

n sequences

{yl}
n−1
l=0 , {ul}

n−1
l=0 with yl ,ul ∈ R

k for all l such that

y0 = Cx0 +Du0 (11)

y1 = CAx0 +CBu0 +Du1 (12)

...

yn−1 = CAn−1x0 +CAn−2Bu0 + . . .

+CBun−2 +Dun−1 (13)

and such that for each index i ∈ {1,2, . . . ,k} at least

one of the following statements holds:











(y0)i

(y1)i

...

(yn−1)i











= 0 and











(u0)i

(u1)i

...

(un−1)i











� 0 (14)

or










(y0)i

(y1)i

...

(yn−1)i











� 0 and











(u0)i

(u1)i

...

(un−1)i











= 0 . (15)

Conditions (14) – (15) are called the complementarity condi-

tions of the LDCP.

In [10, 12] the LDCP has been used to determine the exis-

tence and uniqueness of smooth continuations for linear CSS

for a given initial point x0, and to solve the associated mode

selection problem (i.e., determining an index set I such that

the conditions (8) and (9) hold). The mode selection problem

will have a unique solution if and only if the LDCP (14) – (15)

has a unique solution.

In [10] it has been shown that under fairly mild assumptions1

1I.e., if for some j ∈ N we have D = CB = · · · = CA j−1B = O and the

principal minors of CA jB are positive.



the LDCP can be reduced to a series of LCPs. Let us now

show that the LDCP is a special case of the ELCP.

Lemma 2.1 Composing complementarity conditions of an

ELCP by nested combinations of logical operators such as

logical “and” (∧), logical “or” (∨), negation, implication

(⇒) or equivalence (⇔) results again in a complementarity

condition of the form (6).

Proof : See [6]. ✷

Theorem 2.2 The LDCP is a special case of the ELCP.

Proof : Consider the LDCP defined by (11) – (15). If we de-

fine

y =











y0

y1

...

yn−1











, u =











u0

u1

...

un−1











, q =











Cx0

CAx0

...

CAn−1x0











and

P =











D O O . . . O

CB D O . . . O
...

...
...

. . .
...

CAn−2B CAn−3B CAn−4B . . . D











,

then we have y = Pu+q. Consider the sign decomposition of

y and u:

y = y+− y−

u = u+−u−

y+,y−,u+,u− ≥ 0

(y+)T y− = 0 and (u+)T u− = 0 .

The last condition is equivalent to (y+)T y− + (u+)T u− = 0

since we have (y+)T y− ≥ 0 and (u+)T u− ≥ 0. So if we define

x =









y+

u+

y−

u−









and Z =
[

I −P − I P
]

,

then the system (11) – (13) can be rewritten as

Zx = q (16)

x > 0 (17)

2nk

∑
i=1

xixi+2nk = 0 , (18)

which is (a special case of) an ELCP.

Now we show that combining condition (18) with the com-

plementarity conditions (14) – (15) of the LDCP results in a

complementarity condition of the form (6). We shall do this

for the case with n = 2 and k = 1. The general case can be

dealt with in a similar way.

Consider condition (14) for i = 1. Now we show that the con-

dition
[

(y0)1

(y1)1

]

= 0 and

[

(u0)1

(u1)1

]

� 0 (19)

leads to a logical combination of a number of complemen-

tarity conditions. Clearly, the first part of this condition is

equivalent to (y+0 )1 = (y−0 )1 = (y+1 )1 = (y−1 )1 = 0. Since

(y+0 )1,(y
−
0 )1,(y

+
1 )1,(y

−
1 )1 ≥ 0, this condition is equivalent to

(y+0 )1 +(y−0 )1 +(y+1 )1 +(y−1 )1 = 0 . (20)

The second part of condition (19) is equivalent to

((u0)1 ≥ 0) ∧
(

((u0)1 = 0) ⇒ ((u1)1 ≥ 0)
)

,

which can be rewritten as

((u−0 )1 = 0) ∧
(

(

((u+0 )1 = 0) ∧ ((u−0 )1 = 0)
)

⇒ ((u−1 )1 = 0)
)

.

Since this condition is a logical combination of elementary

complementarity conditions, it can be rewritten as one com-

plementarity condition of the form (6) by Proposition 2.1. In a

similar way we can show that condition (15) also leads to one

complementarity condition of the form (6). If we now take

the logical “or” of the complementarity conditions that corre-

spond to (14) and (15) then by Proposition 2.1 we get again

one complementarity condition of the form (6).

This implies that the complementarity conditions of the LDCP

together with condition (18) lead to one large complementarity

condition of the form (6). If we combine this condition with

(16) and (17), we finally get an ELCP. Any solution of this

ELCP will — after extraction of the vectors y0, y1, . . . , yn−1,

u0, u1, . . . , un−1 — yield a solution of the LDCP. So we can

say that the LDCP is a special case of the ELCP. ✷

3 A worked example

Let

A =

[

4 −1

−2 1

]

, B =

[

−2 −3

4 −1

]

, C =

[

−2 −2

−1 2

]

,

D =

[

−2 −1

5 −3

]

, x0 =

[

−5

3

]

and consider the following LDCP:

Find y0, y1, u0, u1 ∈ R
2 such that

y0 = Cx0 +Du0

y1 = CAx0 +CBu0 +Du1

and such that at least one of the following state-

ments is true for each index i ∈ {1,2}:

[

(y0)i

(y1)i

]

= 0 and

[

(u0)i

(u1)i

]

� 0



or
[

(y0)i

(y1)i

]

� 0 and

[

(u0)i

(u1)i

]

= 0 .

Using the reasoning given in the proof of Theorem 2.2 and

in the proof of Lemma 2.1 (see [6]) this LDCP can be trans-

formed into the ELCP of Table 1 with

x =

























































































(y+0 )1

(y+0 )2

(y+1 )1

(y+1 )2

(u+0 )1

(u+0 )2

(u+1 )1

(u+1 )2

(y−0 )1

(y−0 )2

(y−1 )1

(y−1 )2

(u−0 )1

(u−0 )2

(u−1 )1

(u−1 )2

























































































and where x̃ is a vector of “mirror variables”: x̃i is equal to 0

if and only if xi is different from 0. If we solve the ELCP of

Table 1 using the algorithm of [3, 4] we obtain a solution set

that consists of two solutions:

y0 =

[

4

11

]

, y1 =

[

20

49

]

, u0 =

[

0

0

]

, u1 =

[

0

0

]

,

and

ỹ0 =

[

0

21

]

, ỹ1 =

[

0

99

]

, ũ0 =

[

2

0

]

, ũ1 =

[

6

0

]

.

Since the LDCP considered here has more than one solution,

the associated mode selection problem for the given initial

point x0 will not have a unique solution either. For more infor-

mation on the connection between the mode selection problem

for CSS and the LDCP and for some worked examples the in-

terested reader is referred to [9, 10, 11, 13].

4 The ELCP and other hybrid systems

Hybrid systems arise from the interaction between discrete

event systems (i.e., asynchronous systems in which the state

transitions are initiated by events) and continuous variable sys-

tems (i.e., systems that can be modeled using difference or

differential equations). In general we could say that a hybrid

system can be in one of several modes whereby in each mode

the behavior of the system can be described by a system of dif-

ference or differential equations, and that the system switches

from one mode to another due to the occurrence of events. For

a CSS a mode corresponds to a particular choice of the index

set I such that the conditions (8) and (9) hold.

In [3, 5] we have shown that the ELCP can be used to

solve many problems that arise in the system theory for max-

linear time-invariant discrete event systems, i.e., discrete event

systems that can be described by a time-invariant model that

is linear in the max-plus algebra [2], which has maximization

and addition as its basic operations. In [14] it has been shown

that the Generalized LCP (which is also a special case of the

ELCP) plays a role in the modeling and analysis of piecewise-

linear resistive electrical circuits. In [7] we have used the

ELCP in a model that describes the evolution of the queue

lengths at a traffic signal controlled intersection.

Since all these systems can be considered as special cases

of hybrid systems, this seems to indicate that the ELCP will

play an important role in many analysis problems for hybrid

systems.

5 Conclusions and topics for further

research

In this paper we have discussed how the Extended Linear

Complementarity Problem (ELCP) can be used to compute

stationary points of linear complementary-slackness systems.

We have also shown that the Linear Dynamic Complementar-

ity Problem, which can be used to determine uniqueness of

smooth continuations and the associated mode selection prob-

lem for linear complementary-slackness systems, is a special

case of the ELCP. We have also given some other classes of

hybrid systems that can be analyzed using an ELCP. As a con-

sequence, ELCP can be considered as a general framework for

the analysis of many classes of hybrid systems.

It is obvious that each class of hybrid systems that can

be analyzed using the ELCP will lead to a special case of the

ELCP that is especially suited for the class of systems under

consideration. The computational complexity of these ELCPs

and the development of efficient algorithms to solve them or to

determine whether their solution set is non-empty or whether

their solution is a unique solution are still open problems. One

possible approach to tackle the complexity problem is to use

approximations and/or to develop procedures to efficiently ob-

tain suboptimal solutions (see, e.g., [7]).
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
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